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SYNOPTIC ABSTRACT

A formula for an approximation to the distribution of the sample means of a
logistic population is obtained by using the Edgeworth series expansions. Using
this approximation, we consider an elimination type two-stage procedure based
on the sample means for selecting the population with the largest mean from &
logistic populations when their common variance is known. A short table of the
constants needed to implement this procedure is provided and the efficiency of this

procedure relative to the single-stage procedure is investigated.
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1. INTRODUCTION

For the problem of selecting the population having the largest mean from
normal populations with a common known variance 02, Cohen (1959), Alam (1970)
and Tamhane and Bechhofer (1977, 1979) have studied two-stage elimination type
procedures, in which they used Gupta’s (1956, 1965) subset selection procedure in
the first stage to screen out non-contending populations and Bechhofer’s (1954)
indifference zone approach to select the best from among the populations in the

second stage.

Tamhane and Bechhofer (1977, 1979) studied in depth a two—éta.ge elimination
type procedure (’P;) for selecting the largest normal mean when the common vari-
ance is known. In order to determine a set of constants necessary to implement ’P;,
they proposed a criterion of minimizing the maximum over the entire parameter
space of the expected total sample size required by 73; subject to the procedure
guaranteeing a specified probability of a correct selection. As a consequence, 'P;
based on this unrestricted minimax design criterion possesses the highly desirable
property that the expected total sample size required by 'P; is always less than
or equal to the total sample size required by the best competing single-stage pro-
cedure of Bechhofer (1954), regardless of the true configuration of the population

means.

The logistic distribution has been widely used by Berkson (1944,1951,195'}j
as a model for analyzing experiments involving quantal response. Pearl and Reed
(1920) used this in studies connected with population growth. Plackett (1958,1959)
has considered the use of this distribution with life test data. Gupta (1962) has

studied this distribution as a model in life testing problems.

The importance of the logistic distribution in the modeling of stochastic phe-
nomena has resulted in numerous other studies involving probabilistic and statisti-
cal aspects of the distribution. For example, Gumbel (1944), Gumbel and Keeney
(1950) and Talacko (1956) show that it arises as a limiting distribution in vari-
ous situatioﬁs; Birnbaum and Dudman (1963), Gupta and Shah (1965) study its
order statistics. Many other authors, for example, Antle, Klimko and Harkness
(1970), Gupta and Gnanadesikan (1966) and Tarter and Clark (1965), investigate

inference questions about its parameters.
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In this paper we consider an elimination type two-stage procedure for selecting
the logistic population with the largest population mean when the populations
have a common known variance. Using an approximation to the distribution of
the sample mean from a logistic population, we propose a two-stagé elimination
type procedure P; and a non-linear optimization problem by using a minimax
criterion to find a set of constants needed to implement P,. We derive lower
bounds of the probability of a correct selection and the infimum over the preference
zone of the lower bounds. We determine the supremum of the expected total
sample size needed for P, over the whole parameter space. We provide tables of
constants to implement P, and of the efficiency of P, relative to ti—le corresponding
single-stage procedure P; for the two special cases of equally spaced and slippage

configurations.

2. DISTRIBUTION OF LOGISTIC SAMPILE MEANS

Because of the similarity between the logistic and the normal distributions,
the sample mean and variance, the moment estimators of the logistic population
parameters, are effective tools for statistical decisions involving the logistic distri-
bution. Antle, Klimko and Harkness (1970) give a function of the sample mean as a
confidence interval estimate of the population mean when the population variance
is known. Schafer and Sheffield (1973) show that in terms of the mean squa,rejd"
error the moment estimators of the logistic population parameters are as good as
their maximum likelihood estimators. The fact that the distribution of a sample
mean has monotone likelihood ratio (MLR) with respect to the population mean
when the variance is known is used by Goel (1975) to obtain a uniformly most
accurate confidence interval for the population mean and a uniformly most pow-
erful test for one-sided hypotheses involving the population mean. The sampling
distribution of the mean is a primary requirement for these statistical purposes.
The papers by Antle, Klimko and Harkness (1970), and Tarter and Clark (1965)

used a Monte Carlo method for this distribution.
Goel (1975) obtained an expression for the distribution function of the sum of

independenf and identically distributed (¢id) logistic variates by using the Laplace

transform inverse method for convolutions of Pélya type functions, a technique de-
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veloped by Schoenberg (1953) and Hirschman and Widder (1955). He provides a
table of the cumulative distribution function (cdf) of the sum of #id logistic variates
for sample size n = 2(1)12, z = 0(0.01)3.99, and » = 13(1)15, z = 1.20(0.01)3.99.
George and Mudholkar (1983) obtained an expression for the distribution of a con-
volution of the #id logistic variables by directly inverting the characteristic function.
However, since both formulas of Goel (1975) and George and Mudholkar (1983)
contain terms (1—e®)~%,k = 1,...,n, the problem of precision of the computation
at values of z near zero arises when n is large. George and Mudholkar (1983) also
show that a standardized Student’s ¢ distribution provides a very good approxima-
tion for the distribution of a convolution of iid logistic random variables compared
to the standardized normal distribution and the Edgeworth series approximation
terminating with the n=1 term.

In this section, we consider an appro:gima,tion for the distribution of a stan-
dardized mean of samples from a logistic population by using Edgeworth series
expansions including terms upto n~3. Han (1987) has_ compared this with the
Student’s ¢ distribution and found this approximation better (differing from the
exact values of Goel by not more than 0.0001) for n > 7.

2.1. Logistic Distribution and Edgeworth Series Expansion for the
Distribution of the Sample Mean. A random variable X has the logistic dis-
tribution with mean p and variance o?, denoted by L(u,o?), if the probability

density function (pdf) of X is given by
f(z) = (g/0)[exp{-g(z — p)/o {1 + exp{—g(z — p)/o}] (1)
with the cdf of X given by
F(z) = 1 + exp{-g(z — p)/o}]7", (2)

where —0o < z < 00, —00 < £ < 00, @ > 0 and g = 7/+/3. This distribution is
symmetrical about the mean u.

Letting Y = (X — u)g/o, the random variable Y has the logistic distribution
with mean zero and variance 72/3. The pdf and cdf of the random variable Y are

given by
f(¥) = lexp{-y}][1 + exp{—9}] 3)
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and

F(y) = [1 + exp{-y}]™* (4)

respectively, where —oo < y < 00. (3) may be written in terms of F(y) as

f(y) = F(y)(1 - F(y))- (3)
The moment generating function (mgf) of Y is given by

My($) = T(1 +HT(1 - 1) _
= nt/sinwt, || < 1. . (6)

Let X3, Xa,...,X, be a random sample of size n from a logistic population

L(y,0%). Define a standardized mean Z of a sample of size n from L(y,o?) as

= Tl,'w',z:(xi—/-‘)

=X ), ™

where X = L 3° X; is the sample mean.
i=1
Let f,(z) and F,(z) denote the pdf and cdf of the standardized mean of samples
of size n from L(u,0?). Then the Edgeworth series expansions of f,(z) and F.(2)

are given symbolically as

Fa(2,0) = $(2) + $(2) Y pi(2)n ™% + O(n=41/?)

=1

and ,
Fo(z,v) = 8(2) — ¢(2) Z P_,-(z)n_'-"'/2 + O(n~(v+1)/2)
i=1
respectively, where ¢(z) and ®(z) are the standard normal pdf and cdf respectively
and p;(z) and P;(z) are polynomials in z, which are obtained up to » = 10 in
Draper and Tierney (1973).
Using p;(z) and P;j(z) from Table II of Draper and Tierney (1973) and expres-

sions for relative cumulants of X, the Edgeworth series expansions of f,(2) and
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3

F,(z) correct to order n™° can be obtained as

fa(z,v = 6)

= $()L+ (D E(n™

HIGGD ) + (G Hs(2)n™

+ (G Hs(2)

+ &y G o() + CEDEP Hi (=) +007)  (8)

and

Fo.(z,v =6)
= 8(2) ~ S Fa(n~"

FHIECDHSR) + (G Hr(2)ln™

HEED M)

+ (%)(g)(g)ﬂg(z) + (%)(%)3511(2)]72_3} +om-?)  (9)

where the H;(x) are the Hermite polynomials of degree 7, defined by
(Ed;)-’ exp(—2%/2) = (-1) H;(z) exp(-2%/2), j=0,1,....
The Hermite polynomials follow the recurrence relation:
Hj(z) = zHj-1(2) — (j —~ DHj-2(x), §=2,3,...,
and are given in Table III in Draper and Tierney (1973) for j = 1(1)30.
3. AN ELIMINATION TYPE TWO-STAGE PROCEDURE FOR
SELECTING THE BEST POPULATION

3.1. Preliminaries. Let 7;, ¢ = 1, ..., k, denote k logistic populations with

unknown means p; and a common known variance o?, and let

Q={ﬁ=(p1,...,uk);—oo<u.- <o, t=1,...,k}
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be the parameter space. Denote the ranked values of the p; by

By £ -+ < HK

and let
b5 = ppi — B0

We assume that the experimenter has no prior knowledge concerning the pa.iring
of my with up;,i=1,...,k, j=1,..., k. Let 7(;y denote the population associated
with pj- ]

The goal of the experimenter is to select the ‘best’ population which is defined
as the population with the largest mean. This event is referred to as a correct
selection (CS). The experimenter restricts consideration to procedures (P) which

guarantee the probability requii‘ement
P=[CS|P]2 P*, ¥ 1 € Q(6), (10)

where § > 0 and 1/k < P* < 1 are specified prior to the start of experimentation

and

Q) = {¥ € QUlpw — Lr-1) > 8}

which is defined as the preference zone for a correct selection.

Here we propose an elimination type two-stage procedure Pr= 'Pg(nl,ng,h')“
which depends on non-negative integers n1, ny and a real constant A > 0 which
are determined prior to the start of experimentation. The constants (ny,7n2,h)
depend on k, § and P* and they are chosen so that P; guarantees the probability
requirement (10) and possesses a certain minimax property.

Procedure Ps;

Stage 1: Take n; independent observations

x®

17 ? J=17"'7n1’

from m;, i = 1,...k, and compute the k sample means

n1

TV =L XD =1,k

i ij
ny 4
1 j=1
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Let fﬁ]) = max 3(_(1-1). Determine the subset I of {1,...,k} where
1<i<k
1 1
I={: IY( ) >X —fk]) — ho[\/n1},
and let 7; denote the associated subset of {my,...,7x}.

1. If =1 consists of only one population, stop sampling and assert that the popu-
lation associated with Y&) is best.

2. If 7 consists of more than one population, proceed to the second stage.
Stage 2: Take ny additional independent observations X ff), j=1,...,n9,

from each population in 7, and compute the cumulative sample means

o }:Xm

T%

n1 + N2

( 7‘”+

for ¢ € I, where

—(2) Z X(2).

Assert that the population associated with I?g,ch ; is the best.

There are an infinite number of combinations of (ny, na, k) for given k, § and
P*, which will exactly guarantee the probability requirement given by (10), and
different design criteria lead to different choices. We will consider one of these
criteria.

Let S’ denote the cardinality of the set I in stage one and let

0; ifS'=1
5={y;§y>L (11)

Then the total sample size required by P, T'S S say, is given by
TSS = kn1 + S'nz.

Let E— [T'$S|P;] denote the expected total sample size for P, under x.

We adopt the following unrestricted minimax criterion to make a choice of
(ny,n2,h) as well as to have the total sample size T'SS small. For given k and
specified § and P*, choose (ny,n3,h) to

minimize sup E-o (TS S|Ps]

nen

subject to inf P—-[C’Sl'Pz] > P, (12)
uen(&)
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where (nq,n2) are non-negative integers and h > 0.

For any population whose sample mean has the MLR property, Bhandari and

Chaudhuri (1987) proved that the least favorable configuration (LFC) of the two-
stage population means problem is a slippage configuration. However, the problem
of evaluating the exact probability of a correct selection in the LFC associated with
P, is complicated and still remains to be solved. Here we will consider lower bounds
for P [CS|P,] and construct conservative two-stage procedures.
3.2. Lower Bounds for the Probability of A Correct Selection for P».
In this section we derive lower bounds for P- [CS|P;]. These lower bounds will
prove to be particularly useful since they achieve their infimum over Q(§) at
%(6) = (..., syt + ). This result will permit us to construct a conservative
two-stage procedure which guarantees the probability requirement (10).

The next theorem gives one of these lower bounds for P~ [CS|P;].
 Theorem 13: For all i € () we have

inf P-[CS|Py] >
neqs) ¥

| (e + 8V + )L @)
+ /_°° {Farina(z + 6v/my + 12/0)}¥ " dFn 40, () — 1, (14)

where F,(z) is the cdf the standardized mean of a sample of size n from L(y,o?).
Proof: The proof is omitted; a sharper bound is obtained in Theorem 17. O
Remark 15: The distribution of the mean of samples from logistic population has
the monotone likelihood ratio (MLR) property with respect to the location param-
eter (Goel (1975)) and hence the distributions of X and X°

i ;  are stochastically
increasing (SI) families in y;, i =1,...,k.
Remark 16: The cumulative sample means

nq 751) + no YgZ)
ny + n2 n1 + N2

i =
are strictly increasing in each Yf-j), i=4L2,i=1,...,k.

We now obtain another lower bound to P-‘: [CS|P;] which can be shown to be
uniformly superior to the one given in Theorem 3.1. It is also straightforward to

determine the LFC of the population means relative to this new lower bound.
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Theorem 17: For any ﬁ € ) we have

inf P [CS|Pa]
T EQ(S)

2 /oo {Fﬂ-l(m + 6\/5’?/0' + h)}k-ldFﬂx (27)
_oo {F"l'*'ﬂz(x +6v/n1 + nz/a)}k-lan1+ﬂ2(z)7 (18)

where F,,(z) is the cdf of the standardized mean of a sample of size n from L(y, 0?).
Proof: Let F(.|u;) and G(.]u;) denote the cdf’s offgl)
H(.,.|u:) denote the joint cdf of —X_f'l) and X;. Then F(.|u;), G(.|p:) and H(.,.|p:)

are non-increasing in p;, i = 1,...,k, from Remarks 15 and 16. Without loss of

and X ; respectively and let

generality we assume that py < --+ < pg. Then for all e Q(6),

P;'[CSlfpzl
= P;[X(y > max X() - ho/vir, X = maxXp)

=) —(1) - = .
> P-[X() 2 X(j) — ho/var, Xy 2 X(jp, Vi = L,o.sk = 1]

oo k-1
= [ [ TL#G+ horva vim)an e, sim)

00"._

> [* [ TL A+ ho/m, sl - ) e, i)

o0 -1

1 —
= B, [H*Y{X () + ho /v, Xowy e — 8},

where the expectation is with respect to the joint distribution of 78‘)) and 7( k)

Hence

inf P-[CS|Py]> _inf E,[H* YX + ho /T, Xk — 6]
#69(6) uGQ §)

and it is enough to show that for all 1 € Q(6),

- 1 =7
E,, [H*1(X(}) + ho/y/at, X lux - 8}]
1 - —
> E,, [F*1(X{) + ha/v/atlue = OIEw G (X lux — ).
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By Remark 16, for all a, b and u,

o (7D o %
Pu{X(j) < 0, X(j) < b}
=P“{.X_(1) Y(l) < n1+n2(b__ ng 7(2))}

() S &XG S — ny+ng @D
—(1) ==1) _ n1+n N2 ==2)\,52)
- , ) < - ; ;
Eu [P A{X(;) £a,X(j) < " (b n +n2X(J))IX(J)}]
—(1) <~(2)
> Eu[PAX (5 < alX(3}

) Bt n . By =(2) =)
PulX(y) £ =5 — b= =X (@)X 1

= P{X(3) < a}Pu{X(5 < b}
Hence
By [H*HXG) + ha/v/m7, Xk - 6}]
> By [F*=1{X() + ho/v/atlux - 6}
CGFH Xy lux — 6Y]
> B, [F*{X () + ho//malus - 6}]
c By [G*H{X (1 lux — 63]
by Chebyshev’s inequality (Hardy, Littlewood and Pélya (1934)). O
Remark 19: If we let

o= [ {Fulo+ 8o + HP1dF (2)

and

b= / (Fuy (& + 65/ T2/ 0)} o d Py (),

then (14) states that

inf P-[CS|P:]>a+b-1
aeqes) ¢

and (18) states that

inf P-[CS|P;] > ab.
e *

Since a + b — 1 < ab for all a,b € (0,1), the lower bound (18) is sharper and we
use this henceforth.

3.3. Expected Total Sample Size for P>. In order to solve the optimization

problem (12) we first obtain an expression for E; [TSS|P2] and then determine

sets of u;-values at which its supremum occurs.
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Theorem 19: For any IZ € Q we have

k oo k
E-[TSS|Py] = kny + n2 Z/ {I] Fui(z + 6i5v/m1/o + 1)
i=1 -0 ;:}
k
— [ Fuu(a + 615/ /0 = h)}dFuy (), (20)

i

where F,(z) is the cdf of the standardized mean of a sample size n from L(y,0?).

Proof: For any /_; €  we have
EZ[TSS|P2] = kn; + an;[SlPﬂ,
where S is defined in (11). Now
E;;[S|'P2] = E;[S'I'Pﬂ - P [§' = 1|Py]

k
1 1 . .
= PR 2 X() — ha/v/mr, Vi # ]

1=1
k
1 ..
'—EP;[_X-E:')) ng';"'ha/\/nl, Vj # 1] (21)
i=1
and hence Theorem 19 follows immediately. O

The following theorem summarizes the result concerning the supremum of
E=[TSS|Py] for ueq.
Theorem 22: For any g € , fixed k and (ny,7n3,h) we have

sup B [TSS|Pa]
LEa

= kny + ny /w [{Fai(z + R} = {Foy (2 = B)} 7' dFy, () (23)

— 00

which occurs when ppyj = --- = px), where Fy(z) is the cdf of the standardized
mean of a sample of size n from L(y,o?).

Proof: Using Remarks 15 and 16, and applying the results of Gupta (1965), it can
be shown that both the supremum of E’; [$'|P;] and the infimum of P; [S" =1|P:]
are achieved when ppy) = -+ = pjy. Hence the result follows immediately from

Theorem 19. O
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3.4. Optimization Problem Yielding Conservative Solutions. In this sec-
tion we consider the optimization problem (12) which one must solve in order to de-

termine the constants (ny, ng, k) which are necessary to implement P;. As we noted
earlier, the problem of evaluating the exact probability of a correct selection in the

_inf P-[CS|P,]
neas)
by the conservative lower bound in (14) and consider the following optimization

LFC associated with P, is very complicated. Thus we replace

problem.

Table 1: Constants to implement the two-stage procedure P, for selecting the
logistic population with the largest mean: P* = 0.90.

| |6/ it [ iz [ h | ETSS |
0.10] 0.1668¢+03 | 0.1728e+ 03 | 0.2446e+01 | 0.650194e + 03
0.50] 0.7013¢+01 | 0.6404e+01 | 0.259le+01 | 0.259726e + 02
2(1.00] 0.1932¢+01 | 0.1311e+01 | 0.3369e+01 | 0.643201le+ 01
2.00| 0.4011e+00 | 0.3724e+00 | 0.533le+01 | 0.154620e + 01
4.00{ 0.1044e+00 | 0.8907e—01 | 0.5026e+01 | 0.386564e + 00
0.10|| 0.2745e+ 03 | 0.2513e+03 | 0.2017e+01 | 0.146152¢+ 04
0.50(| 0.1126e+02 | 0.9634e+01 | 0.207le+01 | 0.585665¢ + 02
3{1.00| 0.2971e+01 | 0.2135e+01 | 0.2332e+01 | 0.146860e + 02
2.00(| 0.6894e+00 | 0.5189e+00 | 0.5004e+01 | 0.362197e + 01
4.00| 0.1693¢+00 | 0.1310e+00 | 0.4955e+01 | 0.900049¢ + 00
0.10] 0.3298¢+03 | 0.3318e+03 | 0.1713e+01 | 0.229940e + 04
0.50| 0.1340e+02 | 0.1300e+02 | 0.1728e+01 | 0.922982e + 02
411.00| 0.3489¢+01 | 0.3048e+01 | 0.1796e+01 | 0.232917e + 02
2.00(| 0.8374e+00 | 0.7008¢+00 | 0.2643e+01 | 0.592662¢ + 01

4.00|| 0.2090e+00 | 0.1704¢+00 | 0.2831e+01 [ 0.147462¢e+01
0.10| 0.3664e +03 | 0.4034e+03 | 0.1556e+01 | 0.315013e + 04
0.50 | 0.1488e+02 | 0.1595¢+02 | 0.1553e+01 | 0.126542e + 03
5(1.00 0.3863¢+01 | 0.3858¢+01 | 0.1559¢+ 01 | 0.320185¢ + 02
2.00 0.9610e+00 | 0.9217e+00 | 0.1867¢+01 | 0.829954e + 01
4.00] 0.2403¢+00 | 0.2184e+00 | 0.207le+01 | 0.208230€ + 01
010 0.4549¢+03 | 0.6465¢+03 | 0.1367e+ 01 | 0.750100e + 04
0.50 | 0.1844e+02 | 0.2588¢+02 | 0.1357e+01 | 0.301614e + 03
10(1.00 | 0.4784e+01 | 0.6497e+01 | 0.1328¢+01 | 0.765662¢ + 02
2.00| 0.1328¢+01 | 0.1644e+01 | 0.1257e+01 | 0.201395¢ + 02
4.00| 0.3335e4+00 | 0.4262¢+00 | 0.1362e+01 | 0.528481e + 01
0.10]| 0.493de+03 | 0.7911e+03 | 0.1366e+01 | 0.119540e + 05
0.50 | 0.1999¢+02 | 0.3177e+02 | 0.1358¢+01 | 0.480822¢ + 03
15[1.00 | 0.5180e+01 | 0.8022e-+01 | 0.1335e+01 | 0.122187e+ 03
2.00( 0.1433e+01 | 0.2074e+01 | 0.1280e+01 | 0.322460e + 02
4.00| 0.3751e+00 | 0.5593e+00 | 0.1328e+01 | 0.865274e+ 01
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for selecting the

logistic population with the largest mean: P* = 0.95.

x

[k [é§/c ] iy | iy | h | ETSS |
0.10] 0.3008¢ +03 | 0.2827e+03 | 0.1781e+01 | 0.104953¢ + 04
0.50 | 0.1227¢+02 | 0.1098e+02 | 0.1810e+ 01 | 0.421247e + 02

2 |1.00| 0.3215e+01 | 0.2504e+01 | 0.1958¢+01 | 0.106222¢ + 02
2.00 0.7631e+00 | 0.5883¢+00 | 0.3556e+01 | 0.268233e+ 01
4.00| 0.1899¢+00 | 0.1457e400 | 0.3785e+ 01 | 0.667647¢+ 00
0.10| 0.4362¢+03 | 0.3657¢+03 | 0.157de+ 01 | 0.211419e + 04
0.50 0.1768¢+02 | 0.1436e+02 | 0.1589e+ 01 | 0.849214e + 02

3 |1.00] 0.4579¢+01 | 0.3388e+01 | 0.1654e+01 | 0.214801le + 02
2.00 0.1223¢+01 | 0.6952e+00 | 0.2269¢+ 01 | 0.553339€ + 01
4.00] 0.2858¢+00 | 0.1853¢+00 | 0.3237e+01 | 0.139794e+ 01
0.10]| 0.4991e+03 | 0.4519¢+03 | 0.1452e+01 | 0.318364e + 04
0.50 | 0.2023¢+02 | 0.1787¢+02 | 0.1453¢+01 | 0.127954e 4+ 03

4 11.00[ 0.5232 +01 | 0.4325e+01 | 0.1464e+ 01 | 0.324315¢ + 02
2.00| 0.1420e+01 | 0.9417¢+00 | 0.1675e+01 | 0.846044e 4+ 01
400 0.3393¢4+00 | 0.2423¢+00 | 0.2163e+01 | 0.218343e + 01
0.10 | 0.5381e+03 | 0.525% + 03 | 0.1392e+ 01 | 0.426098¢ + 04
0.50 | 0.2182¢+02 | 0.2086e+02 | 0.1388e+01 | 0.171314e + 03

51.00| 0.5649¢+01 | 0.5112e+01 | 0.1379e 401 | 0.434710e + 02
2.00| 0.1546e+01 | 0.1182e+01 | 0.1430e+01 | 0.114045¢ + 02
4.00| 0.3809¢+00 | 0.3002e+00 | 0.175le+01 | 0.299628e + 01
0.10| 0.6279¢ +03 | 0.7682e+03 | 0.1349¢+ 01 | 0.973702¢ + 04
0.50 | 0.2544e+02 | 0.3070e+02 | 0.1342¢+01 | 0.391770e + 03

10{1.00f 0.6592¢+01 | 0.7667e+01 | 0.1321e+01 | 0.996400¢ + 02
2.00| 0.1827¢+01 | 0.1923¢+01 | 0.1269¢+01 | 0.263641e 4 02
4.00f 0.4897e+00 | 0.5216e+00 | 0.1344e+01 | 0.724983¢ 4 01 -
0.10[ 0.6674e+ 03 | 0.9126e+03 | 0.1377e+01 | 0.153152¢ + 05
0.50f 0.2703¢+02 | 0.3659¢+02 | 0.1370e+01 | 0.616396e + 03

15(1.00| 0.7002¢+01 | 0.9178¢+01 | 0.1354e+01 | 0.156917e + 03
2.00 0.1942¢+01 | 0.2339¢+01 | 0.1310e+01 | 0.416523e + 02
4.00 [ 0.5293¢+00 | 0.6784e+00 | 0.1300e+01 | 0.115109e + 02

For the given k, § and P*, choose the constants (n,, ns, k) to

(oo

minimize kny + ns / {Fu.(z + )} = {Fa (z — R)}E-1)dFn, (2)

subject to/ {Fp,(z + 6y/n1/0 + h)}*1
'/ {Fn1+n2($+6v’n1 +n2/a)}k—1dF‘n1+n2(x) > P*’ (24)

where n; and n; are non-negative integers and h > 0.

Let (fy, 7, k) denote the solution to the optimization problem (24) treating
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ny and n, as continuous positive real variables. Then we can use the approximate
design constants:

ny = [ +1]% np =[R2 +1]*, h =4,

where [2]* denotes the greatest integer which is less than 2, to implement P;.

Tables 1 and 2 provide the constants (#;,72,h) and the values of the ex-
pected total sample size (ETSS) for k¥ = 2,3,4,5,10,15, P* = 0.90,0.95 and
é/0 =0.1,0.5,1.0,2.0,4.0. All computations were carried out in double-precision
arithmetic on a Vax-11/780. The SUMT (Sequential Unconstrained Minimization
Techniques: Fiacco and McCormick (1968)) algorithm is used to solve the non-
linear optimization problem. A source program in Fortran for the SUMT algorithm
is given by Kuester and Mize (1973). _
3.5. Performance of the Two-stage Procedure Relative to A Single-
stage Procedure. We consider the single-stage procedure P; that selects the
population which yielded the largest sample mean based on samples of common
size n. For P; and P; satisfying the same basic probability requirement (10), the
relative efficiency (RE) of P; w.r.t. Py is defined by the ratio E—[T'SS|Ps]/kn,
where n, is the minimum sample size needed in P;. Clearly, RE depends on ﬁ, )
and P*. Values of the RE less than unity favor P; over P;.

Now RE is approximately given by

oo

k
— 1 . N
RE = Py [kn1 + N9 Z;/_

k
{H Fﬁl(t+6ij ﬁ1/0+ il)

o0 =1
ii

k
- H F‘fu (t + 65.7' \/a/a - i?')}dFﬁl (t)]

=1
J#i

where 7, is the smallest integer n, for which

AR Y () 2 P

We consider the relative efficiency for two special cases, namely, the equally
spaced and the slippage configurations. First, for the equally spaced configuration,
we assume that the unknown means of 71,73, ..., 7k are g, u+96,..., p+(k—1)8§,

respectively. Let RE,., denote the relative efficiency with respect to the above
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configuration. Then, since 6;; = pp — pp5) = (¢ — )6,

o0

k k
— 1 . . 2
BB = i +in 3 [ (1P VARG = i+
s =17~

o0 =1
i#i

k
= [T Fa 6+ V(i - )8/ — h)}dFa, ().

i

Table 3: Relative efficiency of the two-stage procedure Py w.r.t. P;.

Slippage Configuration

P* |k ' 6/o
00 | 05 | 1.0 | 20 | 4.0
2{ 0.922 | 0.935 ( 0.975 | 0.998 | 0.998
3 0.796 | 0.809 | 0.852 | 0.994 | 0.993
0.900| 4 0.698 | 0.706 | 0.730 | 0.854 | 0.877
5 0.636 | 0.642 | 0.658 0.711 0.745
10 0.527 | 0.532 | 0.546 | 0.590 | 0.583
151 0.494 | 0.499 | 0.513 0.551 0.551
2 0.820 | 0.826 | 0.847 0.965 0.974
3| 0.709 | 0.715 | 0.734 | 0.818 | 0.908
0.950( 4f 0.651 | 0.656 { 0.671 | 0.722 | 0.754
5{ 0.616 | 0.621 | 0.636 | 0.678 | 0.685
10 0.545 | 0.550 | 0.564 | 0.606 | 0.612
15§ 0.517 | 0.522 | 0.535 | 0.574 | 0.575

Equally Spaced Configuration

2( 0922 | 0935 0.975 | 0.998 | 0.998
3 0.782 | 0.792 | 0.824 | 0.981 | 0.981
0.900f 4 0.689 | 0.695 { 0.713 | 0.762 | 0.776
5[ 0.642 | 0.648 | 0.663 | 0.677 | 0.687
10| 0.554 | 0.559 | 0.573 | 0.612 | 0.603
15| 0.518 | 0.523 | 0.535 | 0.570 | 0.569
2 0.820 | 0.826 | 0.847 | 0.965 | 0.974
3| 0716 | 0.721 | 0.736 | 0.795 | 0.852
0.950| 4l 0.664 | 0.669 | 0.683 | 0.721 | 0.718
5 0.634 | 0.639 | 0.653 | 0.690 | 0.678
104 0.564 | 0.569 | 0.582 [ 0.620 | 0.625
15} 0.533 | 0.537 | 0.550 | 0.586 | 0.585

Next, for the slippage configuration, we assume that the unknown means of
the k populations are py;; = g, 7 =1,...,k—1, and pgy = p+6, 6§ > 0. Then the

relative efficiency with respect to the above configuration, RE,,, is approximately
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given by
R, =
L. . * 2 2 \\k~2
palbn +aa{(k=1) [ (Bau(t+ )= Fau(t - B)
'(Fﬁl(t - \/.f;’-l_a/a'*' i”) - Ffu(t - \/7:7:6/6 - i”))dFﬁx(t)
+ [ (Buult+ VErd[o +B) = Fay(t + VxS o = B, ()]

Table 3 gives the values of EEW and EE,F for given values of P* = 0.90,0.95,
k=2,3,4,5,10,15 and §/0 = 0.1,0.5,1.0,2.0,4.0.

For any values of P*, k and 4, EEW <1 and ﬁf’,p < 1 and hence the two-
stage procedure is more efficient than the single-stage procedure in terms of the
expected total sample sizes. Furthermore, the effectiveness of P, appears to be
increasing with k.

3.6. An FExample and Application of the Selection Procedure.
We would like to illustrate the use of the two-stage selection procedure. Using the
IMSL package we generated a set of logistic random deviates with a common vari-
ance o = 1 and location parameters #; = 0, 1.0, 2.5, 4.5, 5.5. For P* = 0.90,
§/o =1, Table 1 gives ny = 4, ny = 4 and h = 1.559. At the first stage, we take

four observations from each population.

1I, I, I3 Iy IIs

-0.375142 0.300190 2.62800  4.25264  5.84068
1.34968 -0.996658  2.22858  4.17833  4.98076
-0.0568658 1.57423 3.18402  4.00930  3.36522
0.00534297 1.99014 3.59607  4.71256  5.98789

Then " = 0.230753, 7" = 0.716977, Ty = 2.90939, 7. = 4.28821, 7V =
5.04364, and ma.xfg-l) —h = 3.48464. Hence we select populations II4 and II5 after
the first stage. Then take additional 4 observations from each of the populations

selected in the subset. These are:

I3 I,
5.60940  5.43388
2.84378  4.78641
2.35752  5.66428
2.93089  5.09631
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Then f,(f) = 3.43540, and Ef,f) = 5.24522. The cumulative sample means are given
by T4 = 3.86180, and T5 = 5.14443. Hence the procedure selects II5 as the best
population.
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