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Abstract

Selection and ranking (more broadly multiple decision) problems arise in
many practical situations where the so-called tests of homogengity do not provide
the answers the experimenter wants.

The logistic distribution has been applied in studies of population growth,
of mental ability, of bio-assay, of life test data and of biochemical data, but the
complete distribution of the sample means and variances of a logistic population
has not been obtained yet.

In this paper we study the selection and ranking problems for logistic popu-
lations and an elimination type two-stage procedure for selecting the best popu-
lation using a restricted subset selection rule in its first stage.

Chapter 2 deals with the selection and ranking procedures for logistic pop-
ulations. An excellent approximation to the distribution of the sample means
from a logistic population is derived by using the Edgeworth series expansions.
Using this approximation, we propose and study a single-stage procedure usii;g
the indifference zone approach, two subset selection rules based on sample means
and medians respectively for selecting the population with the largest mean from
k logistic populations when the common variance is known.

Chapter 3 considers an elimination type two-stage procedure for selecting the
population with the largest mean from k logistic populations when the common
variance is known. A table of the constants needed to implement this procedure is
provided and the efficiency of this procedure relative to the single-stage procedure

is investigated.
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Chapter 4 deals with a single-stage restricted subset selection procedure for
selecting the population with the largest mean from k logistic populations when
the common variance is known. Some properties of this procedure such as mono-
tonicity and consistency are investigated. Tables of required sample sizes for this
procedure are provided. A new design criterion to get the needed sample size
and the constant defining this procedure simultaneously is proposed and a table
of these constants is given.

Chapter 5 deals with a more flexible two-stage procedure for selecting the
best population, which uses a restricted subset selection rule in its first stage
and the Bechhofer’s (1954) natural decision procedure in the second stage, in
terms of a set of consistent estimators of the real population parameters, whose

distributions form a stochastically increasing family for a given sample size.

KEY WORDS: Selection and Ranking, Restricted Subset Selection Procedure, Two-

Stage Procedure, Largest Mean, Subset Selection, Logistic Populations.



1 INTRODUCTION

It is not uncommon tha,t we face a problem of making decisions regarding k given
populations, for example, different varieties of wheat in an agricultural experiment, or
different competing designs of engines to be used in an automobile plant, or different
drugs for a certain ailment. Suppose 6y, ...,0; are the characteristics or parameters of
the populations in which the experimenter is interested. The classical approach in the
preceding problems has been to test the so-called homogeneity hypothesis H, : 6; =
... = 0. However the experimenter’s real goal often is to identify the best population
(the variety with the largest average yield, the most reliable system and so on). Then
the test of H, is unrealistic for this problem. Attempts were made to overcome the
shortcomings of the classical tests of homogeneity by formulating the problem in a
more meaningful and realistic way. A partial answer was provided by Mosteller (1948)
who tested homogeneity against slippage alternatives. Paulson (1949), Bahadur (1950)
and Bahadur and Robbins (1950) are among the early investigators to recognize the
shortcomings of the classical test of homogeneity hypothesis and to formulate the k-
population problem as a multiple decision problem in the framework of what have now
come to be known as selection and ranking procedures.

The two main approaches that have been used in formulating a selection and ranking
problem are familiarly known as the indifference zone approach and the subset selection
approach. The basic problem in the indifference zone approach, due to Bechhofer
(1954), is to select one of the k£ populations with a guarantee that the probajbility of
selecting the best population is at least a fixed probability P*(1/k < P* < 1) whenever
the unknown parameters lie outside some subspace of the parameter space, the so-
called indifference zone (the complement of an indifference zone is called a preference
zone). Here some knowledge of the parameter space is assumed known a priori, for
example, the experimenter must be able to guarantee that the largest parameter is
separated from all other ranking parameters by a distance not less than 8, say. Other
contributions to this approach are Bechhofer and Sobel (1954), Bechhofer, Dunnett
and Sobel (1954), Sobel and Huyett (1957), Sobel (1967), Bechhofer, Kiefer and Sobel



(1968), Mahamunulu (1967), Desu and Sobel (1968,1971) and Tamhane and Bechhofer
(1977,1979) among others. There are several variations and generalizations of the basic
goal discussed above. For details, reference can be made to Gupta and Panchapakesan
(1979) and Dudewicz and Koo (1982).

In the subset selection approach known as “Gupta’s formulation” for selecting the
best population, the goal is to select a nonempty subset of the k& populations so that
the best population is included in the selected subset with a minimum guaranteed
probability P*(1/k < P* < 1) over the whole parameter space. Here the size of the
selected subset is not determined in advance but depends on the data and hence it
is a random variable. Among decision procedures which satisfy the basic probabil-
ity requirement, one which yields the smallest expected size of the selected subset is
considered in some ways to be the most desirable. Another performance criterion for
comparing decision procedures is the expected number of the non-best populations in
the selected subset. Some recent contributions in the subset selection formulation have
been made by Gupta and Studden (1970), Gupta and Nagel (19'71), Gupta and Pan-
chapakesan (1972), Gupta and Santner (1973), Santner (1973,1975), Gupta and Huang
(1975a,1975b), Gupta and Huang (1976), Bickel and Yahav (1977), Gupta and Singh
(1980), Gupta and Hsiao (1983), Lorenzen and McDonald (1981) among others. |

In the basic subset selection formulation we select a nonempty subset of the k given
populations. When the parameters 6; are all very close to one another, we are likely to
select all the populations. So it is meaningful to put a restriction that the size of the
selected subset will not exceed m (1 < m < k). Even otherwise, one may want to select
a nonempty subset of a random size to a maximum of m. Such a formulation is called
a restricted subset selection formulation. The general theory was developed by Santner
(1973,1975) and the normal means selection problem was investigated by Gupta and
Santner (1973). An important feature of this formulation is that an indifference zone
(preference zone) is introduced.

Besides being a goal in itself, selecting a subset containing the best can also serve
as a first stage screening in a two-stage procedure designed to choose one population as

the best. Some important contributions in this direction have made by Alam (1970),



Tamhane and Bechhofer (1977,1979), Miescke (1982), Gupta and Miescke (1982,1984),
Gupta and Kim (1984) and Lee and Choi (1985).

There are several other variations and generalizations of the basic subset selection
formulation, for example, the decision-theoretic approach where some Bayes and empir-
ical Bayes rules and several minimax and I'-minimax rules have been studied by various
authors, selection procedures for multivariate normal and multinomial distributions,
nonparametric procedures, selection from restricted families, sequential procedures,
isotonic procedures etc. For further developments in subset selection formulation, ref-
erence can be made to Gupta and Panchapakesan (1979), Gupta and Huang (1981),
Dudewicz and Koo (1982), and Gupta and Panchapakesan (1985).

The main contributions of this paper are first, to propose and study new selection
and ranking procedures for the logistic populations and second, to propose an elim-
ination type two-stage procedure for selecting the best population using a restricted
subset selection rule in its first stage and to apply this procedure to specific problems.

Chapter 2 deals with the basic selection and ranking procedures for logistic pop-
ulations. The range of application of the logistic distribution as a probability model
to describe random phenomenon covers such areas as population growth, bioassay, life
test and physiochemical phenomena. The exact distribution of the mean of samples
from a logistic populations has not been obtained completely yet though it is needed in
the various studies about logistic distributions such as estimating, testing hypothesis
and selection and ranking problems. An excellent approximation to the distribution of
the sample means from a logistic population is derived by using the Edgewor%h series
expansion and it is compared to other approximations. Using this approximation we
consider a single-stage indifference zone approach procedure P; for selecting the best
logistic population. We also propose two subset selection rules R; and R, based on
sample means and medians respectively and compare them to each other by means of
their performance characteristics.

Chapter 3 considers an elimination type two-stage procedure for selecting the pop-
ulation with the largest mean from k logistic populations. We propose a two-stage

procedure P, which is based on an optimization problem by using a minimax criterion.



Lower bounds for the infimum of the probability of a correct selection over the pref-
erence zone and the supremum over the whole parameter space of the expected total
sample size needed for P, are derived. A table of the constants needed to implement
P, 1s provided by solving the optimization problem and the efficiency of P, relative to
the single-stage procedure P is investigated.

Chapter 4 deals with a single-stage restricted subset selection procedure for logis-
tic populations. We consider a restricted subset selection procedure Rs based on the
sample means for selecting the population with the largest mean from k logistic popu-
lations when the common variance is known. Formulas for the probability of a correct
selection for any given set of parameters and for the infimum over the preference zone
of the above probability are derived and some properties of this procedure such as
monotonicity and consistency are studied. Tables of the bounds of the infimum of the
probability of a correct selection over the preference zone, tables of the required sam-
ple sizes for the rules and tables of the expected number of selected populations are
provided. A new design criterion to get the needed sample size (n) and the constant
defining the rule (k) simultaneously is proposed and a table of the constants (n, k) is
provided.

Chapter 5 deals with a more flexible two-stage procedure for selecting the best
population. We propose an elimination type two-stage procedure P, in which a gen-
eralized restricted subset selection rule is used in the first stage and the Bechhofer’s
(1954) natural decision procedure in the second stage. This rule is based on.a set of
consistent estimators for the parameters, whose distributions are assumed to form a
stochastically increasing family for a given sample size. We also propose a non-linear
optimization problem using a minimax design criterion to find a set of design constants
for P;. A lower bound of the probability of a correct selection is derived and also a
formula for the infimum of the lower bound over the preference zone is derived. An
analytic expression for the expected total sample size, the conditions guaranteeing that
the supremum over the whole parameter space of the expected total sample size oc-
curs at some point where the parameters are all equal, and a general expression of the

supremum of the expected total sample size under these conditions are derived. Finally



we apply P, to the location parameter problem of univariate normal populations by
providing the tables of the design constants to implement P} and of the values of the

relative efficiency with respect to the single-stage procedure.



2 SELECTION AND RANKING OF THE LO-
GISTIC POPULATIONS

2.1 Introduction

The logistic distribution has been widely used by Berkson (1944,1951,1957) as a model
for analyzing experiments involving quantal response. Pearl and Reed (1920) used this
in studies connected with population growth. Plackett (1958,1959) has considered the
use of this distribution with life test data. Gupta (1962) has studied this distribution
as a model in life testing problems.

The shape of the logistic distribution is similar to the normal distribution. The
simple explicit relationship between the logistic random variate, its probability den-
sity function (pdf) and its cumulative distribution function (cdf) render much of the
analysis of the logistic distribution attractively simple and many authors, for example,
Berkson (1951) prefer it to the normal distribution.

The importance of the logistic distribution in the modeling of stochastic phenomena
has resulted in numerous other studies involving probabilistic and statistical aspects of
the distribution. For example, Gumbel (1944), Gumbel and Keeney (1950) and Talacko
(1956) show that it arises as a limiting distribution in various situations; Birnbaum and
Dudman (1963), Gupta and Shah (1965) study its order statistics. Many other authors,
for example, Antle, Klimko and Harkness (1970), Gupta and Gnanadesikan (1966) and
Tarter and Clark (1965), investigate i‘nference questions about its parameters.

As might be expected, because of the similarity between the logistic and the normal
distributions, the sample mean and variance, the moment estimators of the logistic
population parameters, are effective tools for statistical decisions involving the logistic
distribution. Antle, Klimko and Harkness (1970) give a function of the sample mean as
a confidence interval estimate of the population mean when the population variance is
known. Schafer and Sheffield (1973) show that in terms of the mean squared error the
moment estimators of the logistic population parameters are as good as their maximum

likelihood estimators. The fact that the distribution of a sample mean has monotone



likelihood ratio (MLR) with respect to the population mean when the variance is known
is used by Goel (1975) to obtain a uniformly most accurate confidence interval for the
population mean and a uniformly most powerful test for one-sided hypotheses involving
the population mean. The sampling distribution of the mean is a primary requirement
for these statistical purposes. The papers by Antle, Klimko and Harkness (1970) and
Tarter and Clark (1965) used a Monte Carlo method for this distribution.

Goel (1975) obtains an expression for the distribution function of the sum of inde-
pendent and identically distributed (iid) logistic variates by using the Laplace trans-
form inverse method for convolutions of Pélya type functions, a technique developed by
Schoenberg (1953) and Hirschman and Widder (1955). He provides a table of the cdf
of the sum of iid logistic variates for the sample size n = 2(1)12, = = 0(0.01)3.99 and
n = 13(1)15, z = 1.20(0.01)3.99. He also gives a table of the quantiles for n = 2(1)15,
a = 0.90,0.95,0.975,0.99,0.995. George and Mudholkar (1983) obtain an expression
for the distribution of a convolution of the i7d logistic variables by directly inverting
the characteristic function. However, since both formulas of Goel (1975) and George
and Mudholkar (1983) contain a term (1—e®)~* &k = 1,...,n, a problem of precision of
the computation at the values of & near zero arises when n is large. George and Mud-
holkar (1983) also show that a standardized Student’s t distribution provides a very
good approximation for the distribution of a convolution of the 7id logistic random
variables.

This chapter considers approximation problems to the distribution and quantlles
of a standardized mean of samples from a logistic population by using Edgeworth and
Cornish-Fisher series expansions respectively. Tables of the cdf and quantiles are pro-
vided and it is shown that these are far better approximations than the Student’s ¢
distributions as suggested in Goerge and Mudholkar (1983) and hence these approxi-
mations will be used henceforth.

In the rest of this chapter a single-stage procedure P; using an indifference zone
formulation for selecting the best among several logistic populations with unknown
means and a common known variance based on sample means is proposed and studied.

A table of the smallest sample size n needed to implement P; subject to the basic



probability requirement is provided.

‘Two subset selection rules R; and R, based on sample means and sample medians
respectively for selecting the best among several logistic populations are proposed and
tables of constants to implement the rules are provided. We also compare the two rules

with respect to their performance characteristics.

2.2 Distribution of logistic sample means

2.2.1 Logistic distribution

A random variable X has the logistic distribution with mean x and variance o2, some-

times denoted by L(g,0?), if the pdf of X is given by

f(@) = (g/0)lexp{~g(z — p)/o}][1 + exp{—g(z — p)/c}] (1)
and the cdf of X is defined by
F(z) = [1 4+ exp{—g(z — p)/o}]", (2)

where —0o < z < 00, —0 < g < 00, ¢ > 0 and g = 7/+/3. This distribution is
symmetrical about the mean u.

The standard logistic distribution with mean zero and variance unity, denoted by

L(0,1), has the pdf and cdf defined as

f(z) = glexp{~—gz}][1 + exp{—gz}]~* - (3)

and _ J
F(z) = [1 + exp{~gz}]™ (4)
respectively, where —oo < z < oo. The standard logistic distribution has a shape
similar to the standard normal distribution. The curve of the logistic distribution
crosses the density curve of the normal between 0.68 and 0.69. The inflection points

of the pdf of the standard logistic distribution are £0.53 (approx.).

Letting Y = (X — u)g/o, the random variable Y has the logistic distribution with

mean zero and variance 72/3. The pdf and cdf of the random variable Y are given by

f(y) = [exp{—y}[1 + exp{—y}]™? (5)
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and
F(y) =1+ exp{—y}]™"

respectively, where —oo < y < co. (5) may be written in terms of F(y) as

fly) = F(y)(1 = F(y)).

The moment generating function (mgf) of Y is given by

My(t) = TA+HT(1—1)

= nt/sinwt, |t| < 1.

We can also express (8) as

o0

My (t) = Y (~1)1[2(2%7" — 1)/(2))1] By;(w)%,

§=0

where B,’s are Bernoulli numbers defined as

z/(exp(z) - 1) = io: B,z" [(v)).

v=0

The relationships between B,’s are given by

By, =1

k k k
1+(1)Bl+(2>B2+ +(k_1)Bk_1=0, kzl,...,

and hence the first few values of B, are

By = 1,
B, = -1/2,
B, = 1/6,

By, = —1/30,
Bs = 1/42,
Bs = —1/30,
Bio = 5/66,

B2m+1 = O,m=1,2,....

11
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The v** central moments of Y, denoted by u,(y), can be obtained as

m(y) = EY”)
(=12 12(2v = 1)|B,n¥; ifv=25,7=1,2,...,
0; otherwise,
by using (9).
Then the v central moments of X, denoted by u,(z), are given by

po(z) = E(X—p)
= (0/9)"E(Y")
) ()P (VBe) (2 = 1)IB,; ifv =25,5 =1,2,...,
- 0; otherwise.

In terms of the central moments y, (z) of X, first few of the v** cumulants of X, denoted

by K,(z), v =1,2,..., which are defined by

logpx(t) = 3 K, (2)(it)/ (),

v=1

where @ x(t) is the characteristic function of the random variable X, are given by

Ki(z) = m(z)=p,
Ky(z) = palz)=o?,

Ki(®) = pa(@) ~3(al@))’ = 0%,

Ko@) = po(a) = 15pa(@)ua(e) +30(ma(@))° = 0%

Ks(@) = ps(e) — 28pua(e)ps(a) — 35(a())? + 420(uz(2))?pia(c)
~ 630(s(a))" = =",

Kio(z) = pio(z) — 45p2(z)ps(z) — 210u4(z) pe(z)
+1260(p2(2))* po(z) + 315042 () (p4(x))”

145152
— 18900(p2(x))%ua(z) + 22680(p2(z) —'

5 _
)_ 77 ]

I{2j+1($) = 0, ]=1,2,

12



The first few relative cumulants of X, A,(z), where )\, (z) is defined as
M(z) = K, (z)(Ka(x)) ™7,

are given by

Mi(z) = ufo,
M(z) = 1,

M(z) = 6/5,
de(z) = 487,

A2j+1(.’l:) = 0, j=1,2, (13)

2.2.2 Edgeworth series expansions for the distribution of the mean of sam-

ples from a logistic population

Let Xi,X3,..., X, be a random sample of size n from a logistic population L(u,o?)
with mean p and variance o whose cdf and pdf are given in (1) and (2) respectively.

Define a standardized mean of samples of size n from L(u,o?), Z say, as

7= i
ND

g

()_(_ :u')a (14)

where X = 71—122;1 X; is the sample mean.
Let f.(z) and F,(z) denote the pdf and cdf of the standardized mean of samples
of size n from L(,0?). Then the Edgeworth series expansions of the f,(z) and F,(z)

are given symbolically as

fal2) = 6(2) + 6(2) z;:pxz)n-f/? 1 O(n=t+012)

13



and
Fo(z) = 9(z) — ¢(2) Z P;(z)n~ —il2 4 O(n_("+1)/2)

i=1
respectively, where ¢(z) and ®(z) are the standard normal pdf and cdf respectively

and p;(2) and P;(z) are polynomials in z, which are obtained up to » = 10 in Draper
and Tierney (1973).

Using p;(z) and P;(z) from TABLE II of Draper and Tierney (1973) and the relative
cumulants of X given in (13), the Edgeworth series expansions of the f,(z) and F,(z)

correct to order n=*/2, v = 4,6,8, are given by

falz,v = 4)
= 1+ j,)(ﬁ)m(z)]n-l

GV Ho(=) + ()3 Ha(2)n™?) + 0(n™2),

Fo(z,v=4)

= () — 4 (F)Hs(z)n

HE D Hs() + () Hr(2)n~) +0(n~),

fa(z,v = 6)
432

= fale = )+ ) (50 Hal2)

210, 48, 6 5775, 6 4 O(n="P?)

(G (E) Hiol2) + () () Hua()ln™ )

Fo(z,v = 6)
432

= Fu(z,v=4) - ¢(2 )[( gD (5 ) HA(2)

(21;?)(1"5(6)119() 51727!5)(6)3H11(2)]" LO@T,  (16)

fnl(z,v = 8)
145152

= falew = 6) 4 () (o) Hiol2)

495, 432 .6 462 48,

+ (SR Hual2) + () () Hul2)

+H (PP + (@) Hral)ln™ + 0(n)

14



and

Fo(z,v =8)
' 145152

= Fa(sr =6) = 4“2 By 2)
HEHIED G Hn () + 2y By

+T G P ste) + @) s+ 0,

where H;(z)’s are the Hermite polynomials of degree j, which are defined by
(%)’ exp(—z®/2) = (=1) H;(z) exp(—2?/2), j=0,1,....
The first thirty Hermite polynomials which follow the recurrem;e relation
Hj(z) = 2Hj1(2) — (j — 1) Hj—2(2), j=2,3,...,

are given in TABLE III in Draper and Tierney (1973).

Table 1, Table 2 and Table 3 contain the values of the cdf of the standardized
mean of samples of size n from a logistic population with mean p and variance o? for
n = 3,10,15 and 2z = 0.00(0.01)3.99 using the Edgeworth series expansion correct to
order n~3 given in (16). Entries in the tables were computed by using double-precision

arithmetic on a Vax-11/780.

2.2.3 Cornish-Fisher series expansions for the quantiles of the mean of

samples from a logistic population

The representation of a quantile of one distribution in terms of the corresponding
quantile of another is widely used as a technique for obtaining approximations for
the percentage points. One of the most popular of such quantile representations was
introduced by Cornish and Fisher (1937) and later reformulated by Fisher and Cornish
(1960) and is referred to as the Cornish-Fisher expansion.

By means of formal substitutions, Taylor expansions and identification of powers

of n, the Cornish-Fisher expansion of a quantile z of F,(z) which is the cdf of the

15



standardized mean of samples of size n from L(u,0?), in terms of the corresponding
normal quantile y, is of the form
2=y + 3 Qi) + O +I2)
i=1

where @;(y)’s are polynomials of y, which are obtained up to » = 8 in Draper and
Tierney (1973).

Using Q;(y) from TABLE VII of Draper and Tierney (1973) and A;(z) in (13), we
obtain the Cornish-Fisher series expansions for the quantiles z of F,(z) up to order

v =4,6,8 as follows:

=19 = v+ -3~

FE)()° — 102 + 15y)

(?é?)(6)( ~9y° + 12y° — 8Ty)In"" + O(n™"/?),

2(v=6) = z(v=4)+ [(1)(5’3)@/ — 21y” + 105y° — 105y)
+(§t?)(48)(6)( 15y7 + 255y — 1035y° + 855y)
+ (Cg)()7 (23" — 353" +12177y° — 8667y o~
N O(n'_m) (17)
and
z(v = 8)
= a2y = 6) + (g (T )(u° — 3647 + 37847 — 1260,° + 9459)
+(ﬁ?)(@)(6)( —21y° +630y" — 5502y° + 15330y° — 9765y)
(ﬁ?)(@w 25y +700y" — 5850y° + 15900y” — 9945y)
105105 6

+(—)G e )(495y 12510y” + 92370y°

— 219810y° + 121455y)

26276256,
+ (S )(5)H(-11583y° + 259848y — 1686906y°

16



+ 3539376y° — 1743471y)[n~* 4+ O(n~%/?).

Table 4 provides the quantiles of the distribution of the standardized mean of
samples from the logistic population for sample sizes n = 3(1)10(5)30 and probability
levels a = 0.900,0.950,0.975,0.990,0.995 using the Cornish-Fisher series expansions
correct to order ¥ = 4,6 and 8 respectively. Entries of the table were calculated by

using double-precision arithmetic on a Vax-11/780.

2.2.4 Legitimacy of using the Edgeworth and Cornish-Fisher series expan-

sions

Noting the similarity of the distribution of Z in (14), the standardized mean of sam-
ples from L(p,0?), to the normal distribution in shape except its relatively longer
tails, George and Mudholkar (1983) compare the three approximations, that is, the

1 and

standard normal distribution, the Edgeworth series expansion correct to order n~
the standardized Student’s t distribution to the exact distribution of Z. In using the
standardized Student’s ¢ distribution, they use the degree of freedom ¢ = 5n + 4 which
can be obtained by equating the coefficients of kurtosis. They show that the Student’s
t distribution provides a very good approximation.

We show here that the Edgeworth and Cornish-Fisher series expansions correct to
order n~2, which are given in the (16) and (17) respectively, are far better approxima-
tions than even the Student’s ¢ distribution in George and Mudholkar (1983).

Table 5, Table 6 and Table 7 illustrate the quality of the four approximations. In
Table 5 the four approximations, that is, the standard normal, the Edgeworth series
expansion correct to n™!, the standardized Student’s ¢ and the Edgeworth series expan-
sion correct to order n~3 are compared to the exact distribution given in Goel (1975).
The approximation using the Edgeworth series expansion correct to order n~2 appears
to be superior to the other three by noting that the maximum error is about 0.0001 as

shown in the last column of Table 5. In Table 6, the exact values of the distribution

function for n = 10 tabled by Goel (1975) are compared with the values obtained from

17



the approximations using Student’ ¢ and the Cornish-Fisher series expansion correct
to order n~2. In Table 7, the exact quantiles for n = 2,3,...,15 tabled by Goel (1975)
are compared with the corresponding approximations obtained from the Student’ ¢
distribution and the Cornish-Fisher series expansion correct to order n=3. From these
tables, it is clear that for sample size 7 or more the Edgeworth series expansion correct
to order n™2 provides an excellent approximation for the standardized mean of samples
from the logistic distribution. Consequently, we will use the Edgeworth series expan-

3

sion correct to order n™° as an approximation to the distribution of the standardized

mean of the samples from the logistic distribution henceforth.

2.3 A single-stage procedure P; for selectiné the population

with the largest mean from k logistic populations

Bechhofer (1954), in introducing the indifference zone formulation, considered the prob-
lem of ranking means of normal populations with a common known variance. Here we
consider a single-stage procedure using an indifference zone approach for selecting the
population with the largest mean from k& logistic populations when they have a common

known variance.

2.3.1 Statement of the problem

Let my,---, 7 be k independent logistic populations with unknown means y; and a
common known variance o?. Let pi) < -+ < ppx) be the ranked p;. We assume that it
is not known which population is associated with pp;, 2 =1,..., k. We further assume
that a population is characterized by its population mean and the ‘best’ population is
the one having the largest mean.

Our procedure will be based on the sample means. Let X;, i =1,...,k, denote
the means of independent samples of size n from i** population. The sample mean
associated with population having population mean puj; will be denoted by Y(i), that
is, the expected value of —X_(i) is ppp. Let 3(—[1] <-.. < Y[k] be ranked X;. If X; = Yj

for 2 # j, due to the limitations of the measuring instrument, the tied means should be
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‘ranked’ using a randomized procedure which assigns equal probability to each ordering.

Assuming that the goal of the experimenter is to select the best among the k
populations, we propose a single-stage procedure P; as follows.

Procedure P;; Take n observations from the i** population for each i = 1,..., k.
Compute the k sample means Xi,..., Xz. Select the population associated with Y[k]
as the best one.

Defining the event of the experimenter’s selection of the best population with P; as
[CS|P1], the probability of a correct selection with the procedure Py, P{CS|P1} can

be written as

P{CS|P\} = Pi[the best population is selected]
= PalX( 2 maxigicr X(5)]
= PulX 2 X(i=1,--,k—1]
= Pil(vn/o) (X — pu) < (Vr/o)( Xy — bim)
+ (/o) (pr — pa)sd =1, k= 1]

— /_o:o lf[1 Fo(z + (V] o) () — #151))AFu(2), (18)

where F,(z) is the cdf of the standardized mean of samples from a logistic population.

For the fixed values of the u; and o? the probability of a correct selection will
depend only on the sample size n. We propose to design the experiment in such a way,
that is, choose the n in such a way that under specified conditions the probability of a
correct selection with procedure P, will be equal to or greater than some preassigned

value P*.

2.3.2 Determination of the sample sizes

Now for the problem to be meaningful P* lies between 1/k and 1. Since the true values
of the u; are not known, we need the probability of a correct selection to be at least
P* whatever be the values of the p;. Thus we are interested in the configuration of
the p; for which the probability in (18) is a minimum. Such a configuration will be

called a least favorable configuration (LFC). It is obvious that the LFC is given by
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Kr) = -+ = p). But unfortunately the minimum value of the probability in this LFC
case is 1/k. So we cannot achieve the probability requirement whatever be the sample
size unless some modification is made in the probability requirement.

A natural modification is to insist on the minimum probability P* of selecting the
best population whenever the best is sufficiently far apart from the next best. In
other words, the experimenter specifies a positive constant § and requires that the
probability of selecting the best population is at least P* whenever (P1k) — Bir—1]) = 6.

The specification of § provides a partition of the parameter space {} where
Q={ﬁ:(,ul,---,,uk);—oo<,u,-<oo,z'=1,...,k} (19)

into two parts, namely Q(6) where

Q6) = { € Q (ppw) — p-1y) > 6} (20)

and the compliment Q°(6) of 2(§). The minimization of the probability of selecting the

best population is over (6). For an obvious reason, °(6) was called the indifference

zone by Bechhofer (1954). Subsequent authors have termed )(6) the preference zone.
It is now easy to see that the LFC in €(6) is given by

0%(6) = {iF € U&)| ppy = pp—1) = ppy — 8} (21)

and the minimum sample size required is the smallest integer n for which

it PAlCS|P] = / (Fa(z + (VR/0)O)NdF,(z) 2 P (22)

A table has been prepared to assist the experimenter in designing the experiments to
meet the above goal. Table 8 is to be used for designing experiments involving k logistic
populations to decide which has the largest population mean. The table provides the
estimates 7 of the values of minimum sample size n associated with the probability
P* =0.75,0.90,0.95,0.99 for k = 2,3,4,5,10,15, and §/o = 0.1,0.5,1.0,2.0,4.0. These
were computed by setting the left hand side of (22) equal to P*. The minimum sample
size 7 can be obtained by n = [ + 1] where [t] denotes the greatest integer which
is less than ¢. All computations were carried out in double-precision arithmetic on a

Vax-11/1780.
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2.4 Subset selection procedures

Gupta (1956) introduced a subset selection formulation as a multiple decision problem,
where the investigation was carried out for the case of normal means. Here we consider
the subset selection rules for selecting the population with the largest mean from k&
logistic populations. We propose two subset selection rules B; and R; based on sample
means and sample medians respectively, provide tables for implementing these rules,
consider the performance characteristics of each rule, and we compare the two rules to

each other.

2.4.1 Statement of the problem

Let m;, i =1,...,k, be k independent logistic populations with unknown means Wi
and a common known variance o2. Let pu) < -+ < ppy be ranked p; and T(;) be
the population with mean pr)- We assume that it is not known which population is
associated with up;, ¢ =1,...,k We furthér assume that a population is characterized
by its population mean and the ‘best’ population is the one having the largest mean,
that is, 7).

Let X;;, j = 1,...,n, denote a random sample from =;, i = 1,...,k, where the
observations within and between populations are all independent. Let X; and X,
1= 1,v. .-,k, n =21 — 1, denote the means and medians of samples of size n from .
respectively. The sample mean and the sample median associated with the poPulation
having population mean y;; will be denoted by j(-(i) and X5, =1,...,k, respéctively.
Let 7[1] < <L Y[k] and Xpjg < -+ < Xpju be ranked X; and X,y respectively.

The goal is to select a small but non-empty subset S of the k populations so that
the selected subset includes with a high probability P* the ‘best’ population. The size
of the selected subset S is an integer-valued random variable taking on values 1,...,k.

Let us define the two subset selection rules R; and R, based on the sample means

and sample medians, respectively, as follows;

Rule Ry, : select «; iff
X;> max X; — hio//n, i=1,....k, ' (23)

1<5<k
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and

Rule Ry, : select w; iff
Xiq > [pax Xja —hao[v/nyi=1,...,k, (24)

where h; and h; are nonnegative constants.
By defining the events [CS|R;],7 = 1,2, as selections of any non-empty subset of
k populations which includes the best population using R;,i = 1,2, respectively, it is
required that for any 7 €
P;[CS|R)]) > P, (25)

where P* € (1/k,1) and Q is the parameter space given by (19).
The requirement of (25) will be called as the basic probability requirement or the

P*-condition.

Remark 2.1 Lorenzen and McDonald (1981) used a subset selection rule R based on

sample medians defined as

Rule R : select ; iff

X2 max Xju—d, d>0, :=1,...,k,
1<5<k

where X;; is defined as above. Here we use Ry instead of R only for the purpose

of comparing Ry to Ry easily. Basically the rule Ry is the same as Lorenzen and
MecDonald’s rule R.

2.4.2 Probability of a correct selection

e Probability of a correct selection for the means rule R;
Using (23) we can write the probability of a correct selection for the rule R; as

follows. For ji € Q,

Pa[CS|Ry]
= Pa[X() 2 maxigjch Xj — ho/v/n by 2 0]
= PiXy> X —ho/vm,Vi=1,...,k—1]
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Pal(vn]o) (X — i) < (Vo) (X — pe) + ba
+ (Vnfo)(um — p),Vi=1,...,k—1]

= /_Z Ijl Fulz + by + (Vo) (p) — pi))dFa(2), (26)

where Fy,(z) is the cdf of the standardized mean of samples from a logistic distribution.
We see from (26) that the infimum over the parameter space of the probability of

a correct selection for the rule R; takes place when p1 = -+ = p and so
inf PACSIR] = [ {Fu(e + b)) dF (2). (27)
ﬁGQ —o0

That is, the LFC for the rule R; is 2° where

O = {FeN === p} (28)

and the Pz[C'S|Ry] in the LFC does not depend on this common z. Hence, if we choose
hy to satisfy
[ Pz + )Y R (z) = P (29)

then we have determined the smallest A; for which
inf P;[CS|Ry] > P*. ~(30)
()

It should be noted that hy = hq(n, k, P*) depends on n as well as k and P* unlike
the normal populations problem.

Table 9 and Table 10 give the values of hy = k4 (n, k, P*) which satisfy (29) for n =
1(1)10, k = 2(1)10 and P* = 0.75,0.90,0.95,0.975,0.99. We use the Edgeworth series
expansions correct to order n~2 for F,(z) and fn(z) , the Gauss-Hermite quadrature
algorithm with sixty nodes for the evaluation of the integrals and the modified regular
falsi algorithm for solving the non-linear equation. The entries were calculated by using
double-precision arithmetic on a Vax-11/780.

e Probability of a correct selection for the medians rule R,

Let Z;a,..., Ziy be a random sample of size n, where n is an odd integer, drawn

from the :* standard logistic population. Then it is well known that the sample
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median, denoted by Z;;, (n = 2] — 1), has the pdf

T2 11y (Y1
n(5) = RPN = PG
and the cdf
Gal(2) = {F(2); 1,1}, (31)

where f(z) and F(z) are the pdf and cdf of the standard logistic population given by
(3) and (4) respectively and I{y; a,b} is the incomplete beta function with parameters
a and b, which is given by

I{y;a,b} = IF‘((Z_)_I{:(%/; w* (1 — w)*" ldw. (32)

Now the probability of a correct selection for the medians rule R, can be written

as follows. For i € Q)

P[CS|R] = Pp[Xrya > maxicick X(jya — hao/+/n by > 0]
= Pﬁ[X(k):l > X(j):[_h20'/‘\/ﬁ,\/j: L...,k—1 ]
= PilZya < Zgya + ha/v/n

+(:u[k] —ﬂ[j])/O',ij 177k_1 ]

= /_Z H Gn(t + ha/v/n + (b — pii)/0)dG(t), (33)

where G, is given by (31).
We see that the infimum over Q of the probability of a correct selection for the rule

R, takes place when gy = --+ = ux = p and so
inf PA{CS|R;] = / TGt + by /R G, (34)
ie —o0

Hence, if we choose h; to satisfy

/oo {Ga(t+ ho/v/m)}"1dGo(t) = P, (35)
then we have determined the smallest %, for which

inf Pz[CS|R,) > P*. (36)
2efd

24



The values of hy/\/n = hs(n, k, P*)/\/n which satisfy (35) for n = 1(2)19, k =
2(1)10 and P* = 0.75,0.90,0.95,0.975,0.99 were given in TABLE I of Lorenzen and
McDonald (1981).

2.4.3 Performance characteristics

In this section some performance characteristics of the subset selection procedures R,
and R, are studied.

Let Pz[r)|R;], i =1,...,k, j = 1,2, denote the probabilities of including in the
subset the population m(;, that is, the i ranked population, using the rule R; for the
gef, thenfori=1,...,k,

Pilry|R] = Pp[X ) > maxicj<e X; — hio//n , by > 0]
o k
= [ R+ b+ (Va/o) g — m)dFa(t), (37)
2
where F,(t) is the cdf of the standardized mean of samples of size n from a logistic

distribution and
Pﬁ[ﬂ'(z)le] = Pﬁ[X(z)l Z ma,x15j5k X(j):l — th’/\/’E ; hg _>_ 0]

o k
= /_oo I1 Gat+ ha/vm + (1 — 1)/ ) dGa(2), (38)

j=1
i

where G,(t), given in (31), is the cdf of the median of samples of size n, where n is an
odd integer, from the standard logistic population.
It is easy to see that the expected sizes of the selected subset using the rule R; for

i € Q, denoted by Ez[S|R;], j = 1,2, are given as follows:

Ea[S|Rj] = Y Paln(y|R;). (39)

i=1
Consistent with the basic probability requirement, we would like the size of the selected

subset to be small.
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The expected numbers of non-best populations selected by rule R; for 7 € Q,
denoted by Ez[S*|R;], j = 1,2, are defined as

EAS"|B;] = X Palmo| ) (40)

and also we would like the value of the Ez[S*|R;] to be small.

In using the rule R;, j = 1,2, the ranks of the selected populations are random
variables and one may want to evaluate the expected sum of ranks of the selected
populations. Let the population with parameter pp be assigned rank i, 1 =1,...,k.
Then the expected sums of ranks of the selected populations by rule R; for i € Q,
denoted by Ez[SR|R;], j = 1,2, are

k

Ez[SRIR;] = }_iPan(;)|Ry]. (41)

=1
For given i € §, the expected proportions of the selected populations by the rule
R;, denoted by Ez[P|R;], j = 1,2, are given by

Eg[P|R;] = Eg[S|R]/k. (42)

Since the values of Pg[wy|R;], j = 1,2, depend on @ € ), we consider them
for the two special cases, namely the equally spaced configuration and the slippage
configuration.

First, for the equally spaced configuration, we assume that the unknown means of
the k populations are p, p+80, -+, u+(k—1)6o which have ranks 1,...,k respectively.
Then the probabilities of including in the subset the population m(;) using the rule R;
for this configuration, denoted by P.,[r(;|R;], j = 1,2, are given by

Palm|Bal = [ TT Falt+ b + G = )8v/mdEL(1) (43)
and
o k
PulmolRa) = [ TT Ga(t+ ha/ v/ + (i = 1)6)dGt (44)
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respectively.

Next, for the slippage configuration, we assume that the unknown means of &
populations are pp;; = p, 3 =1,...,k—1, and pp) = p + b0 for § > 0. Then the
probabilities of including in the selected subset the population 7(; using the rule R;,
denoted by P,,[n(;)|R;], j = 1,2, are given by

Pyp[m)| Ra)
- / (Fo(t 4+ ha) Y2 Fa(t + by — S5/R)dFa(t) i=1,... k-1,

PolrlBil = [~ {Falt+ b+ 6Vm)}dF,(0)

Pip[m(i)| Re]
- /_°° (Gt + ha /)Y 2Cn(t + b Jy/7 = 8)dGa(t)yi = 1, k — 1,

and

Polngo|Ral = [~ {Galt+ ha/v/a + §)}1dGut).

Now we can compute the performance characteristics Ez[S|R;}, Ez[S*|R;], Ez[SR|R;]
and Ez[P|R;] for two special configurations by substituting Pe,[7(;)| R;] and Py[m(y)| R;]
for Pz[my|R;] in (39), (40), (41) and (42) respectively.

Table 11 and Table 12 give the values of the performance characteristics of the
means rule R; and Table 13 and Table 14 give the same values of the medians rule R,
for the equally spaced and the slippage configurations respectively for the given values
of k =2,3,4,5,10, P* = 0.90, n = 3 and /né = 0.5,1.0,1.5,2.0,2.5, 3.0, 4.0, 5.0.

For instance, from Table 11 for P* = 0.90, n = 3, k = 5 and é§/n = 1.5, the
probability of a correct selection by using the means rule R; is 0.997. The expected
size of the selected subset is 2.208 and the expected number of the non-best populations
selected is 1.211. The expected sum of the ranks in the selected subset is 9.330 and the
expected proportion of the selected population is 0.442. It should be noted that the

expected sum of ranks by itself is not a good criterion of the performance of a selection -
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rule. It should be looked at together with the expected values of S and 5* to make a
more meaningful performance characteristic.

The entries in all tables were calculated by using double-precision arithmetic on a
Vax-11/780.

Note that, for both rules R; and R, and for the fixed values of P*, n, k£ and
i = 1,2,...,k — 1(k), the probability of selecting the :** ranked population in the
slippage configuration can be proved to be monotonically decreasing(increasing) with
8+/n and hence monotonically decreasing(increasing) with 6 and n separately. Also for
i = 1(k), the probability of selecting the :** ranked population in the equally spaced
configuration can be proved to be monotonically decreasing(increasing) with §v/n. A
look at the table values seems to indicate that, for both rules #; and Ry and for the
fixed values of P*, n, k and i = 2,...,k— 1, the probability of selecting the ¢** ranked
population in the equally spaced configuration is also monotonically decreasing with
§+/n. For fixed P*, i, n and 61/n, the probability of selecting the i** ranked population

is monotonically decreasing with the values of k for allz, ¢ =1,...,k.

2.4.4 Comparison between the means rule R; and the medians rule R,

In this section we compare the efficiency of the means rule R; to that of the medians
rule R;. Lorenzen and McDonald (1981) have studied the problem of large sample
comparisons between the two rules Ry and R;. They computed the asymptotic relative

efficiency (ARE) of R; relative to R, defined by, for e € (0,1) and £ € ,

. Ng
e 7 — 1 1
ARE(Ry, Ro; i) = lim Ng,’

where Npg;, j = 1,2, are the numbers of observations needed so that
inf Pz[CS|R;] = P*
and
Ez[S*|Rj] = ¢
by assuming a slippage configuration, that is,
py == pp-11 =0, pp =06>0.
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Their value of the ARE(Ry, Ry; i) is 0.822. Thus, under a slippage configuration,
asymptotically the means procedure requires about 82% of the sample size required by
the medians rule to achieve the same expected number of non-best populations in the
selected subset.

Now we consider the small sample comparisons between the rules R; and R; by
using the performance characteristics of each rule given in the previous section. In
Table 15, we compute the values of the probability of a correct selection (P(CS)), the
expected sizes of the selected subset (E(S)), the expected numbers of non-best popula-
tions in the selected subset (E(S*)), the expected sums of the ranks of the populations
selected in the subset (E(SR)) and the expected proportions of the populations selected
in the subset (E(P)) for each rule B; and R, and the ratio of those values of the rules
when the unknown means are equally spaced for the selected values of P* = 0.90, 0.95,
n = 3,5, k =4, and §v/n = 1.5,3.0. The same values for the slippage configurations
are given in Table 16.

For both of the configurations;

e Since P(CS|R;)/P(CS|R;) > 0.991 for all cases, the values of P(C'S)’s are not

much different for all cases.

e Since, for example, E(S|Ry)/E(S|R;) < 1 for all cases, the values of E(S), E(S*),
E(SR) and E(P) for the rule R, are less than or equal to the same values for

the rule R, for all cases.

o The values of the ratio of the rules R, and R, for all characteristics are decreasing

as the values of n are increasing.

Hence, as expected, the means rule R; is definitely better than the medians rule R,
in the sense of their performance characteristics and the performance of the rule R,

relative to the rule R, improves as sample sizes are increasing for both configurations.
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Table 1: Approximate cdf of the standardized mean of samples from a logistic popula-

tion: Sample size n = 3.

0. 0.5000 | 0.5042 | 0.5084 | 0.5125 | 0.5167 | 0.5209 | 0.5251 | 0.5292 | 0.5334 | 0.5376
0.10 || 0.5417 | 0.5459 | 0.5500 | 0.5542 | 0.5583 | 0.5625 | 0.5666 | 0.5707 | 0.5748 | 0.5789
0.20 || 0.5830 | 0.5871 | 0.5911 | 0.5952 | 0.5992 | 0.6033 | 0.6073 | 0.6113 { 0.6153 | 0.6193
0.30 }{ 0.6232 | 0.6272 | 0.6311 | 0.6351 | 0.6390 | 0.6429 | 0.6467 | 0.6506 | 0.6544 | 0.6583
0.40 |} 0.6621 | 0.6659 | 0.6696 | 0.6734 | 0.6771 | 0.6808 | 0.6845 | 0.6882 | 0.6919 | 0.6955
0.50 || 0.6991 | 0.7027 | 0.7063 | 0.7098 | 0.7134 | 0.7169 | 0.7203 | 0.7238 | 0.7272 | 0.7306
0.60 || 0.7340 | 0.7374 | 0.7407 | 0.7440 | 0.7473 | 0.7506 | 0.7538 | 0.7571 | 0.7603 | 0.7634
0.70 || 0.7666 | 0.7697 | 0.7728 | 0.7758 | 0.7789 | 0.7819 | 0.7849 | 0.7878 | 0.7908 | 0.7937
0.80 || 0.7966 | 0.7994 | 0.8022 | 0.8051 | 0.8078 | 0.8106 | 0.8133 | 0.8160 | 0.8187 | 0.8213
0.90 ]| 0.8239 | 0.8265 | 0.8291 | 0.8316 | 0.8341 | 0.8366 | 0.8391 | 0.8415 | 0.8439 | 0.8463
1.00 || 0.8486 | 0.8510 | 0.8533 | 0.8555 | 0.8578 | 0.8600 | 0.8622 0.8644 0.8665 | 0.8686
1.10 || 0.8707 | 0.8728 | 0.8748 | 0.8769 | 0.8789 | 0.8808 | 0.8828 | 0.8847 | 0.8866 | 0.8884
1.20 || 0.8903 | 0.8921 | 0.8939 | 0.8957 | 0.8974 | 0.8992 | 0.9009 | 0.9026 | 0.9042 | 0.9059
1.30 || 0.9075 | 0.9091 | 0.9106 | 0.9122 | 0.9137 | 0.9152 | 0.9167 | 0.9182 | 0.9196 | 0.9210
1.40 || 0.9224 | 0.9238 [ 0.9251 | 0.9265 | 0.9278 | 0.9291 | 0.9304 | 0.9316 | 0.9329 | 0.9341
1.50 {| 0.9353 | 0.9365 | 0.9377 | 0.9388 | 0.9399 | 0.9410 | 0.9421 | 0.9432 | 0.9443 | 0.9453
1.60 }| 0.9463 | 0.9474 | 0.9483 | 0.9493 | 0.9503 | 0.9512 | 0.9522 | 0.9531 | 0.9540 | 0.9549
1.70 |} 0.9557 | 0.9566 | 0.9574 | 0.9582 | 0.9591 | 0.9598 | 0.9606 | 0.9614 | 0.9622 | 0.9629
1.80 |} 0.9636 | 0.9644 | 0.9651 | 0.9657 | 0.9664 | 0.9671 | 0.9678 | 0.9684 | 0.9690 | 0.9697
1.90 {{ 0.9703 | 0.9709 | 0.9715 | 0.9720 | 0.9726 | 0.9732 | 0.9737 | 0.9742 | 0.9748 | 0.9753
2.00 || 0.9758 | 0.9763 | 0.9768 | 0.9772 | 0.9777 | 0.9782 | 0.9786 | 0.9791 | 0.9795 | 0.9799
2.10 || 0.9804 | 0.9808 | 0.9812 { 0.9816 | 0.9820 | 0.9823 | 0.9827 | 0.9831 | 0.9834 | 0.9838
2.20 ]| 0.9841 | 0.9845 | 0.9848 | 0.9851 | 0.9854 | 0.9857 | 0.9861 | 0.9864 | 0.9866 | 0.9869
2.30 || 0.9872 | 0.9875 | 0.9878 | 0.9880 | 0.9883 | 0.9885 ] 0.9888 | 0.9890 | 0.9893 | 0.9895
2.40 || 0.9897 | 0.9900 | 0.9902 | 0.9904 | 0.9906 ] 0.9908 | 0.9910 | 0.9912 | 0.9914 | 0.9916
2.50 || 0.9918 | 0.9920 | 0.9922 | 0.9923 | 0.9925 | 0.9927 | 0.9928 | 0.9930 | 0.9931 | 0.9933
2.60 || 0.9935 | 0.9936 | 0.9937 | 0.9939 | 0.9940 | 0.9942 | 0.9943 | 0.9944 | 0.9946 0.99747
2.70 || 0.9948 | 0.9949 | 0.9950 | 0.9951 | 0.9953 | 0.9954 | 0.9955 | 0.9956 | 0.9957 | 0.9958
2.80 [1 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9963 | 0.9964 | 0.9965 | 0.9966 | 0.9967
2.90 J] 0.9968 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9971 | 0.9972 | 0.9973 | 0.9973 | 0.9974
3.00 {| 0.9975 | 0.9975 | 0.9976 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980
3.10 || 0.9980 | 0.9981 | 0.9981 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9983 | 0.9984 | 0.9984
3.20 || 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 | 0.9986 { 0.9987 | 0.9987 | 0.9987 | 0.9988
3.30 || 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 | 0.9990 | 0.9990
3.40 || 0.9991 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993
3.50 |} 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994
3.60 || 0.9994 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9996
3.70 || 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 | 0.9997
3.80 || 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997
3.90 || 0.9997 | 0.9997 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998
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Table 2: Approximate cdf of the standardized mean of samples from a logistic popula-

tion: Sample size n = 10.

0. 0.5000 | 0.5040 | 0.5081 | 0.5121 | 0.5162 | 0.5202 | 0.5243 | 0.5283 | 0.5324 | 0.5364
0.10 || 0.5404 | 0.5444 | 0.5485 | 0.5525 | 0.5565 | 0.5605 | 0.5645 | 0.5685 | 0.5725 | 0.5764
0.20 || 0.5804 | 0.5844 | 0.5883 | 0.5923 | 0.5962 { 0.6001 | 0.6040 | 0.6079 | 0.6118 | 0.6157
0.30 || 0.6196 | 0.6234 | 0.6273 | 0.6311 | 0.6349 | 0.6387 | 0.6425 | 0.6463 | 0.6500 | 0.6538
0.40 || 0.6575 | 0.6612 | 0.6649 | 0.6686 | 0.6722 | 0.6759 | 0.6795 | 0.6831 | 0.6867 | 0.6903
0.50 || 0.6938 | 0.6974 | 0.7009 | 0.7044 | 0.7079 | 0.7113 | 0.7148 | 0.7182 | 0.7216 | 0.7250
0.60 || 0.7283 | 0.7317 | 0.7350 | 0.7383 | 0.7416 | 0.7448 | 0.7480 | 0.7512 | 0.7544 | 0.7576
0.70 || 0.7607 | 0.7638 | 0.7669 | 0.7700 | 0.7730 | 0.7761 | 0.7791 | 0.7820 | 0.7850 | 0.7879
0.80 || 0.7908 | 0.7937 | 0.7965 | 0.7994 | 0.8022 | 0.8050 | 0.8077 | 0.8104 | 0.8132 | 0.8158
0.90 || 0.8185 | 0.8211 | 0.8237 | 0.8263 | 0.8289 | 0.8314 | 0.8339 | 0.8364 | 0.8388 | 0.8413
1.00 || 0.8437 | 0.8461 | 0.8484 | 0.8508 | 0.8531 | 0.8554 | 0.8576 | 0.8598 | 0.8621 | 0.8642
1.10 || 0.8664 | 0.8685 | 0.8707 | 0.8727 | 0.8748 | 0.8768 | 0.8789 | 0.8808 | 0.8828 | 0.8848
1.20 || 0.8867 | 0.8886 | 0.8904 | 0.8923 | 0.8941 | 0.8959 | 0.8977 | 0.8995 | 0.9012 | 0.9029
1.30 || 0.9046 | 0.9063 | 0.9079 | 0.9095 | 0.9111 | 0.9127 | 0.9143 | 0.9158 | 0.9173 | 0.9188
1.40 || 0.9203 | 0.9217 | 0.9232 | 0.9246 | 0.9260 | 0.9273 | 0.9287 ] 0.9300 | 0.9313 | 0.9326
1.50 || 0.9339 | 0.9351 | 0.9364 | 0.9376 | 0.9388 | 0.9400 | 0.9411 | 0.9423 | 0.9434 | 0.9445
1.60 || 0.9456 | 0.9466 | 0.9477 | 0.9487 | 0.9497 | 0.9507 | 0.9517 | 0.9527 | 0.9537 | 0.9546
1.70 || 0.9555 | 0.9564 | 0.9573 | 0.9582 | 0.9590 | 0.9599 | 0.9607 | 0.9615 | 0.9623 | 0.9631
1.80 || 0.9639 | 0.9647 | 0.9654 | 0.9661 | 0.9669 | 0.9676 | 0.9683 | 0.9690 | 0.9696 | 0.9703
1.90 || 0.9709 | 0.9716 | 0.9722 | 0.9728 | 0.9734 | 0.9740 | 0.9745 | 0.9751 | 0.9757 | 0.9762
2.00 || 0.9767 | 0.9773 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9797 | 0.9802 | 0.9806 | 0.9811
2.10 || 0.9815 | 0.9820 | 0.9824 | 0.9828 | 0.9832 | 0.9836 | 0.9840 | 0.9843 | 0.9847 | 0.9851
2.20 || 0.9854 | 0.9858 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9874 | 0.9877 | 0.9880 | 0.9883
2.30 || 0.9886 | 0.9889 | 0.9891 | 0.9894 { 0.9897 | 0.9899 | 0.9902 | 0.9904 | 0.9906 | 0.9909
2.40 |} 0.9911 | 0.9913 | 0.9915 | 0.9918 | 0.9920 | 0.9922 | 0.9924 | 0.9926 | 0.9928 | 0.9929
2.50 |} 0.9931 { 0.9933 | 0.9935 | 0.9936 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9944 | 0.9946
2.60 || 0.9947 | 0.9949 | 0.9950 | 0.9951 | 0.9953 | 0.9954 | 0.9955 | 0.9956 | 0.9957 | 0.9959
2.70 |} 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9968
2.80 || 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9973 | 0.9974 | 0.9975 | 0.9976 | 0.9976
2.90 |{ 0.9977 | 0.9978 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 | 0.9981 | 0.9982 | 0.9982
3.00 | 0.9983 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9985 | 0.9986 | 0.9986 | 0.9987
3.10 || 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990
3.20 || 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 { 0.9992 | 0.9992 | 0.9993
3.30 || 0.9993 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995
3.40 || 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996
3.50 §| 0.9996 | 0.9996 | 0.9996 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997
3.60 || 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998
3.70 || 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9999
3.80 || 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
3.90 [l 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
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Table 3: Approximate cdf of the standardized mean of samples from a logistic popula-

tion: Sample size n = 15.

0. 0.5000 | 0.5040 | 0.5081 | 0.5121 | 0.5161 | 0.5201 | 0.5242 | 0.5282 | 0.5322 | 0.5362
0.10 || 0.5402 | 0.5442 | 0.5482 | 0.5522 | 0.5562 | 0.5602 | 0.5642 | 0.5682 | 0.5721 | 0.5761
0.20 || 0.5800 | 0.5840 | 0.5879 | 0.5918 | 0.5957 | 0.5996 | 0.6035 | 0.6074 | 0.6113 | 0.6152
0.30 || 0.6190 | 0.6229 | 0.6267 | 0.6305 | 0.6343 | 0.6381 | 0.6419 | 0.6456 | 0.6494 | 0.6531
0.40 || 0.6568 | 0.6605 | 0.6642 | 0.6679 | 0.6715 | 0.6751 | 0.6788 | 0.6824 | 0.6859 | 0.6895
0.50 || 0.6931 { 0.6966 | 0.7001 | 0.7036 | 0.7071 | 0.7105 | 0.7140 | 0.7174 | 0.7208 | 0.7241
0.60 || 0.7275 | 0.7308 | 0.7341 | 0.7374 | 0.7407 | 0.7439 | 0.7472 | 0.7504 | 0.7535 | 0.7567
0.70 || 0.7598 | 0.7630 | 0.7660 | 0.7691 | 0.7722 | 0.7752 | 0.7782 | 0.7812 | 0.7841 | 0.7870
0.80 j| 0.7899 | 0.7928 | 0.7957 | 0.7985 | 0.8013 | 0.8041 | 0.8069 | 0.8096 | 0.8123 | 0.8150
0.90 || 0.8177 | 0.8203 | 0.8229 | 0.8255 | 0.8281 | 0.8306 | 0.8331 | 0.8356 | 0.8381 | 0.8405
1.00 || 0.8429 | 0.8453 | 0.8477 | 0.8500 | 0.8523 | 0.8546 | 0.8569 | 0.8591 | 0.8614 | 0.8636
1.10 || 0.8657 | 0.8679 | 0.8700 | 0.8721 | 0.8742 | 0.8762 | 0.8782 | 0.8802 | 0.8822 | 0.8842
1.20 }| 0.8861 | 0.8880 | 0.8899 | 0.8918 | 0.8936 | 0.8954 ]| 0.8972 | 0.8990 | 0.9007 | 0.9024
1.30 || 0.9041 | 0.9058 | 0.9075 | 0.9091 | 0.9107 | 0.9123 | 0.9139 | 0.9154 | 0.9170 | 0.9185
1.40 || 0.9199 | 0.9214 | 0.9229 | 0.9243 | 0.9257 | 0.9271 | 0.9284 | 0.9298 | 0.9311 | 0.9324
1.50 |j 0.9337 | 0.9349 | 0.9362 | 0.9374 | 0.9386 | 0.9398 | 0.9410 | 0.9421 | 0.9432 | 0.9444
1.60 || 0.9455 | 0.9465 | 0.9476 | 0.9486 | 0.9497 | 0.9507 | 0.9517 | 0.9527 | 0.9536 | 0.9546
1.70 || 0.9555 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9607 ] 0.9616 | 0.9624 | 0.9632
1.80 || 0.9640 | 0.9647 | 0.9655 | 0.9662 | 0.9669 | 0.9677 | 0.9684 | 0.9691 | 0.9697 | 0.9704
1.90 || 0.9710 | 0.9717 | 0.9723 | 0.9729 | 0.9735 | 0.9741 { 0.9747 | 0.9753 | 0.9758 | 0.9764
2.00 || 0.9769 | 0.9774 | 0.9779 | 0.9785 | 0.9789 | 0.9794 | 0.9799 | 0.9804 | 0.9808 | 0.9813
2.10 || 0.9817 | 0.9822 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9845 | 0.9849 | 0.9853
2.20 ]| 0.9856 | 0.9860 | 0.9863 | 0.9867 | 0.9870 | 0.9873 | 0.9876 | 0.9879 { 0.9882 | 0.9885
2.30 || 0.9888 | 0.9891 | 0.9894 | 0.9896 | 0.9899 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911
2.40 || 0.9913 | 0.9916 | 0.9918 | 0.9920 | 0.9922 | 0.9924 | 0.9926 | 0.9928 | 0.9930 | 0.9932
2.50 || 0.9933 | 0.9935 | 0.9937 | 0.9939 | 0.9940 | 0.9942 | 0.9943 | 0.9945 | 0.9946 | 0.9948
2.60 || 0.9949 | 0.9951 | 0.9952 | 0.9953 | 0.9954 | 0.9956 | 0.9957 | 0.9958 | 0.9959 0.99J60
2.70 || 0.9961 | 0.9963 | 0.9964 | 0.9965 | 0.9966 | 0.9967 | 0.9967 | 0.9968 | 0.9969 | 0.9970
2.80 {| 0.9971 | 0.9972 | 0.9973 } 0.9973 | 0.9974 | 0.9975 | 0.9976 | 0.9976 [ 0.9977 | 0.9978
2.90 || 0.9978 | 0.9979 | 0.9980 | 0.9980 | 0.9981 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9983
3.00 || 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 | 0.9987 | 0.9987 | 0.9987 | 0.9988
3.10 || 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9990 | 0.9990 | 0.9990 | 0.9990 { 0.9991 | 0.9991
3.20 || 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 | 0.9993 | 0.9993 | 0.9993
3.30 |} 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 | 0.9995 { 0.9995
3.40 |} 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997
3.50 || 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998
3.60 || 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998
3.70 || 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
3.80 || 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
3.90 || 0.9999 | 0.9999 ! 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 [ 0.9999 | 0.9999 | 0.9999
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Table 4: Approximate quantiles of the standardized mean of samples from a logistic

population using Cornish-Fisher series expansion.

n | v " Probability level
| o900 | o950 [ o975 0.990 0.995
4 || 1.2555226 | 1.6381158 | 1.9849505 | 2.4082844 | 2.7099442
3 | 6 || 1.2548571 | 1.6371743 | 1.9843074 | 2.4095841 | 2.7143793
8 || 1.2550232 | 1.6376558 | 1.9850174 | 2.4099828 | 2.7136348
4 || 1.2614732 | 1.6395502 | 1.9791732 | 2.3899717 | 2.6805283
4 | 6 || 1.2611925 | 1.6391530 | 1.9789019 | 2.3905200 | 2.6823993
8 || 1.2612450 | 1.6393053 | 1.9791265 | 2.3906461 | 2.6821637
4 [} 1.2652218 | 1.6404909 | 1.9755567 | 2.3782893 | 2.6615626
5 | 6 || 1.2650780 | 1.6402875 | 1.9754178 | 2.3785700 | 2.6625206
8 || 1.2650095 | 1.6403499 | 1.9755008 | 2.3786217 | 2.6624241
4 || 1.2677950 | 1.6411513 | 1.9730832 | 2.3702115 | 2.6483706
6 | 6 || 1.2677118 | 1.6410337 | 1.9730028 | 2.3703740 | 2.6489249
8 || 1.2677222 | 1.6410637 | 1.9730472 | 2.3703989 | 2.6488784
4 || 1.2696694 | 1.6416394 | 1.9712858 | 2.3642999 | 2.6386791
7 | 6 || 1.2696170 | 1.6415653 | 1.9712351 | 2.3644022 | 2.6390282
8 || 1.2696226 | 1.6415816 | 1.9712591 | 2.3644156 | 2.6390031
4 || 1.2710950 | 1.6420145 | 1.9699209 | 2.3597886 | 2.6312636
8 | 6 || 1.2710599 | 1.6419648 | 1.9698870 | 2.3598572 | 2.6314974
8 || 1.2710632 | 1.6419743 | 1.9699010 | 2.3598650 | 2.6314827
4 || 1.2722156 | 1.6423114 | 1.9688494 | 2.3562339 | 2.6254089
9 | 6 || 1.2721910 | 1.6422766 | 1.9688256 | 2.3562820 | 2.6255732
8 || 1.2721930 | 1.6422825 | 1.9688344 | 2.3562870 | 2.6255640
4 || 1.9731196 | 1.6425523 | 1.9679860 | 2.3533612 | 2.6206704
10 | 6 || 1.2731016 | 1.6425269 | 1.9679687 | 2.3533963 | 2.6207901
8 || 1.2731029 | 1.6425308 | 1.9679744 | 2.3533995 | 2.6207841 .
4 || 1.2758709 | 1.6432929 | 1.9653624 | 2.3445887 | 2.6061622
15 | 6 || 1.2758656 | 1.6432853 | 1.9653572 | 2.3445990 | 2.6061977
8 l 1.2758658 | 1.6432861 | 1.9653584 | 2.3445997 | 2.6061965
4 || 1.2772688 | 1.6436731 | 1.9640318 | 2.3401155 | 2.5987437
20 | 6 || 1.2772666 | 1.6436699 | 1.9640296 | 2.3401199 | 2.5987587
8 | 1.2772667 | 1.6436702 | 1.9640300 | 2.3401201 | 2.5987583
4 || 1.2781147 | 1.6439045 | 1.9632274 | 2.3374039 | 2.5942399
25 | 6 || 1.2781136 | 1.6439029 | 1.9632263 | 2.3374061 | 2.5942476
8 || 1.2781136 | 1.6439030 | 1.9632265 | 2.3374062 | 2.5942474
4 || 1.2786816 | 1.6440601 | 1.9626887 | 2.3355845 | 2.5912155
30 | 6 || 1.2786810 | 1.6440591 | 1.9626881 | 2.3355858 | 2.5912199
8 [l 1.2786810 | 1.6440592 | 1.9626881 | 2.3355859 | 2.5912198
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Table 5: A comparison of four approximations for cdf of standardized mean of samples

of size 3 from logistic populations.

x| F3(2) | F5(2) — &(2) | F3(2) — Ga(z) | Fi(z) — Ts(2) | F3(z) - Gi(a)
0.05 §| 0.5209 0.0010 0.0000 0.0001 0.0000
0.15 || 0.5625 0.0029 0.0000 0.0003 - 0.0000
0.25 || 0.6033 0.0046 0.0008 0.0005 0.0000
0.45 |{ 0.6809 0.0073 -0.0017 0.0007 0.0001
0.65 || 0.7506 0.0084 -0.0006 0.0007 0.0000
0.85 || 0.8106 0.0083 -0.0007 0.0007 0.0000
1.00 [ 0.8486 0.0073 -0.0008 0.0004 0.0000
1.20 i 0.8903 0.0054 -0.0007 0.0002 0.0000
1.45 || 0.9291 0.0026 -0.0004 0.0000 0.0000
1.75 | 0.9598 -0.0001 0.0001 -0.0002 0.0000
2.50 J 0.9918 -0.0020 0.0004 0.0002 0.0000
3.00 || 0.9975 -0.0012 0.0001 0.0001 0.0000

F3(z) = cdf of the standardized mean of 3 iid logistic r.v.’s.
®(z) = cdf of the standard normal r.v.

G3(z) = Edgeworth series expansion correct to order n~!
Ts(z) = cdf of the standardized Student’s ¢ r.v.’s with 19 d.f.

G%(z) = Edgeworth series expansion correct to order n=3
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Table 6: An illustration of the Student’s ¢ and the Edgeworth series expansion approx-

imation for n = 10.

X Fio(2) Fo(z) — Tao(z) | Fio(2) — Gio(=)
0.10 0.540416 0.000021 0.000000
0.20 0.580406 0.000040 0.000000
0.40 0.657488 0.000070 0.000000
0.60 0.728341 0.000081 0.000000
0.80 0.790815 0.000073 0.000000
1.00 0.843689 0.000051 0.000000
1.20 0.886676 0.000023 0.000000
1.50 0.933882 -0.000014 0.000000
1.70 0.955515 -0.000028 0.000000
2.50 0.993123 -0.000014 0.000000
3.00 0.998265 0.000001 0.000000
3.50 0.999620 0.000004 0.000000

Fyo(z) = cdf of the standardized mean of 10 iid logistic r.v.’s.
T10(z) = cdf of the standardized Student’s ¢ r.v.’s with 54 d.f.

G o(z) = Edgeworth series expansion correct to order n=3
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Table 7: Quantiles of the standardized mean of logistic variates.

Sample size Probability(a) -
n 090 | o950 [ oors [ om0 | o995
1.2452 1.6306 1.8757 2.4208 2.7560
2 1.2432 1.6340 1.9951 2.4500 2.7718
1.2425 1.6326 1.9934 2.4450 2.7755
1.2617 1.6381 1.9760 2.3861 2.6778
4 1.2612 1.6393 1.9790 2.2906 2.6821
1.2612 1.6392 1.9789 2.3905 2.6824
1.2654 1.6395 1.9734 2.3756 2.6597
5 1.2651 1.6403 1.9755 2.3786 2.6642
1.2651 1.6403 1.9754 2.3786 2.6625
1.2697 1.6411 1.9750 2.3628 2.6376
7 1.2696 1.6416 1.9712 2.3644 2.6390
1.2696 1.6416 1.9712 2.3644 2.6390
1.2731 1.6423 1.9674 2.3526 2.6201
10 1.2731 1.6425 1.9680 2.3534 2.6208
1.2731 1.6425 1.9680 2.3534 2.6208
1.2745 1.6427 1.9662 2.3484 2.6131
12 1.2745 1.6426 11.9667 2.3491 2.6135
1.2745 1.6429 1.9667 2.3490 2.6135
1.2759 1.6432 1.9651 2.3443 2.6059
15 1.2758 1.6433 1.9654 2.3446 2.6062
1.2759 1.6433 1.9654 2.3446 2.6062

Top element in each cell represents Student’s ¢ approximation.
Middle element in each cell represents the exact percentage point.

Bottom element in each cell represents the Cornish-Fisher series approximation (n—3).
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Table 8: Values of the estimate 7 of the minimum sample size n for the single-stage

procedure.
k §/o P
075 | - 0.90 0.95 0.99
4.00 0.05 0.19 0.33 0.75
2.00 0.20 0.77 1.34 2.82
2 1.00 0.81 3.22 5.40 10.94
0.50 3.51 13.07 21.63 43.42
0.10 90.86 | 32842 | 541.09 | 108256
4.00 0.12 0.30 0.47 0.93
2.00 0.46 1.21 1.85 3.42
3 1.00 1.95 4.93 7.36 13.25
0.50 8.11 19.86 29.40 52.49
0.10 205.48 | 497.34 | 73449 | 1308.66
4.00 0.16 0.37 0.55 1.05
2.00 0.65 1.49 2.17 3.78
4 1.00 2.74 5.99 8.55 14.61
0.50 11.23 24.02 34.06 57.86
0.10 282.89 | 601.00 | 850.48 | 1441.89
4.00 0.20 0.42 0.61 1.13
2.00 0.80 1.69 2.39 4.04
5 1.00 3.34 6.76 9.40 15.58
0.50 13.56 27.04 37.40 61.67
0.10 340.80 | 675.85 | 933.47 | 153653
4.00 0.32 0.59 0.81 1.32 .
2.00 1.28 2.28 3.03 4.76
10 | 1.00 5.12 8.96 11.80 18.29
0.50 20.50 35.66 46.86 72.38
0.10 512.42 | 889.88 | 1168.58 | 1802.84
4.00 0.39 0.68 0.92 1.44
2.00 1.56 2.61 3.39 5.15
15 | 1.00 6.14 10.17 13.12 19.77
0.50 24.41 40.39 52.01 78.17
0.10 609.05 | 1007.16 | 1296.45 | 1946.93
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Table 9: Values of h; for the means rule R, for selecting the subset containing
the largest logistic population mean: n = 1,2,3,4,5.

n k pP*
0.750 | 0900 | 0950 ] 0975 | 0.990
2 0.8981 1.7563 2.3165 2.8349 3.4592
3 1.3604 2.1916 2.7434 3.2486 3.8504
4 1.6119 2.4361 2.9827 3.4794 4.0715
5 1.7855 2.6063 3.1481 3.6389 4.2272
1 6 1.9185 2.7366 3.2738 3.7605 4.3484
7 2.0265 2.8418 3.3750 3.8588 4,4482
8 2.1174 2.9299 3.4594 3.9412 4.5335
9 2.1960 3.0055 3.5317 4.0123 4.6083
10 2.2652 3.0715 3.5950 4.0748 _| 4.6751
2 0.6542 1.2612 1.6395 1.9797 2.3909
3 0.9873 1.5623 1.9253 2.2539 2.6530
4 1.1642 1.7265 2.0831 2.4066 2.8006
5 1.2836 1.8388 2.1916 2,5121 2.9028
2 6 1.3734 1.9239 2.2740 2.5924 2.9810
7 1.4452 1.9921 2.3403 2.6569 3.0442
8 1.5048 2.0490 2.3957 2.7113 3.0972
9 1.5557 2.0978 2.4432 2.7578 | 3.1428
10 1.6002 2.1404 2.4847 2.7985 3.1828
2 0.5395 1.0351 1.3400 1.6111 1.9355
3 0.8131 1.2794 1.5696 1.8294 2.1422
4 0.9572 1.4115 1.6953 1.9501 2.2573
5 1.0538 1.5012 1.7813 2.0331 2.3377
3 6 1.1261 1.5688 1.8463 2.0960 2.3984
7 1.1835 1.6228 1.8984 -2.1466 2.4473
8 1.2311 1.6677 1.9418 2.1889 2.4882
9. 1.2716 1.7061 1.9790 2.2251 2.5233
10 1.3068 1.7395 2.0115 2.2567 2.5541
2 0.4696 0.8988 1.1611 1.3930 1.6687
3 0.7072 1.1097 1.3583 1.5795 1.8442
4 - 0.8319 1.2232 1.4657 1.6822 1.9418
5 0.9152 1.3000 1.5390 1.7527 2.0091
4 6 0.9773 1.3577 1.5943 1.8059 2.0605 ”
7 1.0265 1.4038 1.6385 1.8486 2.1017
8 1.0672 1.4420 1.6753 1.8843 2.1360
9 1.1018 1.4745 1.7067 1.9148 2.1654
10 1.1318 1.5029 1.7342 1.9414 2.1911
2 0.4213 0.8052 1.0388 1.2447 1.4884
3 - 0.6342 0.9935 1.2143 1.4102 1.6434
4 0.7457 1.0945 1.3097 1.5010 1.7295
5 0.8200 1.1628 1.3746 1.5631 1.7886
5 6 0.8752 1.2139 1.4234 1.6101 1.8336
7 0.9190 1.2547 1.4625 1.6477 1.8695
8 0.9551 1.2885 1.4949 1.6791 1.9000
9 0.9858 1.3172 1.5226 1.7059 1.9258
10 1.0123 1.3423 1.5468 1.7293 1.9483
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Table 10: Values of h; for the means rule R, for selecting the subset containing
the largest logistic population mean: n = 6,7,8,9, 10.

n k P*

0.750 ] 0.900 I 0.950 I 0.975 | 0.990

2 0.3854 0.7358 0.9485 1.1355 1.3562

3 0.5800 0.9075 1.1082 1.2857 1.4965

4 0.6817 0.9994 1.1948 1.3680 1.5742

5 0.7494 1.0614 1.2536 1.4242 1.6276

6 6 0.7997 1.1079 1.2978 1.4666 1.6681

7 0.8394 1.1448 1.3332 1.5006 1.7006

8 0.8722 1.1754 1.3625 1.5289 1.7279

9 0.9001 1.2015 1.3875 1.5531 1.7511

10 0.9242 1.2241 1.4093 1.5742 1.7713

2 0.3573 0.6818 0.8783 1.0507 - 1.2539

3 0.5377 0.8406 1.0257 1.1891 1.3829

4 0.6318 0.9255 1.1056 1.2650 1.4543

5 0.6944 0.9827 1.1598 1.3167 1.5034

7 6 0.7408 1.0255 1.2005 1.3557 1.5405

7 0.7775 1.0595 1.2330 1.3869 1.5703

8 0.8078 1.0877 1.2600 1.4129 1.5950

9 0.8334 1.1117 1.2830 1.4351 1.6166

10 0.8556 1.1325 1.3030 1.4544 1.6351

2 0.3346 0.6381 0.8217 0.9825 1.1718

3 0.5034 0.7866 0.9593 1.1116 1.2918

4 0.5914 0.8658 1.0338 1.1823 1.3582

5 0.6499 0.9192 1.0843 1.2303 1.4038

8 6 0.6933 0.9591 1.1222 1.2666 1.4383

7 0.7275 0.9908 1.1525 1.2957 1.4660

8 0.7558 1.0171 1.1776 1.3198 1.4890

9 0.7797 1.0394 1.1990 1.3404 1.5086

10 0.8004 1.0588 1.2176 1.3584 1.5261

2 0.3157 0.6019 0.7748 0.9261 1.1039

3 0.4750 0.7418 0.9043 1.0475 1.2166

4 0.5580 0.8164 0.9744 1.1139 1.2789

5 0.6130 0.8666 1.0219 1.1590 1.3217

9 6 0.6539 0.9042 1.0575 1.1931 1.3540
7 0.6861 0.9340 1.0859 1.2203 1.3800 i

8 0.7126 0.9586 1.1095 1.2430 1.4016

9 0.7351 0.9796 1.1296 1.2623 1.4199

‘10 0.7546 0.9978 1.1470 1.2791 1.4363

2 0.2997 0.5712 0.7351 0.8783 1.0465

3 0.4509 0.7039 0.8578 0.9933 1.1532

4 0.5296 0.7746 0.9242 1.0560 1.2121

5 0.5818 0.8221 0.9691 1.0988 1.2524

10 6 0.6205 0.8577 1.0028 1.1310 1.2830

7 0.6510 0.8859 1.0297 1.1568 1.3075

, 8 0.6762 0.9092 1.0520 1.1782 1.3279

9 0.6974 0.9291 1.0710 1.1964 1.3453

10 0.7159 0.9463 1.0875 1.2123 1.3607
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Table 11:  Performance characteristics of the means rule R; under the equally
spaced configuration.

P*=090, n=3

k z §v/n
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 4.0 | 5.0
2 1 0.824 0.717 0.584 0.440 0.305 0.192 0.059 0.013
2 0.948 0.975 0.989 0.995 0.998 0.999 1.000 1.000
E(S) 1.772 1.692 1.573 1.436 1.303 1.192 1.058 1.013
E(S*) 0.824 0.717 0.584 0.440 0.305 0.192 0.059 0.013
E(SR) 2.720 2.667 2.562 2.431 2.301 2.191 2.058 2.013
E(P) 0.886 0.846 0.786 0.718 0.651 0.596 0.529 0.506
1 0.754 0.511 0.254 0.088 0.022 0.004 0.000 0.000
3 2 0.876 0.805 0.697 0.562 0.418 0.286 0.101 0.025
3 0.963 0.986 0.995 0.998 0.999 1.000° 1.000 1.000
E(S) 2.592 2.302 1.945 1.648 1.439 1.289 1.101 1.025
E(S*) 1.630 1.316 0.951 0.650 0.440 0.289 0.101 0.025
E(SR) 5.394 5.080 4.631 4.206 3.856 3.574 3.202 3.050
E(P) 0.864 0.767 0.648 0.549 0.480 0.430 0.367 0.342
1 0.661 0.276 0.051 0.004 0.000 0.000 0.000 0.000
4 2 0.799 0.580 0.313 0.118 0.031 0.006 0.000 0.000
3 0.903 0.847 0.752 0.626 0.484 0.344 0.132 0.036
4 0.972 0.990 0.996 0.999 1.000 1.000 1.000 1.000
E(S) 3.335 2.693 2.112 1.747 1.515 1.350 1.132 1.036
E(S*) 2.363 1.703 1.116 0.749 0.516 0.350 0.132 0.036
E(SR) 8.855 7.938 6.917 6.114 5.513 5.043 4.397 4.107
E(P) 0.834 0.673 0.528 0.437 0.379 0.337 0.283 0.259
1 0.547 0.103 0.005 0.000 0.000 0.000 0.000 0.000
2 0.702 0.318 0.065 0.006 0.000 0.000 0.000 0.000
5 3 0.829 0.626 0.356 0.143 0.040 0.008 0.000 0.000
4 0.920 0.872 0.786 0.668 0.529 0.386 0.157 0.045
5 0.978 0.993 0.997 0.999 1.000 1.000 1.000 1.000
E(S) 3.975 2.911 2.208 1.815 1.569 1.394 1.157 1.045
E(S*) 2.998 1.919 1.211 0.816 0.569 0.394 0.157 0.045
E(SR) 13.004 | 11.066 9.330 8.106 7.234 6.568 5.629 5.179
E(P) 0.795 0.582 0.442 0.363 0.314 0.279 0.231 0.209
1 0.053 0.000 0.000 0.000 0. 0. 0. 0.
2 0.114 0.000 0.000 0.000 0.000 0. 0. 0.
3 0.215 0.001 0.000 0.000 0.000 0.000 0. 0.
4 0.354 0.007 0.000 0.000 0.000 0.000 0. 0.
10 5 0.515 0.043 0.000 0.000 0.000 0.000 0.000 0.
6 0.672 0.174 0.010 0.000 0.000 0.000 0.000 0.000
7 0.802 0.441 0.115 0.013 0.001 0.000 0.000 0.000
8 0.896 0.737 0.477 0.223 0.072 0.017 0.000 0.000
9 0.955 0.923 0.861 0.767 0.645 0.504 0.238 0.078
10 0.989 0.997 0.999 1.000 1.000 1.000 1.000 1.000
E S) 5.564 3.321 2.462 2.003 1.718 1.520 1.239 1.078
E(S*) 4.576 2.324 1.463 1.004 0.718 0.520 0.239 0.078
E(SR) 40.208 | 28.535 | 22.418 | 18.778 | 16.386 | 14.667 | 12.147 | 10.705
E(P) 0.556 0.332 0.246 0.200 0.172 0.152 0.124 0.108
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Table 12: Performance characteristics of the means rule R, under the slippage
configuration.

P* =090, n=3
E] s 5/
05 ] 10] 15 20] 25] 30] 406] 50

2 1 0.824 0.717 0.584 0.440 0.305 0.192 0.059 0.013
2 0.948 0.975 0.989 0.995 0.998 0.999 1.000 1.000

E(S) 1.772 1.692 1.573 1.436 1.303 1.192 1.058 1.013
E(S*) 0.824 0.717 0.584 0.440 0.305 0.192 0.059 0.013
E(SR) 2.720 2.667 2.562 2.431 2.301 2.191 2.058 2,013
E(P) 0.886 0.846 0.786 0.718 0.651 0.596 0.529 0.506

1 0.856 0.784 0.681 0.552 0.413 0.283 0.101 0.025
3 2 0.856 0.784 0.681 0.552 0.413 0.283 0.101 0.025
3 0.950 0.977 0.990 0.996 0.999 0.999°| 1.000 1.000

E(S) 2.662 2.545 2.352 2.100 1.825 1.565 1.201 1.050
E(S*) 1.712 1.568 1.362 1.104 0.826 0.566 0.201 0.050
E(SR) 5.418 5.283 5.013 4.644 4.235 3.847 3.302 3.076

E(P) 0.887 0.848 0.784 0.700 0.608 0.522 0.400 0.350

1 0.869 0.813 0.726 0.610 0.475 0.339 0.132 0.036

4 2 0.869 0.813 0.726 0.610 0.475 0.339 0.132 0.036

3 0.869 0.813 0.726 0.610 0.475 0.339 0.132 0.036
4 0.951 0.978 0.991 0.996 0.999 1.000 1.000 1.000

E(S) 3.557 3.416 3.169 2.826 2.423 2.018 1.395 1.107
E(S*) 2.606 2.438 2.179 1.830 1.425 1.018 0.395 0.107
E(SR) 9.014 8.787 8.320 7.645 6.844 6.034 4.789 4.213
E(P) 0.889 0.854 0.792 0.707 0.606 0.504 0.349 0.277

1 0.875 0.829 0.754 0.647 0.517 0.380 0.156 0.045
2 0.875 0.829 0.754 0.647 0.517 0.380 0.156 0.045.
5 3 0.875 0.829 0.754 0.647 0.517 0.380 0.156 0.045
4 0.875 0.829 0.754 0.647 0.517 0.380 0.156 0.045
5 0.951 0.978 0.991 0.996 0.999 1.000 1.000 1.000

E(S) 4.453 4.295 4.006 3.585 3.067 2.519 1.624 1.178
3.502 3.317 3.015 2.588 2.068 1.520 0.624 0.178
13.510 | 13.183 | 12.492 | 11.453 | 10.163 8.797 6.561 5.446
0.891 0.859 0.801 0.717 0.613 0.504 0.325 0.236

[z 28
CEN

1 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

2 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

3 0.888 | 0.862 0.813 0.734 0.624 0.492 0.236 0.078

4 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

10 5 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078
6 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

7 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

8 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

9 0.888 0.862 0.813 0.734 0.624 0.492 0.236 0.078

10 0.952 0.979 0.992 0.997 0.999 1.000 1.000 1.000
E(S) 8.943 8.735 8.308 7.602 6.613 5.428 3.121 1.702
E(S*) 7.991 7.756 7.317 6.605 5.614 4.429 2.121 0.702
E(SR) 49.476 | 48.572 | 46.498 | 42.992 | 38.059 { 32.140 | 20.603 13.509
E(P) 0.894 0.874 0.831 0.760 0.661 0.543 0.312 0.170
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Table 13: Performance characteristics of the medians rule R, under the equally
spaced configuration.

P* =090, n=3
k 3 5v/n
05] 10] 15[ 20] 25] B30] 40] 50
2 1 0.926 0.852 0.734 0.572 0.392 0.232 0.055 0.009
2 0.985 0.994 0.997 0.999 1.000 1.000 1.000 1.000

E(S) 1.910 1.846 1.731 1.571 1.391 1.232 1.055 1.009
E(5%) 0.926 0.852 0.734 0.572 0.392 0.232 0.055 0.009
E(SR) 2.895 2.839 2.728 2.570 2.391 2.232 2.055 2.009

E(P) 0.955 0.923 0.866 0.785 0.696 0.616 0.527 0.504

1 0.935 0.780 0.462 0.155 | 0.029 0.003 0.000 0.000
3 2 0.975 0.951 0.901 0.810 0.673 0.499 0.181 0.039
3 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000

E(S) 2,905 2.729 2.362 1.965 1.701 1.503"| 1.181 1.039
E(S*) 1.910 1.731 1.363 0.965 0.701 0.503 0.181 0.039
E(SR) 5.870 5.677 5.261 4.775 4.374 4.002 3.362 3.078
E(P) 0.968 0.910 0.787 0.655 0.567 0.501 0.394 0.346

1 0.921 0.586 0.114 0.005 0.000 0.000 0.000 0.000

4 2 0.966 0.874 0.626 0.279 0.068 | 0.010 0.000 0.000

3 0.988 0.976 0.947 0.892 0.795 0.652 0.302 0.080
4 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000

E(S) 3.872 3.435 2.688 2.175 1.863 1.662 1.302 1.080
E(S*) 2.874 2.436 1.688 1.175 0.863 0.662 0.302 0.080
E(SR) 9.805 9.258 8.208 7.236 6.521 5.975 4.906 4.240
E(P) 0.968 0.859 0.672 0.544 0.466 0.415 0.326 0.270

1 0.889 0.300 0.006 0.000 0.000 0.000 0.000 0.000
2 0.949 0.694 0.188 0.011 0.000 0.000 0.000 0.000
5 3 0.979 0.918 0.724 0.383 0.113 0.019 0.000 0.000
4 0.993 0.985 0.967 0.929 0.858 0.742 0.403 0.125
5 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E(S) 4.808 3.896 2.884 2.322 1.971 1.762 1.403 1.125

E(S*) 3.810 2.896 1.884 1.322 0.971 0.762 0.403 0.125

E(SR) 14.687 | 13.379 | 11.420 9.885 8.771 8.028 6.611 5.501

E(P) 0.962 0.779 0.577 0.464 | 0.394 0.352 0.281 0.225
1 0.286 0.000 0.000 0. 0. 0. 0. 0. -

2 0.510 0.000 0.000 0.000 0. 0. 0. 0.

3 0.711 0.001 0.000 0.000 0.000 0. 0. 0.

4 0.849 0.026 0.000 0.000 0.000 0.000 0. 0.

10 5 0.928 0.226 0.000 0.000 0.000 0.000 0.000 0.

6 0.968 0.621 0.050 0.000 0.000 0.000 0.000 0.000

7 0.987 0.888 0.472 0.068 0.002 0.000 0.000 0.000

8 0.995 0.977 0.899 0.673 0.324 0.087 0.002 0.000

9 0.998 0.996 0.991 0.980 0.955 0.905 0.683 0.333

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E(S) 8.232 4.735 3.413 2.721 2.281 1.992 1.684 1.333

E(S*) 7.232 3.735 2.413 1.721 1.281 0.992 0.684 0.333

E(SR) 51.129 [ 37.959 | 29.720 | 24.682 | 21.198 | 18.844 | 16.157 | 12.999

E(P) 0.823 0.473 0.341 0.272 0.228 0.199 0.168 0.133
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Table 14: Performance characteristics of the medians rule R, under the slippage
configuration.

P*=0.90, n=3
k % 5v/n

0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 ] 4.0 | 5.0

2 1 0.968 0.939 0.890 0.817 0.717 0.594 0.331 0.136

2 0.992 0.997 0.999 0.999 1.000 1.000 1.000 1.000

E(S) 1.960 1.935 1.889 1.816 1.716 1.594 1.331 1.136

E(S*) 0.968 0.939 0.890 0.817 0.717 0.594 0.331 0.136

E(SR) 2.953 2.932 2.887 2.816 2.716 2.594 2.331 2.136

E(P) 0.980 0.968 0.944 0.908 0.858 0.797 0.666 0.568

1 0.986 0.976 0.955 0.920 0.862 0.779 0.540 0.284

3 2 0.986 0.976 0.955 0.920 0.862 0.779 0.540 0.284

3 0.996 0.998 0.999 1.000 1.000 1.000 { 1.000 1.000

E(S) 2.968 2.949 2.910 2.839 2.725 2.557 2.080 1.567

E(S*) 1.972 1.951 1.911 1.840 1.725 1.557 1.080 0.567

E(SR) 5.946 5.921 5.864 5.759 5.587 5.336 4.620 3.851

E(P) 0.989 0.983 0.970 0.948 0.908 0.852 0.693 0.522

1 0.991 0.985 0.974 0.952 0.914 0.853 0.654 0.390

4 2 0.991 0.985 0.974 0.952 0.914 0.853 0.653 0.390

3 0.991 0.985 0.974 0.952 0.914 0.853 0.653 0.390

4 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000

E S) 3.971 3.955 3.921 3.856 3.742 3.560 2.960 2.169

E(S*) 2.973 2.956 2.922 2.856 2.742 2.560 1.960 1.169

E(SR) 9.936 9.908 9.841 9.712 9.484 9.120 7.918 6.338

E(P) 0.993 0.989 0.980 0.964 0.935 0.890 0.740 0.542

1 0.993 0.990 0.982 0.967 0.939 0.893 0.723 0.468

2 0.993 0.990 0.982 0.967 0.939 0.893 0.723 0.468

5 3 0.993 0.990 0.982 0.967 0.939 0.893 0.723 0.468

4 0.993 0.990 0.982 0.967 0.939 0.893 0.723 0.468

5 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000

E(S) 4.971 4.958 4.928 4.868 4.757 4.571 3.892 2.873

E(S*) 3.974 3.959 3.928 3.868 3.757 3.571 2.892 1.873

E(SR) 14.923 | 14.893 | 14.819 | 14.669 | 14.393 | 13.927 | 12.229 9.682

E(P) 0.994 0.992 0.986 0.974 0.951 0.914 0.778 0.575
1 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676 -

2 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

3 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

4 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

10 5 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

6 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

7 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

8 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

9 0.997 0.996 0.994 0.989 0.978 0.959 0.868 0.676

10 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E(S) 9.971 9.963 9.942 9.897 9.804 9.627 8.809 7.088

E(S*) 8.972 8.963 8.943 8.897 8.804 8.627 7.809 6.088

E(SR) 54.851 | 54.812 | 54.711 | 54.485 | 54.021 | 53.136 | 49.045 | 40.440

E(P) 0.997 0.996 0.994 0.990 0.980 0.963 0.881 0.709
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Table 15: Comparison of the rule R; to R2: Equally spaced configuration.

P*=090, n=3, k=14

§/n=1.5 §v/n = 3.0
Perf.Char. R R, Ri/R: Ry R, Ri/R;
P(CS) 0.996 | 1.000 0.996 1.000 | 1.000 1.000
E(S) 2:112 | 2.688 0.792 1.350 | 1.662 0.812
E(S*) 1.116 | 1.688 0.661 0.350 | 0.662 0.529
E(SR) 6.917 | 8.208 0.843 5.043 | 5.975 0.844
E(P) 0.528 | 0.672 0.786 0.337 | 0.415 0.812

P*=090, n=35, k=

§y/n=1.5 §v/n=3.0
Perf.Char. B R, Ri/R; B Ry Ri/R;
P(CS) 0.997 | 1.000 0.997 1.000 | 1.000 1.000
E(S) 2.114 | 3.371 0.627 1.352 | 2.000 0.676
E(s*) 1117 | 2.371 0.471 0.352 | 1.000 0.352
E(SR) 6.920 | 9.258 0.747 5.049 | 6.907 0.731
E(P) 0.528 | 0.843 0.626 0.338 | 0.500 0.676

P*=095, n=3, k=4

§v/n=1.5 §v/n = 3.0
Perf.Char. Ry Rz Ri/R; R Ry Ri1 /Ry
P(CS) 0.999 | 1.000 0.999 1.000 | 1.000 1.000
E(S) 2.405 | 3.276 0.734 1.469 | 1.951 0.767
E(S*) 1.406 | 2.276 0.618 0.496 | 0.951 0.522
E(SR) 7.552 | 9.129 0.827 5.474 | 6.784 0.807

E(P) 0.601 | 0.819 0.734 0.374 | 0.488 0.766 .
P*=095 n=5, k=4

§vV/n=1.5 §v/mn=3.0
Perf.Char. R Ry Ri/R, B R, Ri/R;
P(CS) 0.999 | 1.000 0.999 1.000 | 1.000 1.000
E(S) 2.400 | 3.836 0.626 1.494 | 2.396 0.624
E(S*) 1.401 | 2.836 0.494 0.494 | 1.396 0.354
E(SR) 7.540 | 9.821 0.768 5.467 | 7.778 0.703
E(P) 0.600 | 0.959 0.626 0.373 | 0.599 0.623
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Table 16: Comparison of the rule R; to R,: Slippage configuration.

P*=090, n=3, k=4

5vV/m=1.5 §v/n = 3.0
Perf.Char. R R, Ri/R; Ry R, Ry /R,
P(CS) 0.991 | 1.000 0.991 1.000 | 1.000 1.000
E(S) 3.169 | 3.921 0.808 2.018 | 3.560 0.567
E(S*) 2.179 | 2.922 0.746 1.018 | 2.560 0.398
E(SR) 8.320 | 9.841 0.845 6.034 | 9.120 0.662
E(P) 0.792 | 0.980 0.808 0.504 | 0.890 0.566
P*=090, n=5, k=4
§v/m=15 6v/n = 3.0
Perf.Char. R Ry Ry/R; R Ry R /R,
P(CS) 0.991 | 1.000 0.991 1.000 | 1.000 1.000
E(S) 3.167 | 3.999 0.792 2.025 | 3.917 0.517
E(s*) 2.176 | 2.992 0.727 1.025 | 2.917 0.351
E(SR) 8.317 | 9.983 0.833 6.048 | 9.834 0.615
E(P) 0.792 | 0.998 0.794 0.506 | 0.979 0.517
P*=095, n=3, k=4
§v/n=1.5 5/ = 3.0
Perf.Char. Ry Ry Ri1/R Ry Ry Ri/Ry
P(CS) 0.996 | 1.000 0.996 1.000 | 1.000 1.000
E(S) 3.496 | 3.981 0.878 2.435 | 3.852 0.632
E(S*) 2.500 | 2.981 0.839 1.435 | 2.852 0.501
E(SR) 8.985 | 9.962 0.902 6.869 | 9.703 0.689
E(P) 0.874 | 0.995 0.878 0.609 | 0.963 0.632
P*=095 n=5 k=4
§/n=15 §/n = 3.0
Perf.Char. Ry Ry Ry /R, Ry R, Ri/R,
P(CS) 0.997 | 1.000 0.997 1.000 | 1.000 1.000
E(S) 3.489 | 3.999 0.827 2.429 | 3.987 0.609
E(s*) 2.492 | 2.999 0.831 1.429 | 2.987 0.478
E(SR) 8.971 | 9.998 0.897 6.858 | 9.974 0.688
E(P) 0.872 | 1.000 0.872 0.607 | 0.997 0.609
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3 AN ELIMINATION TYPE TWO-STAGE PRO-
CEDURE FOR SELECTING THE POPULA-
TION WITH THE LARGEST MEAN FROM
k LOGISTIC POPULATIONS

3.1 Introduction

It is unrealistic to assume that we always have k populations with a common known
variance. When the variances are unknown, it is not possible to predetermine the sam-
ple size for a single-stage procedure since the standard errors of the sample means are
unknown. (See, for example, Dudewicz (1971)). Bechhofer, Dunnett and Sobel (1954)
have considered a two-stage non-elimination type procedure in which the observations
in the first stage are only used to obtain an estimate of the common unknown vari-
ance. Gupta and Kim (1984) considered an elimination type two-stage procedure for
the case of common unknown variance and they showed that their procedure performs
much better than the non-elimination type procedure of Bechhofer, Dunnett and Sobel
(1954).

For selecting the population having the largest mean from normal populations with
equal known variance %, Cohen (1959), Alam (1970) and Tamhane and Bechhofer
(1977, 1979) have all studied two-stage elimination type procedures, in which they
used Gupta’s (1956, 1965) subset selection procedure in the first stage to sc;‘een out
non-contending populations and Bechhofer’s (1954) indifference zone approach to all
populations retained in the second stage.

Tamhane and Bechhofer (1977) studied in depth a two-stage elimination type pro-
cedure (P,) for selecting the largest normal mean when the common variance is known.
In order to determine a set of constants necessary to implement P, , they proposed a
criterion of minimizing the maximum over the entire parameter space of the expected
total sample size required by P, subject to the procedure’s guaranteeing a specified

probability of a correct selection. As a consequence, P, based on this unrestricted
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minimax design criterion possesses the highly desirable property that the expected to-
tal sample size required by P, is always less than or equal to the total sample size
required by the best competing single-stage procedure of Bechhofer (1954), regardless
of the true configuration of the population means. Due to the difficulties of determin-
ing the LFC of the population means for k¥ > 3, and of evaluating the probability of
a correct selection associated with P, when the population means are in that configu-
ration, they adopted a lower bound to the probability of a correct selection of 'P;' and
obtained a set of constants which provides a conservative solution to the problem.

In this chapter we consider an elimination type two-stage procedure for selecting
the logistic population with the largest population mean when the populations have a
common known variance. ’

We propose a two-stage elimination type procedure P; and a non-linear optimiza-
tion problem by using a minimax criterion to find a set of constants needed to imple-
ment P,. We derive lower bounds on the probability of a correct selection and the
infimum over the preference zone of the lower bounds. We determine the supremum
of the expected total sample size needed for P, over the whole parameter space. We
provide tables of constants to implement P, and of the efficiency of P, relative to the
single-stage procedure P; considered in the previous chapter for the two special cases

of the equally spaced and slippage configurations.

3.2 Preliminaries

Let m;, 2 =1,...,k, denote k logistic populations with unknown means p; and a com-

mon known variance o%, and let
Q={f=(p1, -, p);—00 < pi <oo,t=1,...,k}
be the parameter space. Denote the ranked values of the pu; by
pry <0 < U

and let
8i5 = Py — B3
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We assume that the experimenter has no prior knowledge concerning the pairing of the .
7; with the pp, e =1,...,k, 3 =1,...,k. Let 7(; denote the population associated
with pp;.

The goal of the experimenter is to select the ‘best’ population which is defined as
the population with the largest mean. This event is referred to as a correct selection
(CS). The experimenter restricts consideration to procedures (P) which guarantee the

basic probability requirement
PACSIP)> P*, Vi€ Q), (45)
where § > 0 and 1/k < P* < 1 are specified prior to the start of experimentation and

(8) = {i € Qf (ppey — pie—1)) 2 6}

which is defined as the preference zone for a correct selection.

Here we propose an elimination type two-stage procedure P,="P,(n1,nq, h) which
depends on non-negative integers n, ns and a real constant h > 0 which are determined
prior to the start of experimentation. The constants (nq,n3, h) depend on k, § and P*
and they are chosen so that P, guarantees the basic probability requirement (45) and
possess a certain minimax property.

Procedure Py;

Stage 1: Take n; independent observations

Xz(Jl), j=1,...,n1,

from each 7;, i = 1,...,k, and compute the £ sample means
—(1) 1 .
EX}J), i=1,...,k
nq j=1

Let 7{,:]) = maxi<;<k 75-1). Determine the subset I of {1,..., %k} where

(1 1
1= (X > XY - ko/ymi},
and let 77 denote the associated subset of {my,..., 7}
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1. If w1 consists of one population, stop sampling and assert that the population

associated with 7(-%,:]) is best.

2. If 71 consists of more than one population, proceed to the second stage.

Stage 2: Take n, additional independent observations ij), 7 =1,...,n,, from

each population in 77, and compute the cumulative sample means

X = G+ 5

n1 + ne
_ ! X0 4 5, X0
= 7y + g (n1 + ng X )
for z € I, where
- "ZXQ)-
(%) j=1 4

Assert that the population associated with max;c1 X; is the best.

Remark 3.1 Ifh = 0 the two-stage procedure P, reduces to the single-stage procedure
P1 which was considered in Section 2.3 with single-stage sample size n = ny per popu-
lation. Also the rule determining I in the first stage is of the type of the subset selection

procedure considered in Section 2./.

There is an infinite number of combinations of (ni,ns, k) for given k, § and P*,
which will exactly guarantee the basic probability requirement given by (45), and
different design criteria lead to different choices. We will consider one of these criteria.

Let S’ denote the cardinality of the set I in stage one and let

0, ifS'=1 »
S = (46)
S i S > 1.

Then the total sample size required by P,, T'SS say, is

TSS = kn1 + STLQ.

Let Ez[TSS|P,] denote the expected total sample size for P, under ji.
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We adopt the following unrestricted minimax criterion to make a choice of (ny, n, h)
as well as to have the total sample size T'SS small. For given k and specified § and
P*, choose (n1,ns, k) to

minimize sup Ez[TSS|P.)
subject to :eig&) P;[CS|P,] > P, (47)
where (n1,n,) are non-negative integers and A > 0.

For any population whose sample mean has the MLR property, Bhandari and
Chaudhuri (1987) proved that the least favorable configuration (LFC) of the two-
stage population means problem is a slippage configuration. However, the problem of
evaluating the exact probability of a correct selection in the LFC associated with P,

is complicated and still remains to be solved. Here we will consider lower bounds for

P3[CS|P,] and construct conservative two-stage procedures.

3.3 Lower bounds for the probability of a correct selection

for 732

In this section we derive lower bounds for P;[CS|P,]. These lower bounds will prove
to be particularly useful since we will prove that they achieve their infimum over £(§)
at p(6) which has components

B=pp = = ppey = pp — 6, 620,

This result will permit us to construct a conservative two-stage procedure which guar-
antees the basic probability requirement (45).

The next theorem gives one of these lower bounds for Pz[C S|P,
Theorem 3.1 For any i € Q we have
Pz[CS|P)

oo k=1

2 II Fu (& + Skiy/nafo + h)dFy, (o)
~00 1
oo k-1
+/ HFn1+n2(w+5kiVn1+n2 o )an1+n2($) -1, (48)
0 =1
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where Fy(z) is the cdf of the standardized sample means of size n from L(u,a?).

Proof
For any i € @ we have
Pz[CS|P,]
Pg[:f&; Z YE:)) - ha/\/nl ,i # k‘, Y(k) 2 maX;el -)?(z)]

> PaX) 2 XY — ho/vmr, Xy = X, Vi # 4]
> PulXE) 2 X~ ho/y/mr, Vit K]

+Pﬁ[y(k) > 7(1'), Vi# k] -1, (49)

since P(ANB) > P(A)+ P(B)—1 for any two events A and B. Then a straightforward

computation leads to the conclusion of this theorem. 0O

Corollary 3.1 For all ji € (6) we have

ﬁég&) Pz[CS|P,] > (50)

| (a4 6ymmfo + R} 1R, (2)
4 [ Prstoa(@ 4 VAT F 720 ) Py (@) — 1. (51)

Proof
The proof follows immediately on noting that the right hand side of (48) is non-

decreasing in each §; fori=1,...,k—1. O

Remark 3.2 Since the right hand side of (51) is strictly increasing in each of ny,
n1 + ny and h and tends to one as ny or, ny and h tend to 0o, we see that the basic
probability requirement (45) can be guaranteed if one (or more) of these constants is

chosen sufficiently large.

Remark 3.3 If we let h — co on the right hand side of (48) we obtain

o k=1
/ H Fn1+n2(~"3 + Skiv/ny + nafo )an1+n2 (37)
= =1
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which is an expression for Pz[C'S|P1] where Py uses a common single-stage sample size
n = n1 + ng per population. Thus Py is a special case of P, based on a conservative

lower bound and hence Ez[T'SS|P;] < kn for all I € Q.

Remark 3.4 The distribution of the mean of samples from logz'sticv population has the
monotone likelihood ratio (MLR) property with respect to the location parameter (Goel
(1975)) and hence the distributions of the 751) and 7&2) are stochastically increasing
(S1) families in piy 1 =1,...,k.

Remark 3.5 The cumulative sample means

Yoo M) " _x
ni + na ny + ng

are strictly increasing in each ng), 7=121=1,...,k.

We can now find another lower bound to the Pz[CS|P;] given in the following
theorem by noting the facts mentioned in Remark 3.4 and Remark 3.5. This lower
bound can be shown to be uniformly superior to the one given in Theorem 3.1. It is

also straightforward to determine the LFC of the population means relative to this new

lower bound.

Theorem 3.2 For any ii € Q we have

qonf o FalCS1Pa

> 7 {Fu(e+ b/mfo + R dE ()

S A Puin(a + S F a0 )} A e (0), (52)

where F,(z) is the cdf of the standardized sample mean of size n from L(u,0?).

Proof
Let F(.|p:i) and G(.|p;) denote the cdf’s of the 751) and X; respectively and let

H(.,.|ps:) denote the joint cdf of the X\ and X;. Then F(.|u:), G(.|u:) and H(.,.|u:)
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are non-increasing in p;, 1 = 1,..., k, from Remark 3.4 and Remark 3.5. Without loss

of generality we may assume that pq < --- < pg. Then for all 7 € Q(9),

PR[CS| P
= P;;[YSC; > maxXi <<k XE; — hO'/\ /M1, Y(k) = ImaX;el Y(j)]
> Pﬁ[Yg; > _Xg)) — hd/,/'nl,Y(k) > 7(]'), Vi=1,...,k—1]

0o k—1

/_0; —oo 1:[1 H(z + ho/[/ny, ylui)dH (z, y|ps)

[} o0 k-1
> / / I1 H(z + ho/\/7a, ylux — 6)dH (z, y| )
== |

= B [H"HX(E + ho/y/mr, Xiplux - 6},
where the expectation is with respect to the joint distribution of ')_(:8; and Y(k). Hence

inf, PACS|P)) > inf B, [H* (X + ho//mr, o lux - 63]

FEQ(5)

and it is enough to show that for all 7 € Q(4),

B [H* X + ho//rz, X ylus — 6}]
> B, [F*Y(XG) + ho/s/aalus — 8)|Ew (G (Xl k — 6)].

By Remark 3.5, for all a, b and p,

. _
PAX) < 0, X < b}
(1) ) o mytng ng (2
= PuAX(j) <o, X(j < mie(b— 2m2-X )}

1 1 ny+no ng (2 2
= EJ[PAX() < o, X(j) < mim(p— X

- ny+n2
1 2
> B[P{X() < alX(3)
() _ gt ng AN 5H2)
Pu{ X (G < BE2(b— X3 X (5}

1 —
P{X() < a}P{X(;) < b}

and hence
Ey, [Hk‘l{fﬁiﬁ + ha [\/n1, X (o) ux — 6}]
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> B, [F*Y{X) + ho/\/mtlu - 6}
G X s — 8}

> E,[F*Y{X4) + ho/\/arlu: — 8}]
By, [Gk'l{Y(k)I#k — 6}]

by the Chebyshev inequality (Hardy, Littlewood and Pélya (1934)), since
F{X) + ho//Rilu - 8}

and
G{X (1)l — 6}
X, o

are non-decreasing in

Remark 3.6 If we let

a= [ {Fu(e+8y/mfo + )} (2)

and
b= [_ {Fn1+n2($+5\/n1+n2 4 )}k_lan1+n2($) s

then (51) states that

: ’ S _
[ié?l{&) Pz[CS|Py) > a+b—-1

i“l F-* ,; pzl > ab-

By noting that a + b— 1 < ab for all a,b € (0,1), the lower bound (52) is uniformly
superior to the lower bound (51), and hence we will use the lower bound (52) henceforth.

3.4 Expected total sample size for P,

In order to solve the optimization problem (47) we first find an analytical expression for
the Ez[T'SS|P2] and then determine the supzeq Ez[T'SS|P:] and the sets of u;-values

at which this supremum occurs.
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Theorem 3.3 For any ji € Q we have
koo K
EA[TSS|P)) = kny+ny / {T] Fus(z + 6i5/Ar/c +B)
=1V "X j=1
i

— 1;[ Fo,(z + 6ij5/mi/o — R)}dF, (), - (53)

where F,(z) is the cdf of the standardized sample means of size n from L(u,o?).

Proof
For any i € Q we have

Ez[TSS|Py) = kny + na Eg[S| Py,
where S is defined as in (46). Now
Ep[S|Py] = Eg[S'|Py] - PalS' = 1|Py]

= ZP _8)) _((;))——ha/\/ ny, V5 #1]

=1
k
1
— S Pa[XY) 2 X3 + ho/ /A, Vi £ (54)
=1
and hence Theorem 3.3 follows immediately. O

The following theorem summarizes the result concerning the supremum of the

Ex[TSS|P,] for i € Q.

Theorem 3.4 For any ji € Q, fived k and (ny,n, k) we have

sup Ez[T'SS| P,
EeQ
= kmtna [ {Fu(e+ WP = {Fuo— WY dF () (55)
which occurs when ppy = --- = pp;, where Fy(z) is the cdf of the standardized sample

means of size n from L(u,o?).

Proof

Noting Remark 3.4 and Remark 3.5 we can use the results of Gupta (1965) which
show that Ez[S’|P,] achieves its supremum for i € Q when By = -+ = px- By the
similar argument Fz[S” = 1|P,] achieves its infimum when pp) = --- = pix)- Hence the

result follows immediately from Theorem 3.3. O
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3.5 Optimization problem yielding conservative solutions

In this section we consider the optimization problem (47) which one must solve in
order to determine the constants (ni,ns, ) which are necessary to implement P;. As
we noted earlier, the problem of evaluating the exact probability of a correct selec-
tion in the LFC associated with P, is very complicated. Thus we replace the exact
infzeq(s)Pz[CS|P:] by the conservative lower bound given by the right hand side of
(52), and consider the following optimization problem.

For the given k, 6 and P* choose the constants (n1,n2, k) to

minimize  kny + ng /_ Z[{Fm (@ + )Yt — {Fy (2 — B)}*1)dFy, ()
subject to /::){Fn1 (z + 6\/mifo + R} 1dF, () -

A Putualo + 6 F a0 )P A g (2) > PY,(56)

where n; and n, are non-negative integers and h > 0.
Let us denote by (i, iz, ?z) the solution to the optimization problem (56). Then

we can use the approximate design constants
ny = [ +1], ng=[Ra+1], b =h,

where [z] denotes the greatest integer which is less than z, to implement Ps.

Table 17, Table 18, Table 19 and Table 20 contain the constants (7iy, 712, iz) necessary
to approximate (n1,n2, k) and the values of the expect.ed total sample size (ETSS) for
k= 2,3,4,5,10,15, P* = 0.75,0.90,0.95,0.99 and §/c = 0.1,0.5,1.0,2.0,4.0. Al
computations were carried out in double-precision arithmetic on a Vax-11/780. The
SUMT (Sequential Unconstrained Minimization Techniques: Fiacco and McCormick
(1968)) algorithm is used to solve the non-linear optimization problem. A source

program in Fortran for the SUMT algorithm is given by Kuester and Mize (1973).
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3.6 The performance of the two-stage procedure relative to

the single-stage procedure

As a measure of efficiency of the two-stage procedure P, relative to that of the single-
stage procedure P; when both guarantee the same basic probability requirement (45),
we consider the ratio termed relative efficiency (RE) Ez[T'SS|P.]/kh, where #, is
the estimate of the minimum sample size n, needed in the single-stage procedure P;.
Clearly RE depends on [, § and P*. Values of the RE less than unity favor P, over
P1.

Now the RFE is given by

1 ko0 K — A
RE = ——(kin+mY. [ {I] Fa(t+ 8o/ +b)
s =1V~ j=1
J#
k
=1L Bt 4 8infafo = W)}, (1) 57)
T

where 71, is the solution of

/_ O:O{Fns(t + (/73 /0)6) e dF iy (t) = P, (58)

We consider the relative efficiency for two special cases, namely, the equally spaced
and the slippage configurations. First, for the equally spaced configuration, we assume
that the unknown means of the k populations are p, p+6,..., p+(k—1)é which have
ranks 1, 2,...,k, respectively. Let RE,, denote the relative efficiency with réépect to
the above configuration. Then, since 6;; = pp — pp = (¢ — J)6,

1 .. . E o —.. . ,
REe = o—lhin+a) [ {I] Fau(t+ /(i = )6/ + )
s =1V "X j=1

T
k
— I Faut + /i — )80 — B)}dFa (1)) (59)
7
Next, for the slippage configuration, we assume that the unknown means of the k

populations are pp;) = g, j=1,...,k—1, and pp = p+ 6, § > 0. Then the relative
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efficiency with respect to the above configuration, RE,,, is given by

RE,, =

k:;ls (k71 + A {(k — 1)/°° (Fa, (t + ) — Fy, (t — h))*2

(Faa(t —\/716/0 + h) — Fa (¢ — \/—5/0— — h))dFs, ()
t [ (Faut 4 i/ + ) = Fa ¢+ \fin8 /o — h)1aFs, ()] (60)
Table 21 and Table 22 give the values of the RE,, and RE;, for given values of

P* =0.75,0.90,0.95,0.99, k£ = 2,3,4,5,10,15 and §/0 = 0.1,0.5, 1.0, 2.0, 4.0.
For any values of P*, k and ¢, RE.,; <1 and RE,, <1 and hence the two-stage

procedure is more efficient than the single-stage procedure in ‘terms of the expected
total sample sizes. Furthermore, the effectiveness of P, appears to be increasing in k

since the values of RE,, and RE;, are decreasing in k.

98



Table 17: Constants to implement the two-stage procedure P, for selecting the largest

logistic population: P* = 0.75.

ksl a0 ] 3 ETSS

0.10 || 0.4548e402 | 0.4539e+02 | 0.5530e+01 | 0.181720e+403
0.50 || 0.2620e+-01 | 0.8929e+400 | 0.7323e+01 | 0.702648e+01
2 1.00 ]| 0.3121e400 | 0.4983e+00 | 0.7097e+401 | 0.162056e+01
2.00 0.9556e-01 | 0.1070e4-00 | 0.6698e+01 | 0.405153e+-00
4.00 0.2834e-01 0.2232¢-01 | 0.6127e+401 | 0.101300e4-00
0.10 || 0.1018e4-03 | 0.1044e+03 | 0.3688¢+01 | 0.615938e+03
0.50 || 0.4778e401 | 0.3340e+01 | 0.4516e+01 | 0.243344e+02
3 | 1.00 || 0.8971e400 | 0.1050e+01 | 0.7309e401 | 0.584085e+401
2.00 || 0.1876e+00 | 0.2774e+00 | 0.6606e+01 | 0.139489e+01
4.00 0.8039¢e-01 0.3586¢-01 0.6112e4-01 | 0.348738e+00
0.10 || 0.1392e4-03 | 0.1515e¢4+03 | 0.2751e4+01 | 0.112241e+04
0.50 || 0.5900e+01 | 0.5554e+01 | 0.2947e+01 | 0.447121e+02
4 | 1.00 || 0.1711e+01 | 0.1037e+01 | 0.4159e+01 | 0.109639¢+02
2.00 } 0.3255e4-00 | 0.3270e+00 | 0.5857e+-01 | 0.260899e+01
4.00 0.8061e-01 0.8252¢-01 0.5737e+401 | 0.652252e+00
0.10 || 0.1631e+03 | 0.2013e403 | 0.2278e+01 | 0.166485e+404
0.50 || 0.6766e+01 | 0.7657e+01 | 0.2341e+01 | 0.666234e+02
5 1.00 || 0.1826e+4-01 | 0.1630e+01 | 0.2746e+01 | 0.165961e+02
2.00 # 0.3864e+00 | 0.4182e+400 | 0.4050e4-01 | 0.399414e+01
4.00 0.9599¢-01 | 0.1051e400 | 0.4087e+01 | 0.998538e+00
0.10 || 0.2357e403 | 0.4304e+03 | 0.1494e+01 | 0.451824e+04 -
0.50 || 0.9587e+01 | 0.1738e+4-02 | 0.1468e+401 | 0.181456e+403
10 | 1.00 li 0.2504e4-01 | 0.4455e+401 | 0.1398¢+01 | 0.458878e+02
2.00 || 0.6367e4-00 | 0.1178e+4+01 | 0.1361e+01 | 0.117515e+02
4.00 || 0.1582¢+00 | 0.2758e+00 | 0.1470e+01 | 0.295260e401
0.10 || 0.2714e+4-03 | 0.5855e+03 | 0.1369e+01 | 0.744887e+04
0.50 §f 0.1100e+02 | 0.2372e+402 | 0.1352e+01 | 0.299197e+03
15 | 1.00 || 0.2858e401 | 0.6119e+401 | 0.1308e+01 | 0.757369e402
2.00 || 0.7466e4+-00 | 0.1668e+01 | 0.1255e+01 | 0.195906e4-02
4.00 jf 0.1906e+-00 | 0.4032e+00 | 0.1313e+01 | 0.501004e+01
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Table 18: Constants to implement the two-stage procedure P, for selecting the largest

logistic population: P* = 0.90.

P* = 0.90
koo | wm ] a h ETSS

0.10 §| 0.1668e+03 | 0.1728e+4-03 | 0.2446e401 | 0.650194e+03
0.50 || 0.7013e4-01 | 0.6404e+401 | 0.2591e+401 | 0.259726e+02
2 1.00 || 0.1932e+401 | 0.1311e401 | 0.3369¢+01 | 0.643201e4-01
2.00 || 0.4011e4-00 | 0.3724e4+00 | 0.5331e+01 | 0.154620e+01
4.00 || 0.1044e4+00 | 0.8907e-01 0.5026e+01 | 0.386564e+4-00
0.10 J{ 0.2745¢4-03 | 0.2513e4-03 | 0.2017e4-01 | 0.146152e+04
0.50 || 0.1126e4-02 | 0.9634e+01 | 0.2071e+401 | 0.585665e402
3 1.00 || 0.2971e+401 | 0.2135e+401 | 0.2332¢+01 | 0.146860e+02
2.00 || 0.6894e+4-00 | 0.5189e+4-00 | 0.5004e4-01 | 0.362197e+01
4.00 {| 0.1693e400 | 0.1310e4-00 | 0.4955e+401 | 0.900049e+00
0.10 f{{ 0.3298¢+403 | 0.3318e4-03 | 0.1713e401 | 0.229940e+04
0.50 || 0.1340e+02 | 0.1300e402 | 0.1728e+01 | 0.922982¢+402
4 | 1.00 || 0.3489e4+01 | 0.3048e+01 | 0.1796e+01 | 0.232917e+02
2.00 }| 0.8374e+400 | 0.7008e+4-00 | 0.2643e+401 | 0.592662e+01
4.00 |} 0.2090e4-00 | 0.1704e4-00 | 0.2831e401 | 0.147462e401
0.10 || 0.3664e+03 | 0.4034e+03 | 0.1556e+01 | 0.315013e404
0.50 || 0.1488e+-02 | 0.1595e4-02 | 0.1553e401 | 0.126542e403
5 1.00 || 0.3863e+01 | 0.3858e+401 | 0.1559¢4-01 | 0.320185e+4-02
2.00 || 0.9610e+00 | 0.9217e4-00 | 0.1867e401 | 0.829954e+01
4.00 || 0.2403e400 | 0.2184e4-00 | 0.2071e401 | 0.208230e+01
0.10 || 0.4549e403 | 0.6465e4-03 | 0.1367e¢4-01 | 0.750100e+04 -
0.50 || 0.1844e+02 | 0.2588e+4-02 | 0.1357e4-01 | 0.301614e+03
10 | 1.00 || 0.4784e4-01 | 0.6497e+01 | 0.1328e4+01 | 0.765662e+02
2.00 || 0.1328e¢401 | 0.1644e4-01 | 0.1257e401 | 0.201395e402
4.00 || 0.3335e4+00 | 0.4262e+400 | 0.1362e+401 | 0.528481e+01
0.10 || 0.4934e403 | 0.7911e4-03 | 0.1366e+4-01 | 0.119540e405
0.50 || 0.1999e402 | 0.3177e4-02 | 0.1358e4-01 | 0.480822e+403
15 | 1.00 || 0.5180e+01 | 0.8022e+401 | 0.1335¢+01 | 0.122187e+03
2.00 || 0.1433e401 | 0.2074e+4-01 | 0.1280e+401 | 0.322460e+02
4.00 || 0.3751e+-00 | 0.5593e+00 | 0.1328e4-01 | 0.865274e+01
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Table 19: Constants to implement the two-stage procedure P, for selecting the largest

logistic population: P* = 0.95.

P* =0.95
klsfo ]l m | # h ETSS
0.10 || 0.3008¢+03 | 0.2827¢403 | 0.178Le+01 | 0.104953c+04
0.50 0.1227e+402 | 0.1098e+402 | 0.1810e+401 | 0.421247e+02
2 1.00 |} 0.3215e401 | 0.2504e4-01 | 0.1958e+401 | 0.106222e+02
2.00 || 0.7631e4+00 | 0.5883e+4-00 | 0.3556e+401 | 0.268233e+-01
4.00 §| 0.1899e+00 | 0.1457e400 | 0.3785e+01 | 0.667647e4-00
0.10 0.4362e403 | 0.3657e+03 | 0.1574e401 | 0.211419e4-04
0.50 || 0.1768¢+02 | 0.1436¢+02 | 0.1589¢+01 | 0.849214e+02
3 1.00 | 0.4579e+01 | 0.3388e+01 | 0.1654e401 | 0.214801e+402
2.00 || 0.1223e+01 | 0.6952e+00 | 0.2269e+401 | 0.553339e+401
4.00 0.2858e+00 | 0.1853e400 | 0.3237e+401 | 0.139794e4-01
0.10 0.4991e+03 | 0.4519e403 | 0.1452e+401 | 0.318364e+04
0.50 0.2023e402 | 0.1787e+02 | 0.1453e4-01 | 0.127954e403
4 1.00 0.5232e+01 | 0.4325e¢+01 | 0.1464e+01 | 0.324315e402
2.00 0.1420e401 | 0.9417e+00 | 0.1675e+01 | 0.846044e+01
4.00 §§ 0.3393e+00 | 0.2423e+400 | 0.2163e+01 | 0.218343e4-01
0.10 0.5381e+03 | 0.5259¢4+03 | 0.1392e+401 | 0.426098e-+04
0.50 0.2182e4-02 | 0.2086e+02 | 0.1388¢+401 | 0.171314e403
5 1.00 0.5649e4-01 | 0.5112e4+01 | 0.1379e+01 | 0.434710e+402
2.00 || 0.1546e+01 | 0.1182¢401 | 0.1430e+01 | 0.114045¢+02
4.00 || 0.3809e+00 | 0.3002e4-00 | 0.1751e4-01 | 0.299628e+01
0.10 0.6279e+03 | 0.7682e+03 | 0.1349e401 | 0.973702e404
0.50 0.2544e+02 | 0.3070e4-02 | 0.1342e401 | 0.391770e+03
10 | 1.00 || 0.6592¢+01 | 0.7667e+01 | 0.1321e+01 | 0.996400+02
2.00 || 0.1827e+01 | 0.1923¢401 | 0.1269¢+01 | 0.263641e+02
4.00 0.4897e+4+00 | 0.5216e+00 | 0.1344e+401 | 0.724983e4-01
0.10 0.6674e+03 | 0.9126e+4+03 | 0.1377e4-01 | 0.153152e4-05
0.50 0.2703e+02 | 0.3659e+02 | 0.1370e+01 | 0.616396e+4-03
15 | 1.00 0.7002e+01 | 0.9178e401 | 0.1354e401 | 0.156917e403
2.00 0.1942e+4+01 | 0.2339¢+01 | 0.1310e401 | 0.416523e4-02
4.00 0.5293e+00 | 0.6784e+00 | 0.1300e4+01 | 0.115109e4-02
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Table 20: Constants to implement the two-stage procedure P, for selecting the largest

logistic population: P* = 0.99.

P* =0.99
k[sfe ] A | h ETSS
0.10 || 0.6892e+03 | 0.5071e+03 | 0.1295e401 | 0.202774e+04
0.50 || 0.2784e+02 | 0.2014e+02 | 0.1300e4+01 | 0.815644e+02
2 1.00 || 0.7189¢+01 | 0.4895e¢+401 | 0.1309e4-01 | 0.207286e+02
2.00 J| 0.1966e+01 | 0.1107e401 | 0.1414e4-01 | 0.546768e+01
4.00 || 0.5013e+00 | 0.2771e+00 | 0.2143e+01 | 0.148773e+01
0.10 || 0.8588e+03 | 0.5804e+03 | 0.1248e+01 | 0.366047e+04
0.50 || 0.3475e+02 | 0.2299¢+02 | 0.1249e+01 | 0.147249e+03
3 | 1.00 || 0.8954e+01 | 0.5614e+01 | 0.1254e+01 | 0.374304e+02
2.00 || 0.2442e+401 | 0.1300e4+01 | 0.1314e+401 | 0.988866e+01
4.00 || 0.6518e+00 | 0.3209¢+400 | 0.2052e+01 | 0.278376e+01
0.10 || 0.9268e403 | 0.6663e+03 | 0.1254e401 | 0.526885e+-04
0.50 || 0.3750e4-02 | 0.2646e+02 | 0.1253e+401 | 0.211992e+403
4 1.00 || 0.9668e+01 | 0.6501e4+01 | 0.1250e+01 | 0.539214e+02
2.00 || 0.2647e+01 | 0.1542e+4+01 | 0.1266e401 | 0.142783e+02
4.00 || 0.7350e4-00 | 0.4650e+00 | 0.1230e+401 | 0.404965e+01
0.10 || 0.9639e+03 | 0.7432e¢+403 | 0.1271e+01 | 0.687580e+-04
0.50 || 0.3903¢+02 | 0.2955¢402 | 0.1266e+01 | 0.276700e+03
5 1.00 {{ 0.1008e+02 | 0.7283e+401 | 0.1258e+-01 | 0.704195e+02
2.00 || 0.2770e+01 | 0.1751e+01 | 0.1252e+01 | 0.186821e+02
4.00 || 0.7668e+00 | 0.4714e4+00 | 0.1451e+401 | 0.532902e+01
0.10 || 0.1049e+04 | 0.9971e+03 | 0.1343e+01 | 0.149575e+405
0.50 || 0.4246e+02 | 0.3976e+02 | 0.1340e+01 { 0.602284e+03
10 | 1.00 || 0.1099e4-02 | 0.9879e+01 | 0.1327e4-01 | 0.153541e+03
2.00 || 0.3045e+01 | 0.2443e+01 | 0.1295e+01 | 0.409579e+02
4.00 || 0.8789e+00 | 0.6787e+00 | 0.1394e4+01 | 0.119728e+02
0.10 |} 0.1088e4+04 | 0.1147e4+04 | 0.1400e4-01 | 0.231194e+-05
0.50 [! 0.4405e+02 | 0.4583e+02 | 0.1396e401 | 0.931205e+03
15 | 1.00 || 0.1140e+02 | 0.1143e4+02 | 0.1384e4-01 | 0.237593e4-03
2.00 |} 0.3166e+01 | 0.2855e+01 | 0.1356e+01 | 0.635515e+02
4.00 ll 0.9277e+00 | 0.8022e+00 | 0.1455e4+01 | 0.187987e+02
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Table 21: Relative efficiency of the two-stage procedure P,: Equally spaced configura-

tion.
Equally Spaced Configuration
P k §/o
0.1 0.5 | 1.0 | 2.0 4.0
2 0.999 1.000 1.000 1.000 1.000
3 0.973 0.991 1.000 0.999 ~ 0.999
0.750 4 0.836 0.857 0.941 0.993 0.991
5 0.720 0.732 0.776 0.858 0.861
10 0.551 0.556 0.572 0.581 0.582
15 0.503 0.507 . 0.520 0.530 0.536
2 0.922 0.935 0.975 0.998 0.998
0.782 0.792 0.824 0.981 0.981
0.900 4 0.689 0.695 0.713 0.762 0.776
0.642 0.648 0.663 0.677 0.687
10 0.554 0.559 0.573 0.612 0.603
15 0.518 0.523 0.535 0.570 0.569
2 0.820 0.826 0.847 0.965 0.974
0.716 0.721 0.736 0.795 0.852
0.950 4 0.664 0.669 0.683 0.721 0.718
5 0.634 0.639 0.653 0.690 0.678
10 0.564 0.569 0.582 0.620 0.625
15 0.533 0.537 0.550 0.586 0.585 v
0.716 0.719 0.729 0.758 0.782
0.690 0.695 0.706 0.737 0.741
0.990 4 0.666 0.670 0.682 0.715 0.713
5 0.646 0.650 0.663 0.698 0.687
10 0.591 0.596 0.609 0.646 0.668
15 0.565 0.570 0.582 0.619 0.645
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Table 22: Relative efficiency of the two-stage procedure P;: Slippage configuration.

Slippage Configuration
P k 6/o
0.1 0.5 | 1.0 | 2.0 4.0
2 0.999 1.000 1.000 1.000 1.000
3 0.982 0.995 1.000 0.999 0.999
0.750 | 4 0.907 0.930 0.988 0.999 0.998
5 0.811 0.829 0.898 0.980 0.981
10 0.516 0.520 0.531 0.540 0.557
15 0.457 0.461 0.474 0.485 0.495
0.922 0.935 0.975 0.998 0.998
0.796 0.809 0.852 0.994 0.993
0.900 | 4 0.698 0.706 0.730 0.854 0.877
5 0.636 0.642 0.658 0.711 0.745
10 0.527 0.532 0.546 0.590 0.583
15 0.494 0.499 0.513 0.551 0.551
2 0.820 0.826 0.847 0.965 0.974
0.709 0.715 0.734 0.818 0.908
0.950 | 4 0.651 0.656 0.671 0.722 0.754
5 0.616 0.621 0.636 0.678 0.685
10 0.545 0.550 0.564 0.606 0.612
15 0.517 0.522 0.535 0.574 0.575 i
0.716 0.719 0.729 0.758 0.782
0.678 0.683 0.695 0.729 0.741
0.990 | 4 0.654 0.659 0.671 0.707 0.706
5 0.634 0.640 0.653 0.690 0.682
10 0.583 0.588 0.602 0.641 0.664
15 0.559 0.564 0.577 0.615 0.643

64



4 A SINGLE-STAGE RESTRICTED SUBSET SE-
LECTION PROCEDURE FOR SELECTING THE
POPULATION WITH THE LARGEST MEAN
FROM k LOGISTIC POPULATIONS

4.1 Introduction

In the subset selection formulation, if the data make the choice of the best population
difficult (we would expect this to happen if the p; are all very close to one another),
we are likely to select all the populations. In this case it is meaningful to put on an
additional restriction that the size of the selected subset will not exceed m (1 < m < k).

When we use an elimination type two-stage selection procedure to select the best
population and we have only limited resources to use for the secondary exploration,
we also need more flexible procedures which allow us to specify an upper bound m
on the number of populations included in the selected subset. Any selection problem
with such a restriction on the size of the subset is naturally called a restricted subset
selection problem.

Gupta and Santner (1973) studied the restricted subset selection procedure for the
normal means problem in terms of the sample means. They provided the tables of
the required sample sizes and of the expected number of selected populations. Sant-
ner (1975) defined a general restricted subset selection procedure in terms of a set
of consistent estimators for the parameters whose distributions form a stochastically
increasing family for any given sample size. He proved that the infimum of the prob-
ability of a correct selection occurred at a point in the preference zone for which the
parameters were as close together as possible. He also studied some properties of the
rule and conditions which guaranteed that the supremum of the expected number of
populations selected over the whole parameter space occurred at some point where the
k populations were all the same.

In this chapter we consider a restricted subset selection procedure Rs, based on
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the sample means, for selecting the population with the largest mean from k logistic
populations when the common variance is known.

Expressions for the probability of a correct selection for any configuration of the
logistic means and for the infimum of the probability of a correct selection over the
preference zone are derived and some properties of this procedure such as monotonicity
and consistency are studied.

The restricted subset selection procedures are consistent with respect to the pref-
erence zone. However the infimum of the probability of a correct selection over the
preference zone can not become arbitrarily close to the probability level P* as the
constant A, which defines the procedure, becomes infinitely large for the given values
of k, m, 6 and n. This is unlike the ‘usual’ subset selection procedures. A table of the
bounds of the infimum of the probability of a correct selection over the preference zone
is provided for given values of k, m, 6 and n.

A table of the required sample sizes for the restricted subset selection procedure, the
sample sizes for the corresponding fixed subset size procedure of Desu and Sobel (1968)
and the ratio of the above two sample sizes is given for selected values of P*, k, m and
8. The expected number of the selected populations for the two special configurations,
namely the equally spaced and the slippage configurations, are considered.

Instead of designing the rule by choosing the required sample sizes for arbitrarily
given values of h, we can make choice of the rule by controlling the supremum of the
expected size of the populations selected over the whole parameter space as well as
the probability level P* simultaneously. Using this new design criterion a table of the

design constants (n, k) for the restricted subset selection rule B3 is provided.

4.2 Formulation of the problem

Let m;, 2 = 1,...,k, be k logistic populations with unknown means p; and a common

known variance o2, which are denoted by L(u;,0?). Also let

Py S oo S pE
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be the ordered means and 7(; the population with mean p;}, the best population being

T(k). We assume that there is no a priori knowledge concerning the pairing of {m;}
and {=;}. Let § > 0 and

Q= {f=(p1, ", pr);—00 < p; < 00,5 =1,...,k}

8) = {ii € Q (pg — ppe-17) = 6}
0°(8) = {ii € Q)| ppy = ppe—11 = ppy — 63
Each ; yields ¢id observations X;;, j = 1,...,n,7=1,...,k, which are also inde-
pendent between populations. We propose the following rule R3 based on the means
of samples of size n from the k populations. As usual, let X; be-the sample mean from
Tt =1,...,k, and let

Xy <o < Xy

denote the ordered sample means.

Rule Ry : Select m; iff
X; > ma,x{y[k_m.{_l],y[k] — hso/+/n}, hz > 0. (61)

Goal of the experimenter : Given P*, § and the rule Rz which selects a subset of

the populations not exceeding m in size, find the common sample size n necessary to

achieve

Pz[CS|Rs] > P* Vi € Q(6). . (62)

The event [C'S|R3] occurs if and only if the selected subset contains ).

Remark 4.1 Even though the emphasis in this chapter is on the case, 1 < m < k,
where the strict inequality § > 0 insures that the indifference zone does not vanish, it
should be noted that the general theory formally reduces to give the results of Section 2.3
and Section 2.4 for the choices of m =1 and m = k respectively by allowing the weaker
condition 6 > 0.

Remark 4.2 If h3 — oo, Rj is the fized size subset rule which is considered in Desu
and Sobel (1968).
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4.3 Probability of a correct selection

We introduce the following notation. For every [ = 1,...,k and for every ¢ = k —

m,...,k—1, let
. i k-1
{S;—(l),] =1,..., ( ; )}
denote the collection of all subsets of size 7z from
wl) = {1,...,}} — {1}

and

S5(0) = u(l) - Si(0).

Theorem 4.1 For any i € ), we have

P3[CS|Rs)
= z_;m ;) /_ IEE[(@F(H pw — pr)Vr/o)
1_:[ {Fu(t + hs + (p) — p)v/nfo )
o+ (= sl VM) )

where F,(t) is the cdf of the standardized mean of a sample of size n from L(u;,0?).

Proof
Let Y(i) denote the sample mean from the population 7(;. Then,

Pp[C5|Ry]
= Pa[X(x) > max{Xp—my1)s X5 — hso/v/n}]
= Pr{Xu > Xq — hso/v/n forl<kand
X > at least (k—m) Y(I)Is with | # k}.

Now, for everyt =k —m,...,k—1 and 7 = 1,---,(k;1>a let
A= [Xgy > Xy V1€ Si(k) and Xy < Xy V1 € So(k)].
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Then

Pz[C S| Ry
—_ - k-1 ,
= Pﬁ[X(k) > X([) — h30‘/\/f_l Vi< kand Ui:kl—m UJ(='1 )A;]
k-1 (57 _ . _
= Z Z Pﬁ[X(k)ZX(I)—hg,O'/\/T_l- Vi<kand A;]
i=k—m j=1

For fixed ¢ and j,
Pﬂ[Y(k) > Yu) — h30‘/\/ﬁ- Vi<kand A;]
= Pﬁ[Y(k) > 7(1) Vie S;(k) and 7(19) < 7(1) < Y(k) + hga/\/ﬁ Vie -S-;(k‘)]
= [T 11 Fat+ (uw - sw)vinfo)

"% 1esi(k)
o I AF(t 4 e+ (g — p)v// o)
le?j-(k)

—Fa(t+ (pp — p)v/n/o J}dFa(t). O

Remark 4.3 An application of the dominated convergence theorem shows that
Pﬁ[CSle] — 1 as (,u[k] — lll[k-l]) — 00, (64)

Next we determine the infimum over (8) of the probability of a correct selection

in the following theorem.

Theorem 4.2 For any i € (8), we have

,zé%’&) Pz[CS|Rs] = infzeqo(s) FzlCS|Rs]

k-1

- 3 ("7 [amersvarey

i=k—m

{Fu(t 4 ha + 8\/ifo ) — Fa(t + 65/mfo )Y dF, (1)
= [ {Fult+ ho+ 83/ )

' F.(t+éynfo) .,
I{Fn(t+ o ),k m, m}dF,(t), (65)
where I{y;a,b} = %ﬁ’w““l(l —w)?"1dw denote the incomplete beta function with

parameters a and b.
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Proof
We use the following lemma due to Alam and Rizvi (1966) and also due to Ma-
hamunulu (1966).

Lemma 4.1 Let X = (Xy,...,Xx) have k > 1 independent components such that for
every i, X; has cdf H(z;|0;). Suppose that {H(xz|0)} form a stochastically increasing
family. If (X) is a monotone function of X; when all other components of X are held

fized, then Ez¥(X)] is monotone in 6; in the same direction.

Now, let
L if Xy > max{X[g-mi1], X5 — hao//7}

0; otherwise.

5(x) - {
We claim ¥(X) is non-increasing in X;) for i = 1,...,k — 1. Let
X <X (&),
X=X Xw)

and
X' = (7(1), . ,7(1-_1),7’(,'), 7(,-4_1), . ,Y(k)).

Then

ma,x{y[k_mﬂ],y[k] — h30‘/\/77} < maX{Yl[k_m+1], Yl[k] — h30’/\/T_L}

where the primes denote the order statistics from X'. So if ¥(X) = 0 then ¥(X') = 0.
Hence

P3[CS|Rs] = E5(¥(X))

is non-increasing in each of p[ij,. . .,pk—1] When all other means are fixed. So

A P;[CS|Rs] = i Pz[CS| R3]

ie

and hence substituting the vector of means (up), . . ., pp, p1) + 6) gives the result. O
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4.4 Properties of R;

We consider next the properties of the restricted subset selection rule R3 based on the

sample means. To facilitate this study we let
Pz(i|R) = Pp{rule R selects m(;} (66)
and recall the following definitions.
Definition 4.1 R is a monotone procedure means that for all i € Q and i < 7,
Pa(i|R) < Pa(jIR).
Definition 4.2 R is an unbiased procedure means that for all i € Q and j < k,
Pﬁ[R does not select 7(;)] > Pﬁ[R does not select m(y)].

Of course, R is monotone implies that R is unbiased. Other optimal properties are

Definition 4.3 R is consistent with respect to Q' means that

n—+0o0

lim inf Pz[CS|R|=1.
pelY
Definition 4.4 R is strongly monotone in m(; means that

Py(i|R) = T in pp when all other components of ji are fized
g L in ppj when all other components of i are fized (§ # 1).

Theorem 4.3 For everyi=1,...,k, R3 is strongly monotone in m(;.

Proof

We have already shown this result for ¢ = k. Since for ¢ < k we have
Pi(ilFe) = Bz (X)),

where
n(X) = 1; if 7(1-) > maX{X[k_m+1], Xg — h30‘/\/7_z]L
0; if otherwise,

the same argument applies to give the desired conclusion. O
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Corollary 4.1 All rules of the form (61) are monotone and unbiased.

Proof
The proof follows from the definition of monotonicity and the property of being

strongly monotone in m(; for all z. DO

Theorem 4.4 Rj is consistent with respect to Q(6).

Proof
We must show that
k=1 (1 - |
. llIIl Fn 6 nloc 2
:Lm( i )w/_w{ (t+8vn/o)}
AFo(t + hg + 63/nf0) — Fu(t + 6/nfo) 1 dF,(t) =1. )

We note that each integrand is bounded with respect to the measure F,, and so the

dominated convergence theorem applies. For every ¢ < (k — 1) we have

lim {Fo(t + 63/nf0) Y {Fu(t + hs + 6/nfo) — Fu(t + Symjo) i =0
and fori=%k—1
Jim {F(t + Sv/mfo) Pt = 1.
Hence the result follows. O

This theorem says that no matter what probability level is required for a correct

selection it can be met by choosing a sufficiently large sample, for any given k, m and

8.
Theorem 4.5 For every n and rule Rs,

51-1+I£10 ﬂég&) P;[CS|Rs] = 1.
For everyn, m < k and 6 > 0,

o bl 71O )

= (k—m) (:__;) [ - Ealt - 6m/0)}
{F(0) ™1 — Fo(t)}™ dFa(t)
_ / ¥ I{Fo(t + 8y/n)f0); k — m, m}dFa(t). (68)
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Proof
Both results follow from the dominated convergence theorem. The second result
follows the same theorem and

lim inf P[CS|Rs]

h3—oco € (
k-1

- (’” ;1) | B+ 6vmfo)y

i=k—m

{1 = Fa(t + 6/m)a) Y1 4dF, (1)
= [ (: - sz) /al-Fn(t romjoy? Loyt AR

= = (T2 [T a0 (- Ry
(R () w),

letting w = F;(1 — y) and changing the order of integration. O

Remark 4.4 The first part states that by taking § sufficiently large we can attain any
P~ probability requirement for the rule Rs based on any number of observations. The
second resull says that given a fized 6 > 0 and a common sample size n, we cannot

achieve all P* values. We can only attain

Pos e 20) [T - s

AFOY " HL = Fo(8))™ 1R ()
/:x’ I{Fn(t+5\/ﬁ/0);k —m,m}an(t) <1. (69)

Remark 4.5 Using the monotonicity of infzeq(s)Pz[C S| Rs] we can obtain the follow-
ing bounds. Form <k and 6§ > 0,

[ AR+ 6v/R[o)Y R (1)
< inf PA(CS|R]

< / Y I{Fo(t+ v/ o) k — m,m}dF(2). (70)
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Table 23 contains the above lower and upper bounds of the infimum of the proba-
bility of a correct selection over Q(8) for £ = 3,5,10, m = 2,4,5 < k, §/0 = 0.5,1.0,2.0
and n = 5,15. All computations were carried out in double-precision arithmetic on a
Vax-11/780.

For the purpose of implementing the procedure B3 and comparing R3 to the fixed
size subset rule, we have prepared Table 24 and Table 25. For P* = 0.90, k£ = 5, 10,
m = 2,3,4,5 < k, §/c = 0.5,1.0,2.0 and hz = 0.4,0.7,1.3,1.6, the tables give the

values of the minimum sample size (n(hs)) which satisfies

[ E+ s + s} anzﬂf + i-\/?\%}a) & —m,m}dFa(t) > P,

the values of the minimum sample size (n(c0)) for the fixed size subset rule, which

satisfies

/ ¥ {F(t + 5/n)0); k — m,m}dF,(t) > P*

and the ratio (n(hs)/n(00)) of the sample size for the restricted subset selection rule
R3 to the sample size for the fixed size subset rule when both rules attain the same
probability requirements. For large hs values this ratio is close to one, indicating that
in many cases a slight additional cost will allow the use of a restricted subset selection
procedure which meets the same probability requirement.

The expected number of selected populations depends, of course, on the underlying
ii. Some exact comparisons for the equally spaced and slippage configurations will be

considered in the next section.

4.5 Expected number of selected populations

As usual, we define

Y — { 1; if -X_(i) Z ma,x{_)?[k_mﬂl,y[k] — h30’/\/77}

0; otherwise.

This gives S, the number of populations selected, as



Then the expected number of populations selected by Rs is given by
k
Ea[S|Rs] = ) _ Pa(ilRs),
=1

where P;(i|R3) is defined by (66).

Theorem 4.6 For any i € Q, we have

ek (55

EpflS|IRs] = >0 32 X /oo I1 Fut+ (pa — pi)vn/o)

=1 p=k-m j=1 *~°° 1eSP(i)

-« II {Fa(t+ ha+ (upy — ppn)v/n/o)

1€5%(3)
—Fa(t + (u — pm)vn/0)}dFu(t), - (71)

where Fy(t) is the cdf of the standardized mean of samples of size n from L(p;,o?).

Proof
From the above discussion, we see that it suffices to calculate Pz(¢|Rs) fori =1,..., k.

Using arguments similar to those in the proof of Theorem 4.1, we get

- (5D
Pi(ilRs) = D D P{Xy =Xy Vie S()
p=k—m j=1

-1 ()

= X X [ T Falt+ (ua— mmv/rlo)

L =] Y—O0 Dy
p=k-m j=1 1es?(i)

o+ T AFa(t+ hs+ (up —ule)x/ﬁ/d)

1€5%(4)
—Fo(t + (pa — pp)Vn/o)}dF,(t). O
Since Ez[S|Rs] is increasing in hs the experimenter may seek to use rules with
small k3. On the other hand, for fixed § and P*, the smaller h3 is, the larger n must
be to achieve the required probability condition (62). Hence, the experimenter must
decide what trade off between n, ks and é§ he is willing to accept. To investigate the

interdependence in more detail, we have tabulated in Table 26 and Table 27 the values

of
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o E(S) = Eg[S|Rs,
e E(SR) = Tk, iP(i| R3); the expected sum of ranks of the selected populations
and
¢ E(S)/m; the expected proportion of selected populations
under
1. Equally spaced means g = (o, a4+ 6,...,a+ (k—1)§) and
2. Slippage means j = (o, @,...,a,a+§),

for
(k,m) = (4,2), (5,3), n =2,3,4,5,10,15, hs = 0.4,0.7 and §/o = 0.1,0.5,1.0,2.0. All

computations were carried out in double-precision arithmetic on a Vax-11/780.

4.6 Supremum of the expected number of selected popula-

tions and a new design criterion for Rj

Santner (1975) considered a general restricted subset selection procedure in terms of
consistent estimators for the population parameters whose distributions form a stochas-
tically increasing family for each given sample size. In particular he gave conditions
which guarantee that the supremum of the expected number of populations selected
over the whole parameter space occurs at some point where the k population parame-
ters are all the same.

We can consider the means rule R3 as a special case of a location parameter problem
using Santner’s general procedure. By noting that the distribution of the mean of
samples from a logistic population has the MLR property with respect to the location

parameter and hence forms a SI family, we can see that

Theorem 4.7 For every ji € 0, we have
sup Fz[S|Rs]
2eQ
_ * k-1 Fn t ol
— k& /_ (Lt + ko)) J{A-)—Fn( Py b memYdEL(). (72)
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In Section 4.4 we determined the needed sample size n for the rule Rj for the arbitrarily
chosen values of hs, k, m and 6 because we could not determine the values of n and
hs at the same time by controlling the basic probability requirement only. Since we
desire to select smaller S, it is reasonable to make a choice of (n, k3) by controlling the
supzeqFz[S|Rs] as well as infzeq(s)Pz[C S| R3]

Using Theorem 4.2 and Theorem 4.7, we can choose a new set of design constants

(n, hs) to implement R3 by solving the following equations simultaneously,

| AR+ hat 8VR[0)}

I ann-(l-tf;l;i\/g%}a); k—m,m}dF(t) = P (73)

IR hs)}k-lf{%; k—m,m}dFy(t) =1 + ¢ (74)

for the given values of P*,k, m, § and small € > 0.

Table 28 and Table 29 contain the estimates (7, iz;;) for the constants (n,h3),
which satisfy (73) and (74) simultaneously for given values of P* = 0.90,0.975, k =
3,4,5,10,15, m = 2,3,4,5, 6§ /o = 0.5,1.0,2.0 and € = 0.01. All computations were car-
ried out in single-precision arithmetic on a CDC-6500. The IMSL subroutine ZSCNT
was used to solve the above system of non-linear equations and the f-norm in the tables

indicates the accuracy of the computation, which is defined in the ZSCNT.
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Table 23: Bounds on the infimum of the probability of a correct selection over the

preference zone for rule Rs.

| k | m l 5lo l n " I — bound | u — bound I
0.50 5 0.671 0.905
15 0.856 0.974
3 2 1.00 5 0.902 0.985
15 0.994 1.000
2.00 5 0.998 1.000
15 1.000 1.000
0.50 5 0.536 0.765
15 0.774 0.921
2 1.00 5 0.840 0.953
15 0.988 0.999
2.00 5 0.996 1.000
5 15 1.000 1.000
0.50 5 0.536 0.962
15 0.774 0.993
4 1.00 5 0.840 0.996
15 0.988 1.000
2.00 5 0.996 1.000
15 1.000 1.000
0.50 5 0.379 0.574
15 0.654 0.820
2 1.00 5 0.743 0.885
15 0.977 0.996
2.00 5 0.992 0.999
15 1.000 1.000
0.50 5 0.379 0.789 ”
15 0.654 0.938
10 4 1.00 5 0.743 0.966
15 0.977 0.999
2.00 5 0.992 1.000
15 1.000 1.000
0.50 5 0.379 0.854
15 0.654 0.964
5 1.00 5 0.743 0.980
15 0.977 1.000
2.00 5 0.992 1.000
15 1.000 1.000
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Table 24: The minimum sample sizes needed for rule R3 and the corresponding fixed

size subset rule: P* =0.90, k& = 5.

P*=090, k=5
m | h3 | §/o ” n(ha) | n{oc0) | n(h3)/n(co)
0.50 22 13 1.692
0.40 1.00 6 4 1.500
2.00 2 1 2.000
0.50 19 13 1.462
0.70 1.00 5 4 1.250
2 2.00 2 1 2.000
0.50 18 13 1.385
1.30 1.00 5 4 1,250
2.00 1 2.000
0.50 18 13 1.385
1.60 1.00 4 1.250
2.00 1 2.000
0.50 20 6 3.333
0.40 1.00 2 2.500
2.00 1 2.000
0.50 16 6 2.667
0.70 1.00 4 2 2.000
3 2.00 1 1.000
0.50 11 6 1.833
1.30 1.00 3 2 1.500
2.00 1 1.000
0.50 10 6 1.667
1.60 1.00 3 2 1.500
2.00 1 1 1.000 .
0.50 20 2 10.000
0.40 1.00 5 1 5.000
2.00 2 1 2.000
0.50 15 2 7.500
0.70 1.00 4 1 4.000
4 2.00 1 1 1.000
0.50 8 2 4.000
1.30 1.00 2 1 2.000
2.00 1 1 1.000
0.50 6 2 3.000
1.60 1.00 2 1 2.000
2.00 1 1 1.000
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Table 25: The minimum sample sizes needed for rule Rs and the corresponding
fixed size subset rule: P* = 0.90, &k = 10.

P* = 0.90, k=10
m__ | hs | é/c [ nlha) | n(0) [ n(ha)/n(co)
0.50 30 23 1.304
0.40 1.00 8 6 1.333
2.00 2 2 1.000
0.50 28 23 1.217
0.70 1.00 7 6 1.167
2 2.00 2 2 1.000
0.50 27 23 1174
1.30 1.00 7 6 1.167
2.00 2 2 1.000
0.50 27 23 1174
1.60 1.00 7 6 - 1167
2.00 2 2 ~ 1.000
0.50 28 16 1.750
0.40 1.00 7 4 1.750
2.00 2 1 2.000
0.50 24 16 1.500
0.70 1.00 6 4 1.500
3 2.00 2 1 2.000
"0.50 20 16 1.250
1.30 1.00 5 4 1.250
2.00 2 1 2.000
0.50 20 16 1.250
1.60 1.00 5 4 1.250
2.00 2 1 2.000
0.50 27 11 2.455
0.40 1.00 7 3 2.333
2.00 2 1 2.000
0.50 22 11 3.000
0.70 1.00 6 3 2.000
4 2.00 2 1 2.000
0.50 16 1 1.455
1.30 1.00 4 3 1.333
2.00 2 1 2.000 i
0.50 15 11 1.364
1.60 1.00 4 3 1.333
2.00 1 1 1.000
0.50 27 8 3.375
0.40 1.00 7 2 3.500
2.00 2 1 2.000
0.50 22 g 2750
0.70 1.00 6 2 3.000
5 2.00 2 1 2.000
0.50 14 g 1750
1.30 1.00 4 2 2.000
2.00 1 1 1.000
0.50 12 8 1.500
1.60 1.00 3 2 1.500
2.00 1 1 1.000
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Tab}e 26: Performance characteristics of rule R3: k =4, m = 2.

k=4 m =2

n hg §fo Equally spaced conf. Slippage conf.

E(S) | BE(SR) | E(S)/m | E(S) | E(SR) | E(S)/m
0.100 1.366 3.125 0.683 1.371 3.337 0.685

0.400 | 0.500 1.269 2.045 0.635 1.344 2.882 0.672

1.000 1.147 1.426 0.573 1.259 2.221 0.630

2 2.000 1.030 1.073 0.515 1.072 1.285 0.536

0.100 1.572 3.622 0.786 1.578 3.850 0.789

0.700 | 0.500 1.442 2.401 0.721 1.543 3.367 0.772

1.000 1.256 1.626 0.628 1.424 2.630 0.712

2.000 1.057 1.122 0.528 1.130 1.439 0.565

0.100 1.361 3.054 0.681 1.368 3.310 0.684

0.400 | 0.500 || 1.238 1.848 0.619 1.329 2.741 0.664

1.000 1.109 1.296 0.555 1.213 1.953 0.607

3 2.000 1.012 1.028 0.506 1.031 1.116 0.516

0.100 1.566 3.545 0.783 1.575 3.822 0.788

0.700 | 0.500 || 1.396 2.162 0.698 1.523 3.213 0.761

1.000 1.194 1.448 0.597 1.356 2.311 0.678

2.000 | 1.024 1.050 0.512 1.059 1.191 0.529

0.100 | 1.357 2.995 0.679 1.366 3.289 0.683

0.400 | 0.500 1.213 1.714 0.606 1.315 2.620 0.657

1.000 1.084 1.217 0.542 1.175 1.749 0.587

4 2.000 1.005 1.011 0.502 1.013 1.047 0.507

0.100 1.562 3.481 0.781 1.574 3.801 0.787

0.700 | 0.500 1.359 1.996 0.679 1.503 3.079 0.752

1.000 1.151 1.337 0.575 1.296 2.058 0.648

2.000 1.010 1.021 0.505 1.026 1.083 0.513

0.100 1.354 2.944 0.677 1.365 3.271 0.683

0.400 | 0.500 1.193 1.616 0.596 1.301 2.512 0.651

1.000 1.065 1.163 0.533 1.142 1.590 0.571

5 2.000 || 1.002 1.004 0.501 1.006 1.019 0.503

0.100 1.558 3.425 0.779 1.572 3.782 0.786

0.700 | 0.500 {} 1.328 1.872 0.664 1.484 2.959 0.742

1.000 1.119 1.259 0.559 1.245 1.856 0.623

2.000 1.004 1.009 0.502 1.011 1.035 0.506

0.100 1.341 2.749 0.670 1.361 3.202 0.681

0.400 | 0.500 1.128 1.357 0.564 1.239 2.097 0.620 -
1.000 1.019 1.045 0.510 1.049 1.181 0.524
10 2.000 1.000 1.000 0.500 1.000 1.000 0.500
0.100 1.541 3.210 0.770 1.568 3.709 0.784
0.700 | 0.500 1.225 1.531 0.613 1.394 2.482 0.697
1.000 1.037 1.078 0.519 1.090 1.293 0.545
2.000 1.000 1.000 0.500 1.000 1.000 0.500
0.100 1.330 2.605 0.665 1.359 3.148 0.679
0.400 | 0.500 1.091 1.237 0.546 1.187 1.808 0.594
1.000 1.006 1.013 0.503 1.016 1.055 0.508
15 2.000 1.000 1.000 0.500 1.000 1.000 0.500
0.100 1.525 3.048 0.763 1.564 3.652 0.782
0.700 | 0.500 1.163 1.365 0.581 1.315 2.132 0.658
1.000 1.012 1.025 0.506 1.031 1.098 0.516
2.000 1.000 1.000 0.500 1.000 1.000 0.500
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Table 27: Performance characteristics of rule Rs: k =5, m = 3.

k=5 m =3

n h3 §/o Equally spaced conf. Slippage conf.
E(S) | E(SR) | E(S)/m | E(S) | E(SR) | E(S)/m
0.100 1.503 3.992 0.501 1.508 4.423 0.503
0.400 | 0.500 1.314 2.189 0.438 1.473 3.830 0.491
1.000 1.153 1.440 0.384 1.357 2.885 0.452
2 2.000 1.030 1.074 0.343 1.098 1.449 0.366
0.100 1.882 5.076 0.627 1.884 5.551 0.628
0.700 | 0.500 1.564 2.757 0.521 1.828 4.875 0.609
1.000 1.275 1.672 0.425 1.637 3.721 0.546
2.000 1.057 1.122 0.352 1.188 1.728 0.396
0.100 1.493 3.859 0.498 1.504 4.386 0.501
0.400 | 0.500 1.267 1.929 0.422 1.452 3.632 0.484
1.000 1.112 1.301 0.371 1.293 2.483 0.431
3 2.000 1.012 1.028 0.337 1.042 1183 0.347
0.100 | 1.867 4.915 0.622 1.878 5.506 0.626
0.700 | 0.500 1.480 2.387 |- 0.493 1.794 4.638 0.598
1.000 |} 1.202 1.466 0.401 1.531 3.194 0.510
2.000 1.024 1.050 0.341 1.084 1.314 0.361
0.100 || 1.485 3.750 0.495 1.502 4.358 0.501
0.400 | 0.500 {j 1.233 1.766 0.411 1.433 3.461 0.478
1.000 1.085 1.219 0.362 1.240 2.172 0.413
4 2.000 1.005 1.011 0.335 1.018 1.075 0.339
0.100 1.855 4.784 0.618 1.874 5.474 0.625
0.700 | 0.500 1.420 2.149 0.473 1.762 4,432 0.587
1.000 1.154 1.344 0.385 1.439 2.774 0.480
2.000 1.010 1.021 0.337 1.036 1.135 0.345
0.100 1.478 3.656 0.493 1.500 4.335 0.500
0.400 | 0.500 1.208 1.651 0.403 1.414 3.307 0.471
1.000 1.065 1.164 0.355 1.196 1.927 0.399
5 2.000 1.002 1.004 0.334 1.007 1.030 0.336
0.100 1.843 4.669 0.614 1.872 5.447 0.624
0.700 | 0.500 1.373 1.983 0.458 1.732 4.244 0.577
1.000 || 1.120 1.262 0.373 1.362 2.434 0.454
2.000 | 1.004 1.009 0.335 1.016 1.057 0.339
0.100 1.450 3.302 0.483 1.495 4.246 0.498
0.400 | 0.500 1.132 1.365 0.377 1.329 2.700 0.443
1.000 1.019 1.045 0.340 1.066 1.287 0.355
10 2.000 || 1.000 1.000 0.333 1.000 1.000 0.333
0.100 |l 1.796 4.231 0.599 1.864 5.345 0.621
0.700 | 0.500 1.238 1.560 0.413 1.590 3.477 0.530
1.000 1.037 1.078 0.346 1.129 1.487 0.376
2.000 1.000 1.000 0.333 1.000 1.001 0.333
0.100 1.425 3.050 0.475 1.491 4.176 0.497
0.400 | 0.500 1.092 1.239 0.364 1.258 2.263 0.419
1.000 1.006 1.013 0.335 1.021 1.088 0.340
15 2.000 1.000 1.000 0.333 1.000 1.000 0.333
0.100 1.755 3.911 0.585 1.858 5.266 0.619
0.700 | 0.500 1.167 1.374 0.389 1.469 2.899 0.490
1.000 1.012 1.025 0.337 1.044 1.161 0.348
2.000 1.000 1.000 0.333 1.000 1.000 0.333
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Table 28: Estimates of constants for rule Rz: P* = 0.90, Sup(S) = 1.01.

P* = 0.900, Sup(S)=1.01
k | m | 5lo " 7 I iza | f — norm
.50 .1965e402 | .1179e-01 .6693e-15
3 2 1.00 .4883e+4-01 | .1166e-01 .4648e-22
2.00 .1188e+4+01 | .1112e-01 .8925e-15
.50 .2383e402 | .9717e-02 .2049e-17
2 1.00 .59463+01 .9648e-02 .2318e-18
4 2.00 .1476e4-01 .9384e-02 .1203e-13
.50 .2383e+402 | .9667e-02 | .8419e-20
3 1.00 .5946e+01 | .9598e-02 | .3176e-19
2.00 .1476e+01 | .9334e-02 | .335%9e-15
.50 .2686e+-02 | .8613e-02 9771e-18
2 1.00 .6715e+01 | .8580e-02 .206:6(3-13
2.00 .1680e+01 .8439e-02 .1658e-17
.50 .2686e+02 | .8563e-02 | .4192e-16
5 3 1.00 .6715e+4+01 | .8528e-02 .3007e-17
2.00 .1680e4-01 | .8386e-02 | .5923e-18
.50 .2686e+402 | .8562e-02 .4433e-16
4 1.00 .6715e401 | .8528e-02 .2910e-17
2.00 .1680e+4+01 | .8386e-02 .5918e-18
.50 .3550e+02 | .6535e-02 .1496e-15
2 1.00 .8922e4-01 .6569e-02 .4289e-13
2.00 .2273e4+01 | .6673e-02 | .2864e-14
.50 .3550e+02 | .6488e-02 .2623e-15
3 1.00 8922401 | .6521e-02 | .2750e-16
10 2.00 .2273e+01 | .6623e-02 .7496e-14
.50 .3550e402 | .6488e-02 .2639e-15
4 1.00 .8922e4-01 .6521e-02 .2893e-16
2.00 .2273e4-01 | .6622e-02 .7455e-14 .
.50 .3550e402 | .6488¢-02 | .2659e-15
5 1.00 .8922e+401 | .6521e-02 | .2891e-16
2.00 .2273e+01 | .6622e-02 | .7448e-14
.50 .4024e402 | .5803e-02 .2848e-15
2 1.00 .1014e+402 | .5861e-02 .1097e-16
2.00 .2602e+401 | .6062¢-02 .4032e-15
.50 .4024e402 | .5758e-02 .3480e-14
3 1.00 .1014e+402 | .5816e-02 .2559e-15
15 2.00 .2602e+01 | .6013e-02 .8833e-16
.50 .4024e4+02 | .5758e-02 .1364e-13
4 1.00 .1014e402 | .5816e-02 .2682e-15
2.00 .2602e+401 | .6012e-02 | .8877e-16
.50 .4024e4-02 | .5758e-02 | .1381e-13
5 1.00 .1014e+4-02 | .5816e-02 | .2684e-15
2.00 .2602e+401 | .6012e-02 .8877e-16
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Table 29: Estimates of constants for rule Rz: P* = 0.975, Sup(S) = 1.01.

P* =0.975, Sup(S)=1.01
k | m I §fo " 7 l s l f — norm
.50 .3894e+4+02 | .1182e-01 | .1243e17
3 2 1.00 .9794e+01 | .1175¢-01 | .6086e-19
2.00 .2504e+01 | .1150e-01 | .2001e-21
.50 .4399¢+02 | 9728602 | .3195¢-21
2 1.00 .1108e+02 | .9691e-02 | .1435e-21
4 2.00 2841e+01 | .9550e-02 | .2667¢-16
.50 .4399e+02 | .9677¢-02 | .1720e-17
3 1.00 1108e+02 | .9640e-02 | .1724¢-17
2.00 2841e+01 | .9499¢02 | .3598¢-18
50 .4759¢+02 | .8618¢-02 | .7053¢-16
2 1.00 1199e+02 | .8600e-02 | .1076e-15
2.00 .3082e+01 | .8525¢-02 | .3329¢-16
.50 4759¢+02 | .8567e-02 | .2190e-18
5 3 1.00 1199e4+02 | .8549e-02 | .1444e-17
2.00 .3082e+01 | .8473e-02 | .2198e-17
.50 4759+02 | .8567e-02 | .3819e-22
4 1.00 .1199e+02 | .8548¢-02 | .7657e-23
2.00 .3082e+01 | .8473e-02 | .3403e-23
.50 .5771e+02 | .6530e-02 | .9562¢-16
2 1.00 1456e+02 | .65526-02 | .1125¢-15
2.00 .3766e+01 | .6623e-02 | .1408e-15
50 5772e+02 | .6483e-02 | .2547e-17
3 1.00 1457e+02 | .6504e-02 | .1364e-17
10 2.00 .3766e+01 | .6574e-02 | .1772¢-16
.50 5772e+02 | 6483602 | .2457¢-22
4 1.00 1457e+02 | .6504e-02 | .1253e-22
2.00 .3766e+01 | .6574e-02 | .3067¢-22 i
.50 .5772e+02 | .6483e-02 | .6563e-27
5 1.00 1457e+02 | .65046-02 | .2524e-27
2.00 .3766e+01 | .6574e-02 | .4089¢-26
.50 .6320e+02 | .5795e-02 | .3436e-14
2 1.00 .1596e+02 | .5833e-02 | .3331e-14
2.00 .4139e4+01 | .5966e-02 | .3695e-14
.50 6321e+02 | .5751e-02 | .8806e-17
3 1.00 .1596e+02 | .57886-02 | .1271e-17
15 2.00 .4139e+01 | .5919e-02 | .8236e-17
50 6321e+02 | 575102 | .1326e-21
4 1.00 1596e+02 | .5788e-02 | .7942e-22
2.00 .4139e+01 | .5918e-02 | .1707e-21
.50 .6321e+02 | .5751e-02 | .2524e-27
5 1.00 1596402 | .5788e-02 | .9214e-27
2.00 4139e+01 | .5918¢-02 | .5364e-26
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5 AN ELIMINATION TYPE TWO-STAGE PRO-
CEDURE USING RESTRICTED SUBSET SE-
LECTION RULE IN ITS FIRST STAGE FOR
SELECTING THE BEST POPULATION

5.1 Introduction

Tamhane and Bechhofer (1977, 1979) studied a two-stage elimination type procedure
for selecting the largest normal mean and we considered in Chapter 3 an elimination
type two-stage procedure P, for selecting the largest among several logistic populations.
It is well known that the above two-stage procedures are quite efficient relative to the
- corresponding single-stage procedures in terms of the required sample sizes. However,
sometimes we may have only limited resources to use in the second stage. In those
cases we need more flexible procedures which allow us to specify an upper bound m on
the number of populations included in the selected subset in the first stage. Gupta and
Santner (1973) studied the selection problem with such a restriction, which is called
a restricted subset selection procedure, for selecting the largest normal mean and we
considered restricted subset selection procedures for selecting the largest logistic mean
in Chapter 4 in the framework of single-stage procedures.

Here we propose an elimination type two-stage procedure P, for selecting a popula-
tion with the ‘largest’ real parameter, in which a generalized restricted subset selection
procedure (Santner (1973, 1975)) is used in the first stage in terms of a set of consis-
tent estimators for the population parameters whose distributions form a stochastically
increasing family for a given sample size. We also propose an optimization problem
using a minimax criterion to find a set of constants needed to implement Pj.

We derive a lower bound of the probability of a correct selection and a formula for
the infimum of the lower bound over the preference zone.

We derive an analytical expression for the expected total sample size and study

conditions guaranteeing that the supremum over the whole parameter space of the
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expected total sample size occurs at some point where all of the parameters are equal.
We also derive a general expression for the supremum over the whole parameter space
of the expected total sample size under these conditions.

A non-linear optimization problem which one must solve in order to determine the
constants needed to implement Pj for location and scale parameter problems and a
relative efficiency of P; with respect to the corresponding single-stage procedure are
defined.

We apply P; to the location parameter problem of univariate normal populations.
Here we provide tables of constants to implement P and of the relative efficiency for

each case of the equally spaced and slippage configurations.

5.2 Preliminaries

Let m;, i =1,...,k, be k populations which are characterized by unknown scalars
A; € A, where A is a known interval on the real line. Let A £ -+ < A be the
ordered \;’s,

Q={X=, -, M)NEA Vi}

the space of all possible underlying configurations of \;’s and 7(;) the (unknown) pop-
ulation with parameter Aj. It is assumed that there is no a priori knowledge of the
correct pairing of the elements in {;} and {7(;}. The goal is to define a two-stage
procedure P to select the ‘best’ population where for sake of definiteness T(k) is taken
to be the best population. In some cases (1) might be the best population. Of course,
if t (2 < t < k) populations all have \; = Alr], the selection of any of these tied
populations accomplishes the goal.

Each =; yields ¢id observations X;;, j = 1,...,n, which are also independent be-
tween populations. X;; has cdf F; with parameter )\;. Furthermore it is assumed that
there exists a sequence of Borel measurable functions {T},} so that T}, is defined on n

dimensional sample space and

To(Xits- .o, Xin) = Tin 2 X as n — co.
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The assumptions concerning T, are that its cdf G,(y|);) with support E,%‘Z is absolutely
continuous with respect to Lebesgue measure with pdf g,(y|\;) and {G.(y|\)|A € A}
forms a stochastically increasing family for each n.

A preference zone will be defined in by means of a function
p: A — R,
where R ia a real line, such that

1. p(-) is continuous and non-decreasing on A
2.p(A) <A VieA
3. p: A" I8 A, where A’ = {) € A|p()\) € A}.

Define
Qp) = {X € 9 Ale-11 < P(Ae))}
and

Qo(p) = {X c Ql /\[1] = /\[k—l] = p(/\[k])} .

Let k,(-) be a sequence of functions such that for each n
ho(:): E, — R
where Uyea E) C E,, satisfying

1. For each n and z, h,(z) > =,

2. For each n, hy(z) is continuous and strictly increasing in .
Typical examples of ,(-) are given by
ho(z) =2 +d, (d,>0)
for the location-type procedures and
ho(z) = cnz (¢ > 1)
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for the scale-type procedures.
The goal of the experimenter is to select a best population. The experimenter

restricts consideration to procedures (P) which guarantee the probability requirement
P{[CS|P] > P* V X € Q(p) (75)

where p(-) and P* are specified prior to experimentation. The event [C'S] occurs if and
only if the experimenter selects a best population.

Here we propose an elimination type two-stage procedure P, for selecting a best
population using a restricted subset selection rule in its first stage and an indifference
zone approach in its second stage.

Procedure Py;

Stage 1: Take n; independent observations
1 .
Xz(j), 7=1,...,n,
from each 7;, 7 = 1,...,k, and compute the k estimates

T, (X(ll), X(l)) = T(l)

% ing iny )

=1,...,k.
Determine the subset I of {1,...,k} where
I={I75) > max{Ti),, 1y, b2 (T, )} 3

and
1) (1)
Thjm, S0 S T, [kl

denotes the ordered T. Denote by #; the associated subset of {7y,...7}.
iny

1. If r; consists of one population, stop sampling and assert that the population

associated with T[Sc]) is best.

2. If m; consists of more than one population, proceed to the second stage.

Stage 2: Take n, additional independent observations Xz(f ), j=1,...,n9, from

each population in 7, and compute the cumulative estimates

T, (XP,.. ., x1, x@,.. . X =T foricl,

ing 2 <2 mg

88



where n = nj 4 n,. Assert that the population associated with max;ec; Tj, is best using
randomization to break ties if necessary.

There is an infinite number of combinations of (n1,n2, hy, ) for given k, m, P* and
p(-) guaranteeing the required probability condition (75), and different design criteria
lead to different choices.

Let S’ denote the cardinality of the set I in the first stage of procedure P} and let

0, ifS' =1

S = (76)
S if 8> 1.

Then the total sample size required by P,, T'SS say, is
TSS = kny + Sno.

Let E5[T'SS|P)] denote the expected total sample size for P} under X. To make a
choice of (ny, ny, hn,) as well as to have the total sample size T'SS small, we adopt the
following minimax design criterion.

For given k, m, p(-) and P* choose (n1,ns, hy,) to

minimize  sup E;[T'SS|Pj]

A€

subject to inf P;[CS|Pj] > P*, (77)
Xe(8)

where (n1,ng) are non-negative integers and h,, is a real function defined as before.

5.3 A lower bound on the probability of a correct selection

The so called LFC of the population parameters for general two-stage procedures has
not been determined yet. Moreover, even if the LFC of the population parameters were
known, the problem of evaluating the probability of a correct selection associated with
P; when the population parameters are in that configuration would still remain.
However it is possible to determine a set of constants (ny,ng, ks, ) (although not
the best set) to implement P4 if a lower bound to the probability of a correct selection

can be found and the LFC of the population parameters can be determined for that
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lower bound. Such a set of constants provides a conservative solution to the problem

since it overprotects the experimenter with respect to the probability requirement (75),

this overprotection being purchased at the expense of an increase in E;[T'SS|P;]. In

this section we consider the problem of a lower bound on the probability of a correct

selection and the infimum of the lower bound.

First we derive a lower bound for P;[C'S|P;] in Theorem 5.1. This lower bound is

particularly useful since it achieves its infimum over £2(p) at Q°(p). This result permits

us to construct a conservative two-stage procedure which guarantees the probability

requirement (75).

Lemma 5.1 For any X € €, we have

Py [T(k)n 2 ma'X{T[k m+1]ng ? hry m( [%Ll)}]
k-1 (51
= Z Z / (J)(y)

p=k—m v=1 esP(k)
- I G (b, (v)) — G (9)}dGB) (y)
F€SL(k)

and

o k=1
PilTiyn > Ty 5 < k1= [ TI GO )G (),
!

where n = ny + ng,

]

{S¥(0), j:l,...,(k_.l)}

denote the collection of subsets of size ¢ from

u(l) = {177k} - {l},

Sy = u(l) - Si(l)

J

and

G (y) = Galyl\)-

Proof
The proof of Lemma 5.1 is in Santner (1973). O
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Theorem 5.1 For any Xe Q, we have

b1 (k 1
plesipg = X Y [ I 69w
p=k—-m v=1 "7 ]GSP(k)
- I G (hai () — GY(y)}GP(y)
j€S, (k)
o k=1
+ [0 T 69 @ac® ) - 1. (50)
—o0 3
Proof
PX[CS|P£] = [ (k)'n,l 2 ma’X{T[k m+1]n; ? n ( [k]nl)} ’
Tyn 2 m2x T(j)n]
2 P X[T((kl)) >max{ [k-—m+1]n1’ s ( [k]nl)}
Tyn = Tjyn, J < K]
> Py [T((I:))n 2 ma’X{T[k mA1lng > Py (T[k]nl)}]
and hence the result comes from Lemma 5.1. O

Next the infimum of the lower bound will be considered in Theorem 5.2. Lemma 4.1

due to Mahamunulu (1967) and Alam and Rizvi (1966) will be needed again.

Lemma 5.2 For any ) € Q(p), we have

inf P [T(k) 2 ma‘X{T[k m+1]ny ? hnl (T[k]nl)}] = ,\léllf;, \Ill(/\7 nl)’

AeQ( )
where
B(An1) = [ (G (b (1))}
g B s - m, )G (01
and

1nf Pi[Tiyn = Tiiyn, J < k] = 1an Ua(A,n),
XeQ(p) €A
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where

B = [ Gy} G,

Proof
The first part of this lemma was proved in Santner (1975). To prove the second
part, it suffices to show that for all X € Q(p),

P;\'[T(k)n > Tiyms J < k] > )‘iéljf\',‘llg(/\,n).

Define

0; otherwise.

Then

By Lemma 4.1, it suffices to show that n(T) is non-increasing in 1), for all I < k. Let
us define T' such that

TI(I),,, > T(l)n and T’(j)n = T’(j)n vy ;é l, 7 <k.

Then it suffices to show that n(T) = 0 implies n(T') = 0. Suppose that n(T) = 0.
However,

n(T)=0

if and only if
Tiryn < T(yn for some 3 <k

and this implies that
T(k)n < T(l)n e T(k)n < T(Il)n

or

Tiyn < Tijyn, §# 1 = Tyn < Tjyny § 7 1
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Hence, both cases imply n(T') = 0. So we get
P;[Tieyn > T(jyn, J < K|
| 4GP Y 4G (y1Agn)
= WAy, m)
> inf Uy(A,n),

Vv

which completes the proof. 0O
From Theorem 5.1 and Lemma 5.2, we can get the following result about the

infimum of the lower bound.
Theorem 5.2 For any X € Q(p), we have

. ., ! 3 1 —_
ot BCSIPA) 2 jgf, 110vm) + fof ¥a(hom) = 1, (®)

where ¥1(A,ny) and ¥y(A,n) are defined in Lemma 5.2.

Remark 5.1 For the special cases of location and scale parameter problems, the infi-
mum of the lower bound is independent of A.

(1). Location parameter case; In this case,
Gn(z) = Gu(z — A), —o0 < z,) < 00,
the usual choice of h,(-) is
ho(z) =2z +d,, d,>0,
and the preference zone is given by
p(A)=A-46, 6§>0,
that s,
Q(p) = (8) = {XApg — A1) = 6}
Then U1(A,nq) and (A, n) are given by
(A m) = a6, dnyyma) = [ {G(y + o + 6}

Gr 5
I{ gorr ¥ k — m, m}dGhy (y) (83)
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and
To(A,n) = ©a(6,n) = [ {Galy +6)}dGa(y), (84)
where G,(+) is the cdf of T;, when A; = 0.

(2). Scale parameter case; For this case,
Gu(z) = Gu(z/X), >0, A >0,

the usual choice of hy(-) is
ho(2) = coy, cn > 1,

and the preference zone is given by
p(A) =A/6, 6>1,

that is,
Q(p) = 8) = { XA = 6Apeny}-

Then ¥i(A,n1) and ¥a(A,n) are given by

B () = G(8,00,m) = [ {Goy(cn 89}

T{ s b — m, m}d G () (85)
and
s ) = Ba(8m) = [ {Gal8)}dCaly), (86)

where G(-) is the cdf of T;, when X\; =1.

5.4 Expected total safnple size for P,

In order to solve the non-linear optimization problem (77) we will first find an analytical
expression for the E3[T'SS|P;] and then determine supg.q E3[TSS|P;]. Note that the

total sample size T'S'S can be written as
TSS = kny + Sn,

where S is defined in (76). The result concerning a general expression for the Ex[T.SS|Pj)]

is summarized in the following theorem.

94



Theorem 5.3 For any X € {0, we have

Eok-1 ()

BTSSP = km+md (Y 3 [ II 69

i=1 p=k—m v=1 *° jeSE(4)

II {GQ(hn(v)) — GO (y)}dG) (y)

J€S,(i)
-/ HG(J) 1 (1)dG0(v)]
Jah
Proof

ES[TSS|Py] = Ex[(kni+ naS)|Py]
= kny + no{ E5[S'|P]] — F5[S" = 1|Py]}.

Now for any Xe Q,

ke 1 (*z)
By[s'|Pj] = > / Gy
1_1 p—k—-m v=1 "7 GS’P(z)
- I AG9 (hey (v)) — GY) ()}dGD (y)
J€5,(9)

from Theorem (5.1) in Santner (1975). Hence it suffices to show that

ko oo K

Pils' =117 =3 [ T1 Gk )G (w).
=1 ]#‘
Now
P;[S'=1|P;] = Pslezactly one population is selected|P)]

k

Z v[7 (i) s the only one selected).
However,

[7(5) ts the only one selected]

off

B (TL) = Ty Vi # ).

95

(87)

(88)

(89)

(90)



Hece the result in (90) holds. O
Next we will consider the maximum value of E5[T'SS|P;] over Q. Conditions which

guarantee that the supremum of E3[T'SS|P;] in 2 occurs at some point
X=(A1,. s )

for which Ajy; = Ay are given in Theorem 5.4 and a general expression of the supremum
of Ex[T'SS|P;] in © under these conditions is given in Corollary 5.1.

The following regularity conditions will be assumed in some of the theorems that
follow.

(i). EX = E, for all A € A.

(ii). For any [A1,A2] C A there exists e(y) possibly depending on A; and A, such
that

[0G(y|A)/0A] < e(y) VA € [Ar, Ao,

where
U ew)dGalbm @WIH [ e@)dCnlyN)} <00 ¥ X' 2 . (91)

Santner (1975) proved the following lemma in which conditions are given which guar-

antee that the supremum of E3[S|P;] in  occurs at some point
X=(A,.., )
for which A = A where S’ is the cardinality of the set I in the first stage of P;.

Lemma 5.3 If regularity conditions (91) are satisfied and for all A1, A; in Q with
A< A

G (hmy (y)|M1)
a/\l gnl (yIA2)

aGm (y I/\l)
I

Gy (P (y)])\g)ﬂlgM >0 a.e in E,, (92)

Y
then E5[S'|P3] is non-decreasing in Ap) on

A()\[z]) = {)\ € A|)\ < /\[2]}
f0'r' any ﬁzed ()\[2], ooy A[k]).
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We will consider conditions which guarantee that the infimum of P[5’ = 1|Pg]

occurs at some point

X=(At.-oA8)
for which Ajy) = Apg in the following lemma.

Lemma 5.4 If regularity conditions (91) are satisfied and for all A1, Xy in Q with
A< A

OGn, (R} (y)1 A1)
o Iny (Y| A2)

BGm (y|)‘1)
Tgnl(hnl (P)r2) —5—=

h 1
d (y) <0 ae. in En, (93)

then P;[S’ = 1|P;] is non-increasing in Ap) on
AQp) = {} € AN < Mg}

for any fired (A, - - -, A])-

Proof
Fix Ap, . .., A for the following argument. Then

PyS' = 1|P5] = Ti(V) + T2 (X),

where

() = [ HG@ 1)d6P )

and

T2<X>=_‘;“2 [ I 690 )

ny j=1
J#

Now Ty(X) can be rewritten as

(%) = Z AREC <y>>HG<J> RONEAE)

= ‘; [, 69051 w) HG(J) )9 W)y,
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Next integrating Tl(X) by parts we obtain that

Ty(X) = constant with respect to Ay

_ / GO () S GO (A y)dG) (k7] (1))

=2
J#e

= constant with respect to Apj

_ / G(l)(y)ZG(f) ()9 (k] 1) B ly)

J#t

(y)

Hence combining terms it follows that

Pi[S" = 1Py

= constant with respect to A

+Z/ Hg(z)

J#t

{CO(h2 ()6 (4) — CO(y)g® (= (y)) P W) (y)}d

and finally

dP"[ —_ 1!?2]
dA[l]

S / 11 c9(h {@_a(;‘[_](yﬁ 9(y)

=2 Eny Jj=2

J#i
_0GR(y)

gz ) =y

But (93) gives, for every ¢ = 2,...,k,
GD(h1(w) |,

Fam 98 (y)
3G ) (y) O)(h (y) .
—5-/—\[— 71-1( ( )) < 0 a.e. in En17

and hence (94) is non-positive and this completes the proof. O
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Remark 5.2 We can easily show that (92) and (93) are equivalent by using the trans-
formation t = h!(y) in (93). Hence the conditions
SR |
d/\[l]
and
dPs[S’ = 1|Py]
dAp]

<0

are also equivalent.

From Lemma 5.3, Lemma 5.4 and Remark 5.2 we can get the following theorem in
which conditions guaranteeing that the supremum of E;[T'SS|Pj] in £ occurs at some
point )

XZ(Al,...,Ak)

for which Ap) = A, are given.

Theorem 5.4 Suppose that the regularity conditions (91) are satisfied and for all
)\1,A2 i Q with /\1 S Ag

OGn; (hny (y)| M)
2, Iy (Y] A2)

0Gn, (y| A1) dhn, () . '
LA My —_— > .€. .
S gy (s (1)) T L 20 e i B, (95)

Then E3[T'SS|P;) is non-decreasing in Ajy) on
AAg) ={A € A]X < Ay}

for any fixed (A, ..., Aw))-

Proof
By noting that

E5[TSS|P3] = kna + no{ Ex[S'|Po] — Px[S" = 1|P3]}

the result of the theorem is clear from Lemma 5.3, Lemma 5.4 and Remark 5.2. O
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Remark 5.3 Condition (95) reduces to the requirement of MLR in the location or

scale parameter problems.

A general expression of the supremum of the E4[T'SS|Pj] in Q under the condi-

tion (95) is given in the following corollary.

Corollary 5.1 For every fized Ajg) < ... < Ay, of

dE5[S"|Py]

>0
d)\[l] -

for Any in A, then
sup E5[T'SS|P;} = supy(A, 1),
by AEA

AeQ
where
’7(/\7 nl)
= kny+ kng /_Z[{Gm(hm(y)p‘)}k—lj{ Gn?%nly(?j\)l)\) sk —m,m}
—{Gny (B3} ()N} 1dGry (y 1) (96)

Furthermore, if the hypotheses of Theorem 5.4 hold for Ay = Ag, then y(A,nq) is non-

decreasing in A and hence if there is a greatest element Ao € A, then
sup E5[T'SS|P3) = (Ao, n1).
Xeq

Proof
This corollary will be proved by using the following three lemmas and Remark 5.2.
a

Lemma 5.5 For every fized A1 < ... < Ay, of

dE5[S"| Py

>0,
d)\[l] -

then
sup Ex[S'|P;] = supm(A, n1),
N AEA

AEQ
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where

7(A, n1)
= k[ G (s @)Y Hig s k= m, m}dG (0. (97)

Furthermore if (95) holds for Ay = Ay then y1(A,nq) is non-decreasing in A and hence
if there is a greatest element Ao € A, then
sup E5[S'|P3] = 1(Xo, n1).
AEQ
Proof
Santner (1975) proved this lemma by using the following lemma due to Gupta and
Panchapakesan (1972) which gives sufficient conditions for the monotone behavior of

the 71(A,n1) and hence the proof will be omitted. O

Lemma 5.6 Let {F(-|A\)|X € A} be a family of absolutely continuous distributions on
the real line with continuous density f(-|A) and ¥(z,)) a bounded real valued func-
tion possessing first partial derivatives ¥, and V) with respect to x and A respectively
and satisfying regularity conditions (99). Then E\[¥(z,))] is non-decreasing (non-
increasing) in A provided for all A € A

f(xu)aq’g;’ A _OF (,E,”A’M) B‘I'é? A S ()0 for ae. . (98)

The regularity conditions for Lemma 5.6 are given as follows.

(i). For all X € A, a_\pé%\l is Lebesgue integrable on R.

(i1). For every [A1,A2] C A and A3 € A there exists h(y) depending only on A;, ¢ =
1,2,3 such that

0¥(z,A) OF(z]|)) 0¥(z, As)

f(z|As) £\ R 52 < h(z) YA € [M, Ag] (99)
and A(z) is Lebesgue integrable on &.
Lemma 5.7 If for every fized Ag) < ... < A\,
dP;[S" = 1|P]] <0

dAp

101



for /\[1] m A[A[Z]], then
infyeq P5[S" = 11P4] = jof (X, ma),

where
s =k [ {Goy (10N} 4G, (41, (100)

Furthermore, if the hypotheses of Theorem 5.4 hold for A1 = Xy, then (A, ny) is

non-increasing in A and hence if there is a greatest element Ao € A, then
infzeqP5[S" = 1|P3] = 72(Ao, ma).

Proof
It suffices to prove for all ¢ < k and fixed

Alg+1] < -0 < A

that

is non-increasing in A on A[A,q)] where

Xa) =y A Afggags - -+ Ag)-

Let
X, = ()\[1], ey A[k])

and note from (90) that P5{S’' = 1|P;} is invariant under permutations of the ele-

ments in ). So

APy {S"=1[P} i@Px,{SeuP;}
d/\ i=1 6A[z] X(q)

OP; {S' = 1|P;}
= ¢ £J) '
[1] X(q)

But from the proof of Lemma, 5.4,

0P {S' = 1|P;}

<0.
9An]

o)
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Hence the infimum over ) of the P;[S’ = 1|P;] occurs at some point where all the Aj;)’s

are equal. Since ‘
')’2()‘a nl) = E[\Il(y, A)]
for

U(y,A) = k{Gn, (R71(m) IV},

Lemma 5.6 can be applied and the sufficient condition (98) that +42(A,n;) be non-

increasing reduces to

OGn, (hr) (W) 1A) 9Gn, (y[A) 1 dh, (v)
1 . _ = 4 < ..

The final part of the result is obvious. O

Remark 5.4 For the cases of location or scale parameter problems the supremum of
the Ex[TSS|P;] in Q is independent of X provided the conditions in Theorem 5.4 and
Corollary 5.1. Under the same framework of Remark 5.1, we have

(1). For the location parameter case:

sup E;[T'SS|Pj]

AER

= kit kny [ {Goy (3 + du) VT H g2y = my m)

_{Gnl (y - dm)}k_l]dGnl (y), (101)

where G,(-) ts the cdf of the Ty, when A; = 0.

(2). For the scale parameter case:

sup E;[T'SS|Ps)
XeQ
=k +kna | (G (ent)} " gk —mym)
(G (v/en)} G (v), (102)

where Gy(+) is the cdf of the T, when A\; = 1.
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5.5 An optimization problem and the performance of P,

In this section we first consider the optimization problem (77), which one must solve
in order to determine (n1,ng, hy,) which is necessary to implement P; and then we
consider the performance of P, relative to the corresponding single-stage procedure in
terms of the total number of sample sizes needed.

As we noted in Section 5.3, the LFC of the parametér vector X in 2(p) has not been
determined in the general case and hence we replace the exact infy.q P;[C'S|P,] by the
conservative lower bound on that probability given by the right hand side of (82). For
the special case of location parameter problems under some appropriate conditions the
optimization problem (77) can be written as follows.

For given k, m, § and P* choose integers n, and n, and a real d,,; > 0 to

minimize  kny + kng / (G (9 + du )Y H{ 222k — m, m)
—{Gm (y - dnl)}k l]dGm (y)
subject to /oo {Gn, (y + dny + 6}

6
S ey orrme) (y+1?2:1 3,5) b —m,m}dGn, (y)

+ [ (Gt + OV 4G amy ) — 12 P, (103)

where Gy (+) is the cdf of the T;, when A; = 0.
For the case of scale parameter problems under some appropriate conditions the
optimization problem (77) can be written as follows. For given k, m, 6 and P* choose

integers ny and ng and a real ¢,, > 1 to

minimize  kni + knz/ [{G, (en ) Y1 ﬁc;:(]c(i_)y); k—m,m}
~{G (/s )} 1dGny (v)
subject to /oo {Grn, (cn, 6y) }F 1

{Gnl (ciiyﬁ)y)’ k— m, m}dGm (y)
+/_W{G(n1+nz)(5y)}k_1dG(n1+n2)(y) —-1>P7, (104)

where G,(-) is the cdf of the T;, when A; = 1.
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As a measure of the efficiency of P; relative to that of the corresponding single-stage
procedure when both guarantee the same probability requirement (75), we consider the
ratio, termed relative efficiency(RE),

E;[TSS|P;]

kn,

where n, is the sample size needed in the single-stage procedure.

5.6 Applications

In this section we apply the results of previous sections to a problem of selecting the
population with the largest mean from k univariate normal populations.
Suppose that
m ~ N(ps,0%), i =1,...,k,

where the common variance o? is known and the experimenter is interested in selecting

the population having largest y;. We take

13 —
Ton="=3 Xij = Xin, i = pi.
'nj=1
Then v
n\y — [
Galylhe) = o(LL L),

where ® is the cdf of a N(0,1) random variable. Since this is a location parameter

problem, we take

p(p)=p—46, 6>0

and
h
hu(z) =z + —\/%-
so that

Qp) = {Elpm — pp-1y = 63

Noting that the distribution of the mean of a sample from a normal population has

MLR with respect to the location parameter, and using Theorem 5.2 and Remark 5.1
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it can be seen that
ik FalC S|P
> [T {a(y+h+ sy/mfo)}

B(y+/nifo) .
.I{Q(yih.{.g\/%/a-), k —m,m}d®(y)

+ [ {aly + sV Fralo)} T dd(y) - 1 (105)

and using Corollary 5.1 and Remark 5.4,

sup Ez[TSS|Pi)
BeQ ]
= kni + kny /_oo[{q)(y + h)}k_lI{%j’—_hL); k—m,m}
—{@(y — 1)} 11 (y). (106)

Hence the conservative non-linear optimization problem can be reduced to finding

integers ny,ne and a real number kA > 0 to

minimize  kny + kng ~ ®(y + k)Y —Q(EL; k—m,m
oo (y+h)

—{®(y — h)}*"'1d2(y) (107)

subject to /_ " [0y + b + 6y/mr/o) )

O(y+b/mi/o) .
I{ @(yih+6\/lhT/a)’ k—m,m}d®(y)

& [C 0+ e Tl ) 12 P (109)

for the given values of k, m, é§ and P*.

Table 30, Table 31, Table 32 and Table 33 contain the real valued solutions (71, 7, h)
of the above optimization problem, which are necessary to approximate the con-
stants (ny,ns,h) needed to implement P for P* = 0.75,0.90,0.95,0.99, k = 3,4,5,
m=2,3,4 <k and §/c = 0.1,0.5,1.0,2.0,4.0. All computations were carried out in
double-precision arithmetic on a Vax-11/780. The source program in Fortran for the

SUMT algorithm given by Kuerter and Mize (1973) was used to solve the non-linear
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optimization problem and Gauss-Hermite quadrature with twenty nodes was used to
compute the integrals.

Using above constants, we can define an elimination type two-stage procedure P;
as follows;

Stage 1: Take n; independent observations

from each 7;, 2 = 1,..., k&, and compute the £ sample means

xo 1 ZX“) i=1,...,k

iny i
ny j=1

Determine the subset I of {1,...,k} where

1
I= {7’[ in > ma’X{X[k m+1]n17_Ek])n1 ha/v nl]}

where
Tl) < 'SY(I)

[1]n1

denotes the ordered 752 Denote by 7y the associated subset of {my,... 7}

1. If 7 consists of one population, stop sampling and assert that the population

associated with YE;])M is best.

2. If 77 consists of more than one populations, proceed to the second stage.

Stage 2: Take n, additional independent observations X,(f ), j =1,...,ny, from

each population in 77, and compute the cumulative sample means
1, &
Xin = (3. X3 + Z xMNviel,
n
Jj=1

where n = ny +n,y. Assert that the population associated with max;e; X;n is best using

randomization to break the ties if necessary.
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The relative efficiency RFE of the two-stage procedure P, relative to the correspond-
ing single-stage procedure is given by

1 k-1 (k;l)

RE = pefbintm [ (5 3 T 0+ /ibifo)

=1 p=k—m v=1 JESE(‘l)

I {0 + b+ nbis/0) — B(y + \/41655/0)}

J€SL(3)

k
~ 18y — b+ /inbis/o) ()], (109)

J#i

A

where (i1, 7ig, h) is the real valued solution of the non-linear optimization problem (107)
and (108), )

8ij = pa — M,

SP(3) and S.(i) are defined as in Lemma 5.1 and i, is the real solution to

IR Jasblo)) dd(z) = P~.

Of course, RE depends on 6 and P* as well as [i.

Table 34 and Table 35 contain the values of the relative efficiency for the two special
cases, namely the equally spaced and slippage configurations, for P* = 0.75,0.90,0.95,0.99,
k=3,4,5,m=2,3,4<kand §/c =0.1,0.5,1.0,2.0,4.0. All computations were car-
ried out in double-precision arithmetic on a Vax-11/780 and Gauss-Hermite quadrature
with twenty nodes was used to compute the integrals. .

From Table 34 and Table 35, we see that for both configurations the values of RE
are less than or equal to one except for some smaller values of k, m and P*. Hence the
two-stage procedure is more efficient than the single-stage procedure in terms of the
expected total sample sizes. Furthermore, the effectiveness of the two-stage procedure

appears to be increasing as each of k, m and P* increases for fixed values of the others.
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Table 30: Constants to implement the two-stage procedure P, for selecting the largest

normal population: P* = 0.75.

P* =0.75

k|lm|sfe || w iz 3 ETSS
0.10 || 0.2135¢4+03 | 0.7261e+02 | 0.3291e401 | 0.785194e+03
0.50 || 0.8596e+01 | 0.2811e+01 | 0.4954e401 | 0.314109¢+02
3| 2 |1.00 || 0.2150e+01 | 0.7019¢400 | 0.4997¢+01 | 0.785274e+01
2.00 || 0.5372¢400 | 0.1758¢+00 | 0.4998¢+01 | 0.196318¢+01
4.00 || 0.1343¢400 | 0.4397e-01 | 0.4999¢+01 | 0.490796¢+-00
0.10 || 0.2445e+03 | 0.2163e+03 | 0.1883¢+01 | 0.138729¢+04
0.50 || 0.9954e+01 | 0.7900c+01 | 0.4974e+01 | 0.556164e+02
2 | 1.00 || 0.2490e+01 | 0.1973¢+01 | 0.4998¢+01 | 0.139041e+02
2.00 || 0.6219¢400 | 0.4941¢+00 | 0.4999¢+01 | 0.347603e+01
4 4.00 || 0.1555¢+00 | 0.1234e+00 | 0.5001e401 | 0.869007¢+00
0.10 [| 0.2042¢403 | 0.1266e+03 | 0.3474e+01 | 0.119542¢+04
0.50 || 0.8118e+01 | 0.5118e+01 | 0.4964e+01 | 0.478226+02
3 | 1.00 || 0.2020¢+01 | 0.1281e401 | 0.4987¢+01 | 0.119557e+02
2.00 || 0.5072¢400 | 0.3200e+00 | 0.4996¢+01 | 0.298891e+01
4.00 || 0.1268e4+00 | 0.7997¢-01 | 0.4999e+01 | 0.747229¢400
0.10 | 0.2717¢403 | 0.3554¢403 | 0.1348¢+01 | 0.198250e+04
0.50 || 0.1097¢402 | 0.1242¢402 | 0.4995¢+01 | 0.796946¢+02
2 | 1.00 || 0.2745e+01 | 0.3099e+01 | 0.4999e+01 | 0.199236e402
2.00 || 0.6861e+00 | 0.7752¢+00 | 0.5002¢+01 | 0.498091e+01
4.00 || 0.1715¢400 | 0.1939¢+00 | 0.5000¢c+01 | 0.124523e+01
0.10 || 0.2268¢+03 | 0.2159+03 | 0.2957e+01 | 0.177798¢+04
0.50 || 0.9038e+01 | 0.8648c+01 | 0.4985¢+01 | 0.711354e+02
5 | 3 |1.00 || 0.2259¢4+01 | 0.2164e+01 | 0.4996e401 | 0.177839¢+02
2.00 || 0.5650e+00 | 0.5403¢400 | 0.5002¢+01 | 0.444596e+01
4.00 || 0.1413¢400 | 0.1350¢+00 | 0.5001e4-01 | 0.111149e4-01
0.10 || 0.1894¢+03 | 0.1885¢+03 | 0.3067e+01 | 0.169096¢+04
0.50 || 0.7827¢4+01 | 0.7222¢+01 | 0.3071e+01 | 0.676307¢+02
4 | 1.00 || 0.1960¢+01 | 0.1780e+01 | 0.4957e+01 | 0.169222¢402
2.00 || 0.4906¢400 | 0.4444e+00 | 0.4989e+01 | 0.423056¢+01
4.00 || 0.1225e4+00 | 0.1113¢4-00 | 0.4998¢401 | 0.105764e+-01
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Table 31: Constants to implement the two-stage procedure Pj for selecting the largest

normal population: P* = 0.90.

P* = 0.90

k| m]s/0 | f fia 3 ETSS
0.10 0.3736e+03 | 0.2517e4+03 | 0.1651e+01 0.155980e+4-04
0.50 0.1501e402 | 0.9920e+-01 0.1664e+01 0.623911e4-02
3 2 1.00 0.3925e+01 0.1972e+01 0.4992¢4-01 0.157178e+02
2.00 0.9815e+00 | 0.4925e400 | 0.4999¢+4-01 0.392945e+01
4.00 0.2454e4-00 | 0.1231e4-00 | 0.4999e+-01 0.982363e+00
0.10 0.4424e-403 | 0.3859e403 | 0.1420e4-01 0.243824e+4-04
0.50 0.1774e4-02 0.1531e+02 | 0.1426e+01 0.975289¢4-02
2 1.00 0.4470e4-01 0.3344e+01 0.4995e+-01 0.245676e+402
2.00 0.1117e+401 0.8361e+00 | 0.4997e+01 0.614189¢e4-01
4 4.00 || 0.2793e+00 | 0.2091e+00 | 0.5000e+01 | 0.153547e+01
0.10 0.3468e-4-03 | 0.3290e+403 | 0.2055e+01 0.229674¢-+04
0.50 0.1396e+02 0.1303e+4-02 0.2056e+01 0.918684e+02
3 1.00 0.3465e+01 0.3087e4-01 0.4166e+01 0.231167e+02
2.00 0.8632e400 | 0.7757e+00 | 0.4990e+401 0.577984e+-01
4.00 0.2156e+00 | 0.1942e+00 | 0.4999e+01 0.144496¢e4-01
0.10 0.4923e+03 | 0.4830e+03 | 0.1419e+01 0.332487e+4-04
0.50 0.1962e+02 0.1783e+02 0.4993e+4-01 0.133728e+403
2 1.00 0.4905e+01 0.4453e4-01 0.5001e401 0.334320e+4-02
2.00 0.1226e+01 0.1114e+01 0.5003e+-01 0.835800e+4-01
4.00 || 0.3064¢+00 | 0.2787¢400 | 0.5001e+01 | 0.208950e+01
0.10 0.3891e+403 | 0.4128e+403 | 0.2085e+01 0.312417e+404
0.50 0.1542e+02 0.1609¢e4-02 0.4959e+01 0.125383e+4-03
5 3 1.00 0.3857e+01 0.4021e+01 0.4994e+01 0.313458e+4-02
2.00 0.9643e+00 | 0.1005e+01 0.5000e4-01 0.783644¢+4-01
4.00 0.2411e400 | 0.2513e+400 | 0.5002¢e4-01 0.195911e+01
0.10 || 0.3443¢+03 | 0.4035¢4+03 | 0.1957e+01 | 0.313107e+04
0.50 0.1388e+02 0.1599e+02 0.1953e+01 0.125241e+403
4 1.00 0.3472¢+01 0.3996¢e+4-01 0.1953e4-01 0.313102e4-02
2.00 || 0.8680e+00 | 0.9989e+00 | 0.1954e4-01 | 0.782756e+01
4.00 || 0.1998¢+00 | 0.2460e4+00 | 0.4995¢+01 | 0.198308¢+01

110




Table 32: Constants to implement the two-stage procedure P, for selecting the largest

normal population: P* = 0.95.

klm|s/c ] a ip h ETSS

0.10 || 0.5268e+403 | 0.3670e+4-03 | 0.1390e+01 | 0.217158e404
0.50 || 0.2109e+4-02 | 0.1467e+02 | 0.1388e+01 | 0.868630e+02
3] 2 | 1.00 || 0.5409e4-01 | 0.2915e401 | 0.4739e+01 | 0.220558e4-02
2.00 |j 0.1352e+401 | 0.7291e+400 | 0.4997e+01 | 0.551399e+401
4.00 || 0.3381e+400 | 0.1821e+00 | 0.4999e401 | 0.137850e4-01
0.10 || 0.6098e+03 | 0.4848e403 | 0.1364e+4+01 | 0.326506e+-04
0.50 || 0.2440e+02 | 0.1713e402 | 0.4988e+01 | 0.131835e4-03
2 | 1.00 || 0.6099e+401 | 0.4281e+401 | 0.4995e4-01 | 0.329587e+402
2.00 || 0.1525e+4-01 | 0.1071e+401 | 0.4998e+401 | 0.823968e+401
4 4.00 || 0.3812e4-00 | 0.2676e4-00 | 0.4999e+01 | 0.205992e+-01
0.10 || 0.4893e+03 | 0.4574e+403 | 0.1755e4-01 | 0.314757e+04
0.50 || 0.1955e+02 | 0.1833e402 | 0.1755e¢4-01 | 0.125903e+03
3 | 1.00 || 0.4891e-+01 | 0.4579e+01 | 0.1753e+4-01 | 0.314757¢4-02
2.00 || 0.1223e+401 | 0.1144e+401 | 0.1756e+01 | 0.786892¢+-01
4.00 || 0.2905e+00 | 0.2773e400 | 0.4998e+01 | 0.199393e4-01
0.10 || 0.6720e4-03 | 0.5620e+03 | 0.1444e+01 | 0.437062e4-04
0.50 || 0.2660e+02 | 0.2140e+402 | 0.4981e401 | 0.175772e403
2 | 1.00 || 0.6649e+401 | 0.5349e+01 | 0.4999e4-01 | 0.439431e4-02
2.00 || 0.1662e+01 | 0.1338e+401 | 0.4999e+01 | 0.109858e+-02
4.00 || 0.4154e+400 | 0.3347e400 | 0.4999e+01 | 0.274644e4-01
0.10 |} 0.5321e4+03 | 0.5408e4-03 | 0.1890e+01 | 0.416541e+04
0.50 j| 0.2125e+402 | 0.2169e402 | 0.1890e+-01 | 0.166616e4-03
5 3 | 1.00 || 0.5191e+01 | 0.5312e+01 | 0.4993e+01 | 0.418897e+-02
2.00 || 0.1297e+401 ]| 0.1329e+4-01 | 0.5000e+01 | 0.104724e+02
4.00 || 0.3243e400 | 0.3321e4-00 | 0.4999e+01 | 0.261811e+-01
0.10 || 0.4994e+03 | 0.5332e+03 | 0.1689¢+01 | 0.422098e4-04
0.50 §| 0.1989e+4-02 | 0.2144e402 | 0.1691e+01 | 0.168839e+03
4 | 1.00 || 0.4975e+01 | 0.5358e+01 | 0.1690e+01 | 0.422097e+4-02
2.00 || 0.1244e+01 | 0.1339e+401 | 0.1691e+01 | 0.105524e+402
4.00 || 0.2652¢4-00 | 0.3431e+400 | 0.4984e+01 | 0.269847e+01
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Table 33: Constants to implement the two-stage procedure P for selecting the largest

normal population: P* = (.99.

&

m|éfc | iz h ETSS

0.10 || 0.9227e403 | 0.578%+03 | 0.1267e401 | 0.365524e+04
0.50 || 0.3706e+402 | 0.2288e+4-02 | 0.1264e+401 | 0.146207e+4-03
3 2 1.00 || 0.9266e+01 | 0.5720e+01 | 0.1265e401 | 0.365518e+02
2.00 || 0.2289e+401 | 0.1247e4-01 | 0.4992e+01 | 0.936116e+401
4.00 |} 0.5723e+00 | 0.3117e+00 | 0.4999¢+01 | 0.234029e+401
0.10 §i 0.1024e+404 | 0.6701e403 | 0.1388e+01 | 0.524630e+04
0.50 || 0.4042¢402 | 0.2577c+02 | 0.1923¢+01 | 0.210684e+03
2 1.00 {} 0.1013e+402 | 0.6256e+01 | 0.5003e401 | 0.530281e-+4-02
2.00 |} 0.2533e+01 | 0.1563e+01 | 0.5001e+01 | 0.132570e+02
4 4.00 || 0.6332e+00 | 0.3908e+00 | 0.4998e+01 | 0.331426e+01
0.10 || 0.8580e+403 | 0.7081e+403 | 0.1566e+4+01 | 0.517573e+04
0.50 || 0.3423e+402 | 0.2841e402 | 0.1573e+01 | 0.207029e+03
3 | 1.00 || 0.8562e+01 | 0.7097e+401 { 0.1572e4-01 | 0.517572e+02
2.00 || 0.2141e401 | 0.1775e+401 | 0.1570e+401 | 0.129393e+02
4.00 || 0.4831e400 | 0.4575¢4-00 | 0.4999¢+01 | 0.330475e+01
0.10 || 0.1094e+04 | 0.7530e+03 | 0.1538¢+01 | 0.685040e-+04
0.50 || 0.4353e4+02 | 0.2889¢+02 | 0.5027e+01 | 0.275422¢+03
2 ] 1.00 || 0.1088e¢+02 | 0.7224e4-01 | 0.5007e+401 | 0.688555¢+402
2.00 || 0.2720e+401 | 0.1807e+401 | 0.5001e+401 | 0.172139e+02
4.00 }} 0.6800e+-00 | 0.4517e+400 | 0.4999e-+4-01 | 0.430347e+401
0.10 || 0.8880e+403 | 0.8004e403 | 0.1814e+01 | 0.663844e404 .
0.50 || 0.3541e402 | 0.3219e+402 | 0.1819e+01 | 0.265537e403
5 3 | 1.00 ]| 0.8545¢+01 | 0.8060e+01 | 0.4998e¢+01 | 0.669026e+02
2.00 || 0.2136e+401 | 0.2016e+01 | 0.4997e+01 | 0.167257e+402
4.00 || 0.5340e+00 | 0.5038e+00 } 0.5000e+01 | 0.418141e+01
0.10 || 0.8854e+03 | 0.7841e4-03 | 0.1519e4-01 | 0.680016e+04
0.50 || 0.3536e+02 | 0.3144e+402 | 0.1521e401 | 0.272006e+03
4 | 1.00 {§ 0.8841e+401 | 0.7859e+01 | 0.1520e+01 | 0.680015e-402
2.00 || 0.2210e+401 | 0.1964e4-01 | 0.1522e4-01 | 0.170004e4-02
4.00 || 0.5527e+00 | 0.4909¢+00 | 0.1520e+01 | 0.425009e+4-01
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Table 34: Relative efficiency of the two-stage procedure P, for selecting the largest

normal population: Equally spaced configuration.

Equally Spaced Configuration
p* k| m §/o
0.1 o5 | 10 [ =20 4.0
2 1.25649 | 1.27244 | 1.27255 | 1.27255 | 1.27255
2 1.09759 | 1.22689 | 1.22699 | 1.22698 | 1.22701
0.750 3 1.00794 | 1.04971 | 1.04999 | 1.05007 | 1.05012
2 0.97140 | 1.16714 | 1.16716 | 1.16717 | 1.16716
5 3 0.94499 | 1.03442 | 1.03459 | 1.03468 | 1.03465
4 0.83862 | 0.84180 | 0.95629 | 0.95751 | 0.95789
2 0.89503 | 0.89718 | 1.05021 | 1.05026 | 1.05026
2 0.83675 | 0.83802 | 1.01745 | 1.01744 | 1.01745
0.900 3 0.74452 | 0.74594 | 0.90249 | 0.93703 | 0.93729
2 0.80967 | 0.98407 | 0.98415 | 0.98416 | 0.98415
5 3 0.71673 | 0.89790 | 0.89903 | 0.89921 | 0.89928
4 0.64800 | 0.64984 | 0.64995 | 0.64998 | 0.84687
2 0.80360 | 0.80374 | 0.99088 | 0.99442 | 0.99445
2 0.77834 | 0.96054 | 0.96059 | 0.96067 | 0.96069
0.950 3 0.67905 | 0.67871 | 0.67879 | 0.67900 | 0.89269
2 0.76982 | 0.93225 | 0.93246 | 0.93250 | 0.93251
5 3 0.66193 | 0.66138 | 0.84917 | 0.84946 | 0.84945
4 0.61714 | 0.61578 | 0.61589 | 0.61597 | 0.79319 -
2 0.73595 | 0.73814 | 0.73814 | 0.93360 | 0.93380
2 0.73343 | 0.74272 | 0.89843 | 0.89840 | 0.89822
0.990 3 0.63625 | 0.63518 | 0.63545 | 0.63550 | 0.81908
2 0.73263 | 0.87565 | 0.87525 | 0.87513 | 0.87507
5 3 0.62080 | 0.61954 | 0.77992 | 0.77986 | 0.77998
4 0.60718 | 0.60639 | 0.60651 | 0.60648 | 0.60666
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Table 35: Relative efficiency of the two-stage procedure P for selecting the largest

normal population: Slippage configuration.

Slippage Configuration
pr k| m §/o
0.1 o5 | 10 | 20 4.0
2 1.26655 { 1.27302 | 1.27307 | 1.27307 | 1.27307
2 1.17637 | 1.22825 | 1.22829 | 1.22827 | 1.22829
0.750 3 1.04978 | 1.05599 | 1.05603 | 1.05602 | 1.05604
2 1.08908 | 1.16892 | 1.16893 | 1.16893 | 1.16893
5 3 1.02243 | 1.03371 | 1.03371 | 1.03372 | 1.03373
4 0.96786 | 0.96816 | 0.98471 | 0.98475 | 0.98474
2 0.94591 | 0.94740 | 1.05269 | 1.05270 | 1.05270
2 0.90927 | 0.91006 | 1.02158 | 1.02155 | 1.02154
0.900 3 0.86804 { 0.86831 | 0.95678 | 0.96090 | 0.96090
2 0.88929 | 0.98914 | 0.98915 | 0.98915 | 0.98915
5 3 0.84654 | 0.91784 | 0.91788 | 0.91788 | 0.91789
4 0.81689 | 0.81689 | 0.81690 } 0.81695 | 0.92894
2 0.84638 | 0.84641 | 0.99831 0.99946 | 0.99947
4 2 0.83358 | 0.96810 | 0.96807 | 0.96811 | 0.96812
0.950 3 0.78521 | 0.78512 | 0.78500 | 0.78526 | 0.93630
2 0.82922 | 0.94108 | 0.94105 | 0.94109 | 0.94110
5 3 0.77670 | 0.77651 0.88763 | 0.88767 | 0.88768
4 0.74590 | 0.74568 | 0.74563 | 0.74571 | 0.91389 -
2 0.75649 | 0.75825 | 0.75827 | 0.94765 | 0.94773
2 0.76078 | 0.78319 | 0.91619 | 0.91619 | 0.91606
0.990 3 0.69217 | 0.69180 | 0.69195 | 0.69191 | 0.91102
2 0.76486 | 0.89414 | 0.89416 | 0.89418 | 0.89414
5 3 0.69319 | 0.69278 | 0.85922 | 0.85925 | 0.85925
4 0.66898 | 0.66852 | 0.66861 | 0.66868 | 0.66871
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