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Heat Kernel, Eigenfunctions, and Conditioned
Brownian Motion in Planar Domains

by
Rodrigo Bafiuelos and Burgess Davis
Purdue University

Abstract

Some recent results concerning uniform convergence of the shape of the heat kernel
to that of the first eigenfunction, and the lifetime of A processes, in bounded Lipschitz
domains in R™, are extended to all planar domains of finite area.

§1. Introduction. Let Q2 be a planar domain of finite area and let A(f2) = X be the first
positive eigenvalue of half the Laplacian, -;—A, in (). Let ¢q = ¢ be the corresponding first
eigenfunction normalized so that Jo 8% = 1 and let PP (z,y) = P;(z,y) be the fundamental
solution for the heat equation 9% = 1 Au in Q2 x (0, 00) with Dirichlet boundary conditions.
For the basic properties of ¢ and P;(z,y) we refer the reader to [12]. In this paper we

prove the following result.

Theorem 1. Let z € ). Then

(1.1) tl_‘.”é‘o :S)\(t:;t—(:(,gj/)) = 1 uniformly in:{y € 0}.

We will see that the following is an immediate consequence of Theorem 1.

Theorem 2. Let k be a positive superharmonic function in 0. Then Jq h(y) é(y)dy < oo,
and if a(t) = a(t,z,h,Q) denotes the probability that the lifetime of the A process in (1,
started at z, exceeds t, we have _

1.2 im oM aft) = 22 / :
(1.2 Jlim & o) = £ [ hw) #(0) dy

We recall that the h process associated with the function A = 1 on Q is standard
Brownian motion killed when it hits Q. Thus the following theorem extends (in R%) a well
known result for standard Brownian motion, which follows from Donsker and Varadhan

[9], the two dimensional version of which is sup e*aft,r,1,0) < oo .
z€EN
i>0

Theorem 3. Let 2,4,),a be as in Theorems 1 and 2. Let ¥ be the collection of all
functions 2 which are positive and superharmonic in Q. Then

(1.3) sup e)‘ta(t,z, h,f2) < oo.
he)

An analog of Theorem 2 for bounded Lipschitz domains in R®, n > 2, whose Lipschitz
constant is sufficiently small was proved by R. D. De Blassie in [7] and [8]. More recently
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C. Kenig and J. Pipher [11] have proved the analog for general Lipschitz domains (and
NTA domains). Their paper uses the boundary Harnack inequalities for positive solutions
of the heat equation in Lipschitz cylinders to control all the eigenfunctions of %A in 0.
We work with only the eigenfunction ¢ and since our domain is arbitrary we do not have
the boundary Harnack principle available.

In [3] M. Cranston and T. McConnell give an example of a bounded domain D in
R? and a nonnegative superharmonic function k& on D such that the expected lifetime
of the h process, started at any point in D, is infinite. In the notation of Theorem 2,
f:o a(t,z,h,D) dt = oo for all z € D. Similar examples work in R™, n > 3. Thus the
analog of Theorem 2, (and also Theorem 3), for general bounded domains in R®, n > 3,
strongly fails. Furthermore, Theorem 1 cannot be extended to arbitrary bounded domains
in R™, because, as will be seen, such an extension would imply that Theorem 2 could also
be extended.

Theorem 1 comes very close to an analytic formulation of Theorem 2 and an analog
for Lipschitz domains D follows from results in [11]. In fact, it is-not hard to show using
the methods of [11] that for bounded Lipschitz domains, the convergence in the analog of
(1.1) is uniform in (z,y) € D x D. We will sketch an example of a bounded domain
1 in the plane, necessarily not Lipschitz, for which the convergence is not uniform in
(z,y) € Qx0. Theorems 1, 2, and 3 are proved in §3. In §4 we present the example and
discuss some extensions of the theorems to uniformly elliptic equations.

§2. Notations and Preliminaries. We let A be a cementary or trap point defined to
be at a distance 1 from all points of the plane and we shall use Z;, ¢ > 0, to designate
a cadlag process taking values in R2 U A. If D is a domain in R? (from now on we will
work exclusively in R? and all our domains are assumed to have finite area) and h is a
nonnegative superharmonic function in D, PP and EMD will denote the probability and
expectation associated with the h process in D started at z. No superscripts, as in P, and
E;, will indicate standard (unconditioned) two dimensional Brownian motion. We refer
the reader to Doob [10] for more information about h processes. Here we recall that if
7p = inf{t > 0: Z; & D}, the lifetime of the h process in D, then the paths are continuous
until 7p and form a strong Markov process with transition density

1

h — D h
(2.1) Ph(z3) = 5753 PP(.0) ()
where PP (z,y) is the density of standard two dimensional Brownian motion started at z

and killed when it leaves D. In the notation of the introduction, PP (z,y) is the Dirichlet
heat kernel for %A in D. For r > 0 we define

oo

(2.2) | Pay) = [ PP(ay)

r

When r = 0, this is just the Green function for %A in D and in this case we simply write
GP(z,y). If f is an integrable function in D we define the operator T2 by

(2.3) TP f(z) = /D PP(z,3) 1(v) dy
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and observe that

(2.4) T, ¢(z) = e *¢(z) and T PP (z,) = PB,(z,").

We will make extensive use of the following result of Cranston and McConnell [3].

Lemma 2.1. There is a constant C; (C; = % will work) such that if D is a planar domain

of finite area and h is a nonnegative superharmonic function on D then

(2.5) Ef’D(rD) < C area (D).
Now using (2.1) and (2.2) it follows easily that
1
EMD(rp =—/ GD:c,yhydy
22(r0) = o1 [ Pt

and thus (2.5) has the equivalent formulation

1
2.6 — b < :
(2.6) e /1) G”(z,y)h(y)dy < C, area (D)

We should also remark here that Cranston and McConnell only proved (2.5)—(2.6) for
h harmonic. It is known that this case easily implies the case when A is superharmonic.
We briefly describe the argument. Fix zo € D and let z # zo. Put h(y) = GP(z0,y).
Then h is harmonic in the domain D’ = D\{zo}. Applying (2.6) to this function k in D’
and using the fact that area (D') = area (D) we get

(2.7) m /D GP(z,y)GP (z0,y)dy < C; area (D).

Now apply the Riesz decomposition theorem to the positive superharmonic function A,
(2.7), and the case for harmonic functions of (2.6) to get the general case.

We also note that it is possible to recover Lemma 2.1, except for the value of Cy, from
Theorem 3. For Theorem 3 implies

(2.8) sup EMPD (rp) < oo if area (D) < oo.
z,h

If Lemma 2.1 did not hold for any value of C; then it is not hard to show that it would
not hold even for bounded domains, and from this, together with translation and scaling,
it is possible to find a sequence of disjoint domains T;, together with z;, h;, such that area
(T';) = 27¢ but E_f: Ti(rp,) — oco. If the T'; are connected with fine enough passages, and
I is taken to be the union of the I'; together with the passages, then I will violate (2.1).
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§3. Proof of Theorem 1. We may and do assume A(f2) = 1. Furthermore we shorten
PG G2 to P;,G, and G,. Let {Q;} be a Whitney decomposition of Q. This is a
decomposition of {2 into cubes with the following three properties:

(1) QGNQr=¢, j#k
1 _ £Q)) .
(2) ZSZ(QZ)S4 if Qj NQk # ¢
d(Q;,00) _
(3) 1< Z{TJ) <4v?2 for all .

Here Q? denotes the interior of @, d(Q;,99) is the Euclidean distance from Q; to the
boundary of 2 and £(Q;) is the edge length of Q;. (See [13], p. 167 for the construction of
this decomposition.) Let F be a finite union of the @; which satisfy

(3.1) C; area (- F) < 1/10»

where C is the constant of Lemma 2.1, and let F’ be the union of F together with all the
Q; which touch F. Notice that F' is also a finite union of Whitney cubes and that F is
contained in the interior of F’.

The important point here is that we have two connected compact sets F''and F/ with F
satisfying (3.1), F ¢ F’, and d(F,0F') > 0. There are, of course, other ways to construct
these sets without Whitney decompositions, for example, using level sets of the Green
function. The analogue of the following lemma for bounded Lipschitz domains is proved
in [11], (see also [5]).

Lemma 3.1. Let zo € 0. There are constants 0 < ¢(zo0, ) < C(zo,N) such that for all
y €1,

(3.2) ¢(zo, 1) min(1, G(zo,v)) < ¢(y) < C(zo,N)G(z0,y).

Proof: We may assume zo € F. Let G F (z,y) be the Green function for 2 — F. Since
¢ is superharmonic in () it is also superharmonic in Q — F. Applying (2.6) we have

1 - 1
(3.3) WL_F G F(:c, y)¢(z)dz < C; area (N — F) < T

for y € {1 —F. Notice that since G F(z,y) = 0if y ¢ 0 — F, we actually have (3.3) for
ally € Q.

Set ¢¥(y) = #(v)/ f, #(v)dy and let Z; be Brownian motion started with the initial
distribution v. Let n = inf{¢: Z; € F}. Then

B4 [ CuaEz= [ Tyt [ 6.2)dutz)

4



where p is the distribution of Z,I(Z, € F). Noten=0if Z, € F.
Now since

#0) = [ Gz [ cwaweis+ [ ol vieis

it follows from (3.3) and (3.4) that

(3.5) —l%tﬁ(y) < /F G(y,z)du(z)

Since p(F) < 1, it follows from (3.5) that G(y,z) > 1—%—1,&(y) for some z € F. By the
Harnack inequality G(y, z) > T%-z,b(y) for 2 € F, provided y € 1 — F' and particularly
G(zo,y) > Co(y). fy € F', G(zo,y) > Co(y) follows immediately since v is bounded
above and G(zo,y) is bounded below on F’. Thus we have proved the right hand side of
(3.2). The left hand side is easy to prove and since we do not use-it, the proof is omitted.

Lemma 3.2. Let zp € Q. There exists constants ¢ = ¢(zo,0) and C = C(zo, ) such
that

(3'6) c¢(y) S P2co (207 y) S C¢(y)a Yy S Q’

where ¢o = 3(Cy + 1).

Proof: We may assume zo is in the interior of F and, by enlarging F if necessary, that it is

at a positive distance é to the boundary of F. We may also assumey € Q—F. Let B(zo, 6)

be the ball centered at o and radius 6, B(zo,6) C F. Since e*é(y) = [ Pi(z,y)d(z)dz
Q

we have

/3460 e b(y)dt = /3 " /ﬂ Py(z,y)p(z)dzdt

Co Co

400
> / / Py(z,y)¢(z)dzdt
300 B(Zo ,6/2)

> CPse,(20,y) ¢(z)dz
B(zo,a/Z)

= C($0a n)PZCQ (an y)

where the last inequality follows from the parabolic Harnack inequality, (see [10], p. 272).
We have proved the right hand side of (3.6).

To prove the left hand side of (3.6) first observe that

(o]

(3.7) G (z0,3) = /1 Pi(zo, y)dt

[o o]
=/ Pt+1(a:o,y)dt=/ G(z,y)P1(zo, 2)dz
Jo | Q
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by the definition of G' and the semigroup property. Thus

G1(zo0,y) Z/ G(2,y) P1(zo, 2)dz
B(z0,56/2)

zé/ G(2,y)dy
B (30 16/2)

where we may take C' = inf PIB (20,8) (z0,2). The previous inequality together
z € B(z0,6/2)

with the harmonicity of G(z,y) in B(zo, §) gives

(3.8) G1(zo,y) > C(zo, M) G(z0,y).
By another application of the Cranston-McConnell result, Lemma 2.1, we have

Co
1
(3.9) - / Pi(z0,4)dt > 7 G (z0,).
1

Now the parabolic Harnack inequality together with (3.8), (3.9) and Lemma 3.1 give

md%mzcmunfﬂwmwﬁza%mmmmw
> C(z0,2)G(z0,3) > C(z0, W(y)

completing the proof of Lemma 3.2.

Now fix z and let g(t) and f(t) be respectively the largest and smallest functions
satisfying the following inequa,lity;

(3.10) 9(t)e™*6(y) < Pi(z,y) < f(t)e~*$(v).

By (3.6), 0 < g(2¢o) < f(2¢o) < co. Furthermore, upon applying the operator'TS! to all
sides of (3.10) and using (2.4) we see that g is not decreasing and f is not increasing.

Lemma 8.3. There is a constant K(z) such that tl_i’r& f@t) = tl—i»IEo 9(t) = K(z).

Proof: The proof of Lemma 3.2 shows that c16(y) < Poc, (2,y) < Ca6(y) with ¢; and C,
independent of z if z is in the compact set F. Thus

(3.11) /Q , Pra(@9)8(2)d = /n Paey (2, 4) $(2)dz — /F Paey (2,3)(2) dz
= e 2% ¢(y) —/ Paeo (z,y)d(x)dz
F

< e—2co¢(y) — c16(y) /I;qﬁ(x)dz
= §e~ 20 p(y)
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where 6§ < 1.

Now set
Py(z,y) = [Py(z,y) — g(t)$(v)e™?] + g(t)p(y)e

= ¢i(z,y) + 9(t)p(y)e~*
= q:(y) + 9(t)p(y)e %

By the definition of f and g, 0 < ¢:(y) < (f(¢t) — 9(t))é(y)et. With this observation and
(3.11) we have

Taeots(y) = /ﬂ Pre, (v, 2)as(2)dz = /n | Preolnnar(a)dz + /F Pres (4 2)a2(2)d2
810 <[ P70 -8+ [ Pyl (o)
< 8(f(2) — g(t))e(tH2o0)g(y) + /F Pacq (¥, 2):(2)d=.

Now suppose

%l(f(t) —g(t))e” TV g(y) < Tze,q:()-

Then (3.12) implies that

(552 -5) 10 - 0900 < [ P (2

and thus we have

{ Taeo0t(8) < Z2(F(2) - glt))e=+20)g(y)
(3.13) or
(552 - 8) (/) — 9(£)e™¢+>)8() < [ Pacy (4, 2)as () d2.

We will now use (3.13) to show that there are constants 0 < a <1 and 0 < 8 < 1
such that for any ¢,

(3.14) or

{ F(2e0 +1) < alf(£) — 9(t)) + 9(2)
0(t) + B7(0) - 9(t)) < 9(2c0 +1).

From here it follows that
f(2c0 +1) — g(2c0 +t) < (f(t) — g(t)) — min(1 — e, B)(£(2) — g(t)),

which in turn, together with the fact that f(¢) — g(¢) is a nonincreasing function, proves
that f(t) —g(t) — 0 as t — oco. Since f is nonincreasing and ¢ is nondecreasing this shows
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that f(t) and g(t) approach a common positive limit which we call K (z). Thus to complete
the proof of the lemma we need to show that (3.13) implies (3.14). Suppose

146 —(t+2c
Taeotlv) < S22 (70 - o)1) y).
Then, by the definition of ¢; and both parts of (2.4),

Paco+t(7,y) = Taco Pi(,y) = Tacoq:(y) + T2c09(t)e ¢ (y)
= T2c,qt(y) + g(t)e Te 20 4(y)

< e {12810 - 40) 4.0} 600

Now set o = 4% and use the definition of f conclude that the first alternative in (3.14)
holds. Next suppose the second alternative in (3.13) holds. Then,

| (12L6 - 6) (£ - g(t))e‘(t+2co)¢(y) < /FPz,,o (v, z)qt(;)dz < T2, 4i(y)

= Paco+t(z,y) — g(t)p(y) e (t+2c0)

where we have again used both parts of (2.4). From here we have

¢~ (+2¢0) { (1%5 - 5) (F () —g(2)) + g(t)} $(y) < Paco+t(z,v)

and by the definition of ¢ we have the second alternative in (3.14). This completes the
proof of the lemma.

To complete the proof of Theorem 1 we must show that K(z) = ¢(z). From the
inequality (3.10) and the first part of (2.4) we have, .

s [ Fw)ir<e (@) < S0 [ Flay
Q Q
This inequality together with Lemma 3.3 implies that K(z) = ¢(z) and completes the

proof of Theorem 1.
When D is a bounded Lipschitz domain (or NTA domain) the results in [11], (see the
remark 3.5), show that if € > 0 then, for ¢ > ¢,
et Py(z,y)
¢(z)9(y)

where Az is the second eigenvalue and C is a constant. For our case of arbitrary planar
domains of finite area our argument shows that for ¢ > ¢,

—1] < Ce~QarAPt

e* tP(z,y)

e M= @



where ¢ is independent of .

We now derive Theorem 2 from Theorem 1. Since h(Z;) under P, is a supermartingale
we have

/ﬂ h(2) Pi(2, 2)dz = Bo(h(22)) < Ba(k(Z0)) = h()

and so by letting = be any point in 0 satisfying h(z) < oo we see that

/ h(z) Py(z,2)dz < oo
Q

for each ¢ > 0. The first assertion of Theorem 2 follows from this and Theorem 1. Next,
we have

1
aft) = PPOrg > ¢} = —L_ / Py(, v)h(y)dy
h(z) Jq
and the second assertion follows immediately from this and again’ Theorem 1.
Next we prove Theorem 3. Let A be a compact subset of Q) such that C; area

(2 — A) < €710, The arguments of this section show that

(3.15) sup PMrg > t}e! = M < oo.
hex

z€EA
t>0

Suppose z € 1~ A. Let n =inf{t:Z, € A}.

Then under P}, Z;,0<t < n A Ta, where A denotes the minimum, is still an A process in
the region 1 — A, up to its lifetime [10]. Thus, by Lemma 2.1,

Pf(n Atg>1) < E;‘(n A1) < Cj area (1 — A) <710,
Using the strong Markov property, it is easy to show that
(3.16) PMnAra>k}<e 1%, k=1,2,...

See the end of the first section of [6] for this argument. Another application of the strong
Markov property and (3.15) give

3.17 ph Ta—n >t FH} < Me?
z n

on {n < .TQ}. The theorem now follows easily from (3.16) and (3.17).

§4. An example and further remarks. We begin by briefly describing the example
mentioned in the introduction. Let D;,7 = 1,2,... be disjoint discs in the plane of finite
total area. Let z; be the center of D;. Let D be the union of all the D; together with thin
connecting passages (tubes). We make the passages so small that for each ¢, P, {Z; €
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D;,i < 1p} > i P, {Z: ¢ D;, i < 7p} if ¢ is even and P, {Z;_, € Dj,i — 1 < T} >
((—1)P,{Z;_1¢D;_1,i—1< 7p} for ¢ odd, or what is equivalent,

/ PiD(zi’y)dyZ ) / PiD(zi,y)dy’
if ¢ is even, and a similar formula if ¢ is odd. I i is even, P;(z;, -} is concentrated on D;
and P;(z;41,°) is concentrated on D;;1, so it is clear that even at time ¢ these functions
do not have the same shape at all, and thus clearly they cannot both be uniformly close
to et p ¢p. We leave the details to the reader.

As remarked in [11}, the analog of Theorem 1 for bounded Lipschitz domains works
equally well for uniformly elliptic operators of the form

a 0
4.1 = 3 Z(aii(z) =
( ) L . az'(aJ(z)azj)
where the coefficients a;; are only assumed to be bounded measurable satisfying a;; = a;;

and
n

MEP < ) aij (@) &ty < AlE
$,5=1
Our results above also remain valid for these type of operators. In fact, all we need to

make our arguments work is the analog of the Cranston-McConnell result, Lemma 2.1, for
these operators. Such a result is proved.in [2] with constant Cy = 4/Ax.

Several authors have investigated the rate of decay of the eigenfunction ¢ near the
boundary for smooth and Lipschitz domains of R™. (See for example, Aizenman and Simon
(1], Davies [4], Davies and Simon [5], as well as the references given there.) The estimate of
Lemma 3.1 can also be used to obtain some of these results. For example, if 2 is a bounded
Lipschitz domain in R™ then the analog of Lemma 3.1 in [11] together with the well known
estimates for the Green function give that ¢, (d(z,80))* < ¢(z) < ez(d(x, 82))*2 where
a3 and ay depend on the Lipschitz character of the domain. Back in the plane; and for
bounded simply connected domains, Lemma. 3.1 gives a similar result.
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