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1. Introduction: Since the introduction of the bootstrap procedure by Efron (1979, 1982),
there has been a fast growing literature on the topic. Empirical evidence has suggested
that the bootstrap performs usually very well. See e.g. Efron (1979, 1982), Bickel and
Freedman (1983), Daggett and Freedman (1984), Freedman and Peters (1984a,b,c). Si-
multaneously, there have been attempts to provide theoretical justification as to why this
method performs well. These results provide an insight into the working of the bootstrap
procedure. We would like to mention the papers by Bickel and Freedman (1980, 1981),
Singh (1981), Beran (1982) and Babu and Singh (1984). They deal with accuracy of boot-
strap approximation in various senses (e.g. asymptotic normality, Edgeworth expansions
etc.) mainly for sample mean type statistics (or their functionals), quantiles etc. in the

i.i.d. situation.

The bootstrap cannot, in general, work for dependent processes; Singh (1981) provides -
an example. However, it was anticipated that it would work if the dependence is taken
care of while resampling. Freedman (1984) confirms this by showing that it does work
for certain linear dynamic models (e.g. for two stage lease squares estimates in linear
autoregressions with possible exogeneous variables orthogonal to errors). To the author’s

knowledge, this is the only theoretical work available for bootstrap in dependent models.

In the absence of distributional assumptions on the errors, the autoregressive param-
eters are estimated by the least squares method. The structure of the process enables us
to resample the errors and then pseudo-data can be generated. We show that the distri-
bution of the parameter estimates can be bootstrapped with accuracy o(n_l/ 2), thereby
improving the normal approximation. The idea is to develop one term Edgeworth expan-
sion for the distribution of the parameter estimates and its bootstrapped version, and then

compare these two.

2. Preliminaries

Let Y; be a stationary autoregressive process satisfying
P
Yi=) 0Yii+e (2.1)
=1
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where we assume that

(A1) (e4) are iid. ~ F,,Ee; = 0,Ee? = 1,Eef(8+1) < oo for some s > 3.

(A2) (e1,€2) satisfies Cramer’s condition, i.e. for every d > 0, there exists § > 0 such that

sup |E exp (it'(e1,€%))| < exp (-6).
lill>d

4 .
(A3) Roots of ) 8;2P~7 = 0 lie within the unit circle. Here 0, = 1.

=0

Remarks on the assumptions

2.1.

2.2.

2.3.

2.4.

The stationarity of the autoregression is assumed at this stage to keep the computa-

tions simple. This assumption can be dropped. See Remark 3.11.

The assumption that (;) have mean 0 and variance 1 seems too rigid. It is possible to
drop this assumption and allow arbitrary unknown mean and variance. The resulting
proofs shall be more messy since we have to tackle the estimates of these parameters
too. However, the results do go through, since these estimates are nice functions of

the observations (Y;). See Remark 3.10.

The minimum moment assumption we need is E€§ < co, which at first glance might
seem t00 strong. However note that the l.s.e. involve quadratic functions of ¢; (YiYi_q
involves £?) and we need (s + 1)** moment of these with s at least 3. This is in
contrast to the i.i.d. situation where existence of s** moment suffices. The (s + 1)**
moment is needed because Y;’s are dependent. (See Gotze and Hipp (1983)). We have
stated our assumption in terms of s > 3 since under the assumption we can obtain
Edgeworth expansion for the distribution of the ls.e. upto the order o(n_(s_z)/ %
which is of independent interest. However there seems to be a problem in obtaining

such an expansion for the bootstrapped distribution.

Our results are stated and proved for real-valued processes. The results continue
to hold for vector-valued processes. The proofs are similar with added complexity in

notations.



Given (Y1—p,...,Yy), the least squares estimates 0y,,,. . ., Opn of 01,...,0, are obtained

by solving

01r YY: 1Yy

sl: )= (2.2)
0pn EYt—th

( XY2, YYiaYi o ... EYt—IYt—p\

YY: oY TY2Z, e XY oY,

where S,, =
\Z¥i,Yii ... ... zvE, )

The bootstrap distribution of (6;,,..., 0,r) is obtained as follows.
The errors &; are “recovered” by
P
&=Y:—) binYiist=1,...,n.
i=1
Let G,,(-) denote the distribution function which puts mass 1 /n at each &;..

n
Let Fi(z) = Gp(z —€n),En =n"1 Y &.

=1

n?

Let (7),¢ = 0,£1,42 be i.i.d. F}(-). (Strictly speaking we should write * , but we shall

drop the suffix n to ease notations).

Given (e7), generate Y;* by

p
Y =) 0¥ +eli=0,41,42,....
=1

Let 07, = (01n,...,0pn). Pretend that 8, is unknown and obtain its ls.e. 6%. In
general the presence of (*) will denote that we are dealing with the bootstrap quantity

and hence expectation etc. are taken under (&}) i.i.d. F} given Yp,Y1,...,Y,.

Let 0; = Cov(Y,,Y;),s =0,...,(p—1).



It is well known that

O, 01 ... Op—-1
Op ... Op—2 ) . .
E = ) is positive definite.
O,

Let %7 denote its bootstrap version, i.e. o} = Cov(Y},Y).

nl/2xl/ 2(8,, — 0) has an asymptotic normal (0,I) distribution under our assumptions.
In fact we will show that an Edgeworth expansion can be developed for its distribution
function. Then we will show that an analogous expansion is valid for its bootstrapped
version nl'/ 2y (0r — 05). This will help us to study the accuracy of the bootstrap approx-
imation. In practice the (conditional) distribution of n/2%* (8% — @,,) is approximated to
any desired degree of accuracy by drawing repeated sets of observations and forming the

histogram.

Note that the least squares equation can be written as

010 — 04 YYi ¢
Sn : = :
0pn — 0p E},t—-pst

Define Xit =Y ie0,0=1,...,p

2
Xpt1,6 =67 — 1

th’_ = (X]_t,...,Xp+1,t), D] = O'(E'j)-

3. Main results: We first obtain an asymptotic expansion for the distribution of
n
n=1/2 3" X, by using the following results due to Gotze and Hipp (1983).
=1

Let (X;) be R* valued random variables on (12, 7, P) and let there be o-fields D; (write
b
o( U D;j) = D?) and a > 0 such that
i=a

C(l) EX:=0 WVt
C(2) E||X¢||**! < Bsq1 < 0oVt for some s > 3
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C(3) IYnmeDpt 1 3 E||Xn — Yam|| < c.exp (—am)

C(4) VAeD2,,,BeD,,,|P(AN B) — P(A)P(B)| < c.exp (—am)

C(5) 3d,6 >0 V||t|| > d,E|E exp (i’ 73" X;)|Dj,j#£n|<1—6

j=n—m
C(6) VAED:"';’,Vn,p,m, E|P(A|D;,j #n)— P(A|D;,0 < |j —n| < m+p)| < cexp (—am)
C(7) limp_oo D(n~Y23 7 | X;) = T exists and is positive definite.

Define the integer s, < s by

s :{s if s is even
° s—1 if sis odd.

Let 9y, o be the usual function associated with Edgeworth expansions. See Gotze and

Hipp (1983). Let x5 be the normal density with mean 0 and dispersion matrix .

7
Define S, = n=1/2 ¥ X,.
i=1

The following two results are due to Gotze and Hipp (1983) (henceforth referred as GH).

Theorem 3.1, Let f : R* — R denote a measurable function such that |f(z)] < M(1 +
|| z[|*°) for every zeR¥. Assume that C(1)—C(7) hold. Then there exists a positive constant
6 not depending on f and M, and for arbitrary K > 0 there exists a positive constant C
depending on M but not on f such that

| Ef(Sn) — / fdn,s| < Cw(f, n_K) + o(n_(sf2+5)/2)
where w(f,n %) = / sup (|f(z+y) — f(2)] : Jy| < n E)ps(z)de.

The term o(-) depends on f through M only.

Corollary 3.2: Under assumptions C(1)-C(7) we have uniformly for convex measurable
C C R,

P(81£C) = tn,s(C) + o(n~(72/2).
Under our assumptions,

oo
Yi=) berp,t=0£1,42,...
r=0



o0
where J¢, & > 0 and an integer N, such that VN > N,, > |6;] < cexp(—aN). Conditions
r=N
C(1) - C(4) and C(6) can be easily checked for X;’s defined by equation (2.3). We now

verify C(5) for Xy’s.

[o/0]
Clearly Y, _ie; =¢n Z bren—i—r+Bifj=n

r=0 -

= enbj—ing; +Bifj—i>n
=fifj—i<nandj>n.

where § is a random variable independent of ¢,.

n+m p 14
Hence Z Z tY;_ie; = €p Z(tiAin + Binm)
j=n i=1 1=1

oo m—i
where Ain = Z 51'571,—1.'—7', Binm = Z 6r€r+‘i+naz. =1,...,p.
r=0

r=0

Note that for all 7,¢' =1,...,p, A;, and By, are independent and
Zyn = (Ain+ Binm,i=1,...,0) 3 (Ziy + Zinyi=1,...,p)
where Z;; and Z;, are independent and
Cov(Z;1,Z;1) = 0;—; = Cov(Z;s, Zja).

Hence the limiting dispersion matrix of Z,,, is positive definite.

n+m
Thus E|E exp(st’ Z X:)|D;,5 # n|
Jj=n—m
= E|E exp(i(t1,...,tp)enZnm + ttpr1€2)|€j, 5 # 7 (3.1)
< exp(=6) P([[tnm] > d) + P([[tnm|| < d) (3-2)

where tpm = ((t1,---38p) Znmstpr1)-
P
Suppose that ||t]|* = Y° ¢Z +12,; > d? = d?/¢? where 0 < £ < 1 is to be chosen.
1=1
Then P(||tnm| > d) > P((a'Zpm)? > €%) where ||a| = 1.

7



Let b;,7 = 1,...,(p + 1) be points in RP and r > 0 be such that P(Z;1 + Zj2 €B(b;,r)
Vi=1,...p)>0,Vi=1,...,(p+1) and B(b;,r) are such that not all (b1y...,bpt1) liein
any given hyperplane of dimension (p — 1). This is possible since the dispersion matrix of

(Zi1+ Ziz,t = 1,...,p) is positive definite.

Chose £ sufficiently small. Then for any a with ||a| = 1, {z : (a’z)? < £2} does not intersect
at least one of the balls B(b;,7).

Hence P((a'Zpm)? > €2) > i=1,Tf80+1) P(ZpmeB(b;,r)) and lim inf of the right hand side

is positive. Thus there exists n,,m, large enough and € > 0 such that
P([ltam| = d?) > e> 0 V||t||2 > d2, n > no,m > m..

Combining this with (3.2) verifies condition C(5) for X;’s defined in (2.3).

n
. —1/2 _ by 0 . .pn . ap s
Further Jim D(n~Y/ ;—1 X;) = < 0 V() ) ® positive definite verifying C(7).

Thus Theorem 3.1 and Corollary 3.2 are valid for

n~1/2 ZXt, with X}s as defined in (2.3). (3.3)
t=1

Remark 3.3

The above arguments also show that if conditions (A1) and (A3) hold and e, satis-
fies Cramer’s condition, then the distribution of n—1/28,, (6, — 0) admits an Edgeworth

expansion of order o(n~(5=2)/2),

Our next task is to derive Edgeworth expansion for the bootstrapped version of X’s.
We will derive this expansion only for the case p = 1 to avoid notational complexity.
n
Let H,(-) denote the characteristic function of n—1/2 } Zj, where Z7 is a certain

i=1

truncation (as in (GH)) of X} = (Y;_1€},65% — 03%). Here 0} = E*(e}2). We omit the

explicit definition of ZJ’-" since this shall not be used in subsequent calculations.

Lemma 3.4: V|t|| < C.n*° we have
|D*(H(8) — 95, 5(0))] < C.(1 + B1.) (1 + ||t]| ) ezp(—C[t]2)n ="~ 1/2

8



for some £° < 1/2, and C depends on the bounds of 8}, (= 4th moment of X7). 1,5;;,3(t)
denotes the Fourier transform of ¥p,3, the signed measure associated with the Edgeworth

expansion of X¥. D* is the usual differential operator with la| < 6.

This same lemma is proved in (GH) and hence we skip the proof.
Let I} = {t :Cn® < 2] < C’lnl/z}
I, = {t :Cnt/2 < It < e"lnl/z} where C is to be chosen later and 0 < e < 1
is fixed.

Lemma 3.5: Under (A1), (A2) we have, for almost every sequence Y,,Y3,... and la| <6,

/ IDH? (8)|dt = o(n~/2).

tEIz

Proof: A careful look at the proof of Lemma 3.43 of GH shows that it suffices to show
that
E*|E*A,|D;, 5 # Jp| < 1 uniformly in tel; and p=1,...,¢
jp+m
where A3 = exp(it'n~1/2 3> Z5). For definition of £ and j,, one can consult (GH). We

. J=Jjp—m
omit these definitions since they are not used explicitly in our calculation.

But note that the effect of truncation is negligible and it suffices to deal with
Jp+m
bnm = E*|E*exp(it'n—1/2 Z X7)les,d # dpl-
j=jp—m
00 ntm
If F;;,, is the distribution of tg_jo Oher s+ X 85,~17"¢} then writing t} = t;n=1/2,¢} =

j=n+1
tan~ Y2 we have

bpm = /l/ exp (i1 zy + ity %) dF;; (2)|dF},, (v) (see (3.1))

o0
Note that a.s., Fy;,,, = F where F is the distribution of Zy + Z, Z1, Z» iid Z; £ 3 otey

=0
and by Levy’s theorem F is continuous. Further F; = F, a.s.. Since the convergence of

F;. . to F is uniform we have
Opm — 6 = / |/exp(it'1:z:y + it'zzz)dFo(:v)ldF(y) a.s.

9



uniformly on compact sets of (},t}) i.e. uniformly over tel, and by Cramer’s condition

6 < 1. This proves the lemma.

Lemma 3.6: Assume (A1), (A2) hold. For sufficiently small C;, we have for almost every

sequence Y,,Y1,...,

/ ID2H(2)|dt = o(n—/2).

tSIl

Proof: As in Lemma 3.5, it is sufficient to deal with original variables instead of trun-
cations. We proceed as in Lemma 3.5 following GH but use a different estimate for

E*|E* A} 21D} >3 # Jp| (see Lemma 3.5 for definition of Ap)- We have to deal with

bnm = E*|E* exp(itin~Y2e% (A% + BE,) + iton~1/2 ei?)les, i # n

n+m

oo
* t % * _ J—1—n _*
where A; = g 0r6n_1_sand B, = E 0 €;

n IR
Jj=n+1

bum < P*(|An + B, | 2 B)

+ E* |E*exp(z't1n—1/2s;(A; + B!, )+ itzn—1/2e;2)|s; i#n|

I(|A7 + Byl < B)

For large b, the first term is < 1/2.

In the second term, the inner expectation equals

t, 08129l

1= 5 D(ensen’Vtn + 5375 B llen, 2|°

where ¢, = (t1(A}, + B},,),t2) and |y] < 1.

10



In the above expression the last term is less than or equal to

1. tl3
Ebs%uén where p3, = E*||(e},€:7)||®
b3C, JIt|| -8
S.’BTI% a.s. noting that pj, *3 E|(e1,€?)|®

t 2
< a&, where a is as small as we please by taking C; sufficiently small.
n

Note that D(e};,e:2) 3" D(ey,€2), which is positive definite, and on {|AZ + B..| < b} we

have,
tn

b? . .
|2nD(s:,€;2)tn| < ID(s:,e;2)|%||t||2 <1if Cy is small.

Hence second term of §;;,. is bounded by

t 2 * ]- * % E3 ok
62nm = a% +FE (1 - %t;D(En’Erf)tn)I(lAn + Bnm| S b)

t 2 . 1 * *
< a”n”_ + F (]_ — EI(IAn + B:,ml < b)Al(Zn)”thZ)
where A; (X} ) = smallest eigen value of D(g},, €}%) and hence A (Z}) %3 A1(D(e1,€%)) > 0.

If b is large enough so that P*{|A}, + B},,| < b} > 1, we have

[E* [(4;, + Brm) (| Ay, + Bl < B)] — E*(4} + B;,,)7]
* * * * * * 1/2

< [B*(45 + Bl)*P* (145 + Bl| > 1))V

<7, where n can be made arbitrarily small by choosing b large enough.

(Note that E*(A% + B,,)* %3 E(Z, + Z§)4, where Z; and Z, are iid, Z; £ t§0 ftey).
And thus |
brom < o2 1 57 (1= 221145 4 B <08 + 3043 + B0
This term in turn is dominated by
ozW +1 —")'W (where v > a)
n n

2
< exp(—5@)-

11



This shows that 6,:,, < p + exp(—§6 @) where p < % A look at the proof of Lemma 3.43
of (GH) shows that this proves Lemma 3.6.

Our next lemma is stated in Babu and Singh (1984) and is a modified version of a

lemma in Sweeting (1977).

Lemma 3.7: Let P and K be probability measures and Q be a signed measure on RF.
Let f be a measurable function such that M,(f) < oo for some s > 2. Further let
a=K(z:||z]| <1) > % and 8= [|z|°*t2K(dz) < co. Then for any 0 < ¢ < 1,

| / fd(P — Q)| < (2a— 1)~ [B{1 — a)/a]~** + geB
+B [+ el (P - Q)l(d2)

+ sup /w(f,2s,z——y)|Q|dy

ll=||<et/2
where  K,(dz) = K(e~'dz) and B = 9°M,(f) / (1 + [|]*)(P + |Q])dz,
M,(f) = Slal;p(l + ll2[1°) 71 f (=)
Further we have for any 0 < ||z]| < 1,0 < 6§ < 1,
[ w62 - weay <3 [w(r, 600w
+ CoMy(f) o]+ exp(— 2 2] ).

Combining Lemmas 3.4-3.7 we can say that Theorem 3.1 and Corollary 3.2 hold for
S, =n~"Y2TX} for s = 3. ... (3.4)

To study the accuracy of the bootstrap approximation we need to compare two Edge-
worth expansions and for which the following lemma is needed. This lemma is due to Babu
and Singh and is essentially a modified version of a lemma of Bhattacharya and Ghosh
(1978). A natural extension of the above result to the multidimension case is true and

shall also be used.

Lemma 3.8: Let £ = (¢y,...,£) be avector L = (L;;) be a kxk matrix and @ be a polyno-
mial in k variables. Let M > maz(|Vi;|, |uifl, [l | Lis], |aa]) where (Vi) =V, (uyy) = V1

12



and a) are coefficients of Q. Let [¢1] > £, > 0 and b, = (£1n1/2)‘1. Then there exists a
polynomial p in one variable, whose coefficients are continuous functions of £;y Lij, Vij, ugj

and a) such that

u

/ O +n7Q(EN ey () = [ (14 bupw)u)dy + o7,

{z:e-z+n—1/2z'Lz<u(Z'V£)1/2} —oo
The o(-) term depends on M and £,.

We now state and prove our main result.

Theorem 3.9: Under assumptions (A1) - (A3) for a.e. (Y;),

sup |P*(n1/22;‘;l/2(0: —0,) <1z)— P(n1/221/2(0n —0) < z)| = o(n_l/z).

Proof: We first give the proof for the case p = 1. We have an Edgeworth expansion of

n 7
n_l/z(jgl Y €5, Z (6;52 —0:%)). (See equation (3.4)).

Hence for a.e. (Y3),

swp [P*(S7 < 0)— [ (1+n7/2p(z, m))dtr; (2)] = oln™?) (3.5)

—00
where p(z,n) denotes a polynomial in = whose coefficients are continuous function of the

moments of Yj*_ls;f and (6;52 — 022) of order 3 or less and

* * * % E:;, 0

Also note that by (3.3)
~1/2 (o —1/2 (X 0
sup |P(Sn, < z) — | (1+n""?p(z))d®r(z)| = o(n~ /%) where I' = 9
z 0 V(El)

—o0
where p(z) denotes a polynomial of the same form as p(z, n).

13



Note that for p =1, = (1 —6%)"1, 5% = (1 —62)1.
Xi(1—02)~1/2

1/2(1 _ /209
n ( ) ( ) 1+n_1/2(20X*+X2)—|—A*

where X =n"Y/2 E Y e}

t=1
n
X; =072 (e —07)
t=1
AL =n"1 (Y2 Y}
Let sz{X*|>clogn} 1=1,2
B; = { 3/4|A*| > clog n}

By (3.4) P(B}) = o(n~1/?),i = 1,2, a.s.
Also P(B%) = o(n~1/?) a.s.
On Bi¢n Bi° N Bi°
(1—02)"YV21/2(07 — 0,) = (U'X* + n YV2XHA*X*)(TE0) Y2 4 o(n~Y?)  (3.6)

! __ *] * _20n, _1/2
where ' =(1,0), X" =(X7,X3),A (_1/2 0 > and

n= (U vim)

Analogous representation holds for (1 —62)~'n'/2(g,, — §). Now note that the moments of
(XF_1€5, €5 — 0;%) (under Fy) converges almost surely to those of (X;_i&}, €7 —1) by
ergodic theorem and the fact that ,, — 8 a.s.. The proof now follows from this observation

and Lemma. 3.8.

For p > 1, we need a representation of the form (3.6) and then we can apply (3.3),

(3.4) and the multidimensional version of Lemma 3.8.

Yt €t
. Y1 . 0
Define Y; = ] AR
Yt-—p+1 pXx1 0 pX1



Clearly (2.1) is equivalent to Y;=BY;_ 1+ Z: (3.7)

n . . n . ~
Let A, =n! tE v;Y/!, B,=n"1 E i—1Yy .
=1 t=1

n
This gives B, — BB,B' =n~ Z Z:Z! + 2Bn~1 Z Yi 12! +0,(n" 1) (3.8)
= t

Note that & = EY;Y/ and satisfies & = BEB + I* where I* = ((1) 0'(‘)'())

Equation (3.8) yields
n . . n . .
B,— %+ B(B,—X)B' =n"1) (Z:Z{—I')+2Bn~' Y _Y;_1Z{+0,(n"")
t=1 t=1

which gives

B,-YX=G;

n
n~1> (Z:2{ - I*) + 2Bn~ IZYt 12! Gg +0,(n™Y)
=1 i=1

where G1,G32 are independent of n but depend on 8y4,...,0,.

n n
Let_ V’: = (ZXlt,...,ZXpt) .
t=1 t=1

n . -1
> Yi .Y,
Then n*/%(0, — 0) = n=1/2y, | =2
n
=27 I+ (Bn—Z)=7Y] a2y, (3.9)

~ o~ ~ - -1
=57 [T+ Gi(n (42 - 1) + 2Bn7 5%, 1 2)Gen 71| 01,

n .
Let Bi={n_1/2|ZXit|chogn},izl,...,(p—l—l).

t=1

n

Since we have asymptotic expansion for the distribution of n~1/2 }_ X, it easily follows
t=1

that

P(B))=o(n"Y?,i=1,...,(p+1).

15



P
On () B{, by equation (3.9),
L

1]

T X1 VIV,
n/%(9, — 0) = n=Y/2r"1 : +n73/2 : + o(n"Y/?) (3.10)
T Xpt1,t V!L,V,

An analogous representation holds for the bootstrapped version. This completes the proof

of Theorem 3.9.

Remark 3.10

The assumptions Ee; = 0, Es? = 1 may seem to be too restrictive. Actually these
restrictions were imposed to keep the proofs simpler. We sketch below how the case

Ee; = p, Ec? = 0% can be tackled. We illustrate the case p = 1 only.
The model in this case is,

Y; =0Y:_1 + e + p where (e;) satisfies (A1) - (A3) but Ec? = 02 > 0 and u and o2

are unknown.
Under assumptions (A1) - (A3), Edgeworth expansion is valid for the distribution of
n n n
n=1/2 (Z(Yt — 1), ) (Vi¥io1 — az), Y (V7 — a3)) (3.11)
t=1 t=1 t=1
where a; = EY;, a0 = EY;Y;_1 and az = EYtz.
Estimates 8,, and u, of # and u are obtained by solving
n
D (Vi —0aYi 1~ pa) =0
t=1

n
and ) Vi 1(Yi — 0nYio1 — pa) = 0.
i=1

An estimate o2 of o? is given by
n
02 =n"1) (Vi — 0n,Yio1 — pn)’.
t=1

16



n n
Thus, the estimates ,, u, and o, are all smooth functions of ) Y3, Y Y;Y;_; and
t=1 =1

n
)" Y2 except for terms which can be neglected.
t=1

Thus for a suitable normalizing factor 3, the distribution of nl/28 (0, — 0) admits an
Edgeworth expansion upto o(n~1/2), with the leading term as ®(z), and the coefficients
involved in the polynomial in the second term (which is 0(n~1/2)) are smooth functions
of 0, u,0% and of moments of Y;,Y;Y;_; and Y2 of order less or equal to three. 8 can be

explicitly calculated and depends on 8, u and moments of &;.

The empirical distribution is computed by putting mass 1/n at each é; = Y;—0,Y;_;—
Un,t =1,...,n. Proceeding as in the case yu = 0,02 = 1, an asymptotic expansion is valid
for the bootstrapped version of (3.11), which yields an expansion of order o(n~'/2) for the
distribution of n/23, (6 — 0,,) where B, is the variance-normalizing factor, the bootstrap
equivalenf of B. The leading term of this expansion is also ®(z) and the polynomial
involved in the second term is of the same form as that in the expansion of n1/28 (0. —0).
By ergodic theorem, the empirical moments of Y;,Y;Y;_; and Y2 converge to the true
moments a.s., and hence 8, 4y, and o, are all strongly consistent estimators of 8, and o

respectively. Thus the difference between the two Edgeworth expansions is o(n_l/ ?) as.

Remark 3.11

The assumption of stationarity of (¥;) was made since the calculations (e.g. of ) in
this case is simpler. The results hold even if this assumption is dropped. This is fairly

obvious, since the asymptotic structure does not change and the results of GH go through.

It would be interesting to see how the bootstrap performs in small samples. The
accuracy is expected to decrease as the parameter values move toward the boundary. The
absence of stationarity will also decrease the accuracy in small samples. See Chatterjee

(1985) for some simulation studies.

It will also be interesting to study the bootstrap in other complicated time series

models.
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