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ABSTRACT

The purpose of this paper is to extend the idea of Tamhane and Bechhofer (1977,
1979) concerning the normal means problem to some general class of distributions. The
key idea in Tamhane and Bechhofer is the derivation of the computable lower bounds on
the probability of a correct selection. To derive such lower bounds, they used the specific
covariance structure of a multivariate normal distribution. It is shown that such lower
bounds can be obtained for a class of stochastically increasing distributions under certain
conditions, which is sufficiently general so as to include the normal means problem as
a special application. As an application of the general theory to the scale parameters
problem, a two-stage elimination type procedure for selecting the population associated
with the smallest variance from among several normal populations is proposed. The design

constants are tabulated and the relative efficiencies are computed.



1. Introduction

If &£ populations #wy,7s,...,m; are given and we wish to decide on the basis of a
properly chosen sampling scheme which one of these populations is the best one, vari-
ous approaches and methods have been studied up to now. A more detailed overview is
provided by Gupta and Panchapakesan (1979). Among those, two-stage procedures with
screening in the first stage seem to be quite appropriate, since they are more economical

than single stage procedures but still technically not so complicated as sequential ones.

Cohen (1959) was the first to combine Gupta’s (1956) maximum mean procedure
in the first stage and Bechhofer’s (1954) natural decision procedure in the second stage.
Later, Alam (1970) proposed a minimax criterion in determining design constants of such
two-stage procedures. But these results were mostly confined to the special case of k = 2
normal populations with a common known variance. Tamhane and Bechhofer (1977, 1979)
extended Alam’s (1970) work to the general case of k& > 2 populations with some opti-
mization criterion. They studied in detail a two-stage elimination type procedure using a
u-minimax design criterion, and the two-stage procedure was found to be more efficient
than the single-stage procedure of Bechhofer (1954). It should be noted that their work
was also restricted to the normal means problem. For the normal means problem with
a common unknown variance, it is well known that there does not exist any single-stage
procedure satisfying the required minimum probability of correct selection. Bechhofer,
Dunnett and Sobel (1954) were the first to use Stein’s (1945) idea in devising two-stage
selection procedures. Unlike the case with a known variance, they estimate the unknown
variance at the first stage and select the sample best as the true best in the second stage.
Later, Tamhane (1976), and Hochberg and Marcus (1981) considered three-stage pro-
cedures with the second stage set for elimination. Gupta and Kim (1984) proposed a
two-stage procedure, in which they estimate the unknown variance and eliminate the bad
ones in the first stage. For the two parameter exponential populations with a common
unknown scale parameter, Desu, Narulla and Villareal (1977) studied a non-elimination
type two-stage procedure, and Lee and Kim (1985) proposed an elimination type two-stage

procedure.



For the two-stage procedures mentioned so far, optimality results are missing up to
now since they are hard to find. The situations become somewhat fairer if there exits a
control population. Miescke (1980) studies two-stage procedures for finding populations
better than a control in the framework of Neyman-Pearson theory, and showed that op-
timality of tests carries over to optimality of two-stage procedures. The recent references
concerning multi-stage selection procedures can be found in Miescke (1982) and Gupta

(1985).

The purpose of this paper is to extend the idea of Tamhane and Bechhofer (1977,
1979) concerning the normal means problem to some general class of distributions and to
illustrate the extended theory by using some specific examples. The key idea in Tamhane
and Bechhofer is the derivation of the computable lower bounds on the probability of
correct selection over the preference-zone. To derive such lower bounds, they used the
specific covariance structure of a multivariate normal distribution which heavily depends
on the normality assumption. However, it is found that such lower bounds can be obtained
for a class of stochastically increasing distributions under certain conditions, which is

sufficiently general so as to include the normal means problem as a special application.

In Section 2, the formulation of the problem is given. A two-stage elimination type
procedure for selecting the largest parameter value and a design criterion following the
lines of Tamhane and Bechhofer (1977, 1979) are described. The main analytical results
are contained in Section 3 and 4 which deal with the probability of correct selection and
the expected total sample size, respectively. Section 5 treats a dual problem of selecting
the population with the smallest parameter value. As an application of the general theory
to the scale parameters problem, the problem of selecting the population associated with
the smallest variance from among several normal populations is treated in Section 6. The
design constants are tabulated and the relative efficiences of the two-stage procedures with

respect to the corresponding single-stage procedures are computed.

2. A two-stage procedure and a design criterion
Let m;(1 < ¢ < k) be k populations, where the probability distribution of 7; depends

3



only on an unknown parameter 6; in an interval © of the real line (1 < ¢ < k). Let
(1) < 02 < ... < B denote the ordered values of the unknown parameters 0;,0s,...,0k.
We assume that the correct pairing between §; and §;; is unknown. Any population

associated with the largest parameter value f[y) is called the “best” population.

Following Santner (1975), an indifference-zone will be defined in the entire parameter
space 1 = {8 = (01,02,...,0;)|0; € ©,1 <1 < k} by means of a real valued function 6 on

© having the following properties:
(i) 6(8) <fforallfec O
(ii) 6, restricted on ©’, is a function onto © where ©' = {4 € 0|6(0) € ©}.

Define the so-called preference-zone by
0(8) ={0€ -1 < 6(1))} (2.1)

where the best and the second best are sufficiently far apart so that the experimenter
desires to insure the detection of the best with high probability. The complement of
1(6) is called the indifference-zone. The following preference-zones have been used in the

literatures of selection and ranking.

Example 2.1 (a) A location type preference-zone defined by 6; (0) = 0 — 6*(6* > 0), i.e.,
(6*) = {0]0x) — Ox—1) = 6*} (2.2)

(b) A scale type preference-zone defined by 65(8) = 6/6*(6* > 1), i.e.,

0(6*) = {8|01x) = 6" 0jr—17} (2.3)

The goal of the experimenter is to select the best population. The event of correctly
selecting the best population is denoted by C'S. Following the indifference-zone approach,
the attention is restricted to selection procedures R which guarantee the basic probability

requirement,

Po{CS|R} > P* for all § € 0(6) (2.4)
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where P*(1/k < P* < 1) is specified prior to the experiment.

Procedures and a Design Criterion

We describe two-stage elimination type selection procedures and a design criterion.
At the first stage, the noncontending populations will be screened out using the statistics
Ti(l) =T(Xi,15--+5Xi,n;) (1 £7 < k) based on n; independent observations X; 1,...,X; n,
from each of m;(1 < ¢ < k). At the second stage, we compute the statistics Ti(z) =
T(Ximny+1s+++»Xin,4+n,) based on ny additional independent observations from each of
the retained populations, and selection is made using the statistics T; = u(T,_-(l), Ti(z)) based

on the overall sample with an appropriate function .

Evidently the screening process will be done using the following Gupta-type procedure:

Include 7; in the retained populations if and only if h(Ti(l)) > max TJ.(I), where h(-)
<5<

is a real valued function such that
(1) h(z) > z for each z, and
(2) h(z) is continuous and strictly increasing in z.

Typical examples of k() are given by h(z) = z + d(d > 0) and h(z) = cz(c > 1) for

location type and scale type procedures, respectively.

Now, the precise definition of a two-stage elimination type procedure R is given as

follows:

(Stage 1) Take n; independent observations X;1,...,X;n, from each m;(1 < ¢ < k) and
compute Ti(l) =T(X:15...,Xin,). We define a set I by

— f (1) (1) .
I={Eh(T;7) > lréljaéck T;7,1<:< k} (2.5)

and let |I| denote the number of elements in I.

(a) If |[I| = 1, stop sampling and assert that the population associated with max
<<

TJ-(I) is the best.



(b) If |I| > 2, proceed to the second stage.

(Stage 2) Take np additional independent observations X; n,4+1,...,Xin;+n, from each
population in {m;|t € I}, and compute T; = u(Ti(l),Ti(z)) where Ti(2) = T(Xin+1--+»

Xi,n1+n2). We then assert that the population associated with meaIx T; is the best.
. 1

In the definition of the above two-stage procedure, the sample sizes n;,ns and the
function A(+) will be chosen so that the procedure guarantees the basic probability require-
ment (2.4) and different design criteria lead to different choices. We adopt the following

unrestricted minimax criterion:

minimize sup Es(TSS|R)
e

: f > p .
subject to 5oy Po(CS|R) > P (2.6)

where TSS is the total sample size needed in the experiment.

3. Lower bounds on the probability of a correct selection

A main problem concerned with the construction of selection procedures using the
indifference-zone approach is to find the infimum of the probability of a correct selection
over the preference-zone 1(6). Any parameter configuration achieving such an infimum is

called a least favorable configuration (LFC) for the procedure under study.

However, as can be seen from Alam (1970), Tamhane and Bechhofer (1977, 1979),
Miescke and Sehr (1980) and Gupta and Miescke (1982), it has been a conjecture since
1970 that the LFC for the elimination type two-stage procedure would be the slippage
one. Recently, Bhandari and Chaudhuri (1987) have produced a proof of it for the normal

means problem.

Even if the LFC of the parameters were known, the problem of evaluating the infimum
of the probability of a correct selection would still remain and it is extremely difficult and
costly to evaluate the probability of a correct selection on a computer. Thus, instead of

trying to find the LFC, some lower bounds are used to construct a conservative procedure in
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this paper as in Tamhane and Bechhofer (1977, 1979). To do so, the following assumptions
are made regarding the statistics Ti(l) and T; = u(Ti(l), Tl—(z)) used in the procedure R.

Assumption (A1). The distributions of Tz-(l) and Ti(z) are stochastically increasing in
;€O fori=1,2,...,k.

Assumption (A2). The function u(ty,?), used to define the statistic T; = u(Ti(l),Ti(Z)),

is strictly increasing in each variable.

In the sequel, let F(:|0;) and G(:|0;) denote the cdf’s of Ti(l) and T3, respectively and
let H(t1,t2|0;) denote the joint cdf of Ti(l) and T;. Then, it follows from the assumptions
(A1) and (A2) that F(-|6;),G(:|0;) and H(-,-|0;) are all non-increasing in 6;(1 < 7 < k).

From this fact, we can have the following result.
Lemma 3.1. Under the assumptions (A1) and (A2), the following inequality holds.

Jnf a(CSIR) 2 ot (0 s
where A(6) = Eo [H*! (h(T,gl)),Tkw(a))] . - (3.2)

Proof. Without loss of generality, we may assume that §; < 8, < ... < 0. Then, for all
0 € Q(5),
— Iy > (1) _ }
Po(CS|R) =Pe{h(T}™) > Jpex, T; ", Tx I?Gal_xT,}

>P{h(T{) > T, Ty > Ti for all i = 1,...,k — 1}

/HH z),y|0:;)dH (z,y|0%) (3.3)

Thus, the result follows from the facts that H(-,|d;) is non-increasing in ; and 8; < §(8x)
foralli=1,...,k — 1, whenever 4 € 01(6).

The lower bound A(f) in (3.1) would be difficult to compute in practice due to the

dependence between T; ,gl) and Ty. Thus it seems reasonable to find a lower bound for
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A(0), which is slightly less sharp but more easily computable. Such a lower bound can be

obtained by the following result.

Lemma 3.2. Suppose that assumptions (A1) and (A2) hold. Then, for all § € @', we

have

A(0) > Ep | FF1 (h(T,§1>)|5(o)) Es G"‘l(Tk|5(0))}. | (3.4)

Proof. The assumption (A2) insures that, for each fixed b, there exists a function v(-,b)

such that
w(TM, T/%) < b if and only if

T < o(T®, b).

Thus, we have, for each a and b,

PATY < 0, T; = u(TM, TY) < b}

= FEy [Po{Ti(l) < a,Ti(l) < ”(Ti(z),b)lTi(z)}]

> E, [Pa{Ti(l) < aITi(z)}Po{Ti(l) < ”(Ti(z):b)lT,-(z)}]
= Po{Ti(l) < a}Py{T: < b}

which in turn implies that

By (B (R(T"), Tuls(0) )
> Fy [Fk—l (h(T,E”)]&(o)) Gk"l(Tklé(ﬂ))] .

Since F(h(T,El))Ié(ﬂ)) and G(T%|6(0)) = G(u(Tlgl),Tlgz))M(ﬁ)) are nondecreasing in T,El),

we have

By [P+ (T )]6(0)) & (Tul60)]

>Eg | FF=1(R(T{V)[6(0)) | Es G’“'I(Tk|5(9))]

by Tchebyshev’s inequality (see, for example, Hardy, Littlewood and Pélya (1934), p. 43).
This completes the proof. '

We summarize Lemma 3.1 and Lemma 3.2 into the following theorem.
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Theorem 3.1. Under the assumptions (A1) and (A2), the following inequalities hold.
. > S .
gelgfs) Ps(CS|R) > 916115' A(6) > elengl B(6) (3.5)

where A(0) is given by (3.2) and B(6) denotes the right hand side of (3.4).

Finally, it should be pointed out that any further simplification of the lower bounds
A(6) and B(8) can not be done without further assumptions on the structure of the sta-
tistical model under study. The situation becomes quite simple as can be seen in the

following examples.

Example 3.1. (Location Parameters Problem). Suppose that §; is a location parameter
of the population 7;(1 < 7 < k) with the preference-zone being as (2.2) in Example 2.1
(a). Suppose further that 6; is also a lécation parameter of the distributions of Ti(l) and
T;. Then, for the location-type screening procedure with h(z) = z + d, A(6) and B(6) do

not depend on the parameter 6.

In fact,
A(0) = A(8") = Bomo [H* (T + d+ 6%, Ty + 6 (3.6)
and
B(6) = B(8*) = Bomo [F* TV + d + 6%)| Bouo [G*(Tx + 67)] (3.7)

where F and G denote the cdf’s of T i(l) and T3, respectively when 6; = 0 and H denotes
the joint cdf of (Ti(l),Ti) when §; = 0.

Remark. As a typical application to the location parameters problem, consider the normal
populations 7s with unknown means s and a common known variance 62(1 < ¢ < k).

Define the two-stage procedure by setting

" ny-+no
7MW =% = 3 Xy /ni, T = X = Y Xij/na,
i=1 y=na+l

T; = o(T, T) = (TP + n.TP) [ (ns +ng) = X,

and h(t) =t + h(h > 0), which gives exactly the procedure of Tamhane and Bechhofer
(1977, 1979). Clearly, the assumptions (A1) and (A2) hold in this case.
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Also, from the definitions of the statistics Ti(l),Tim and T3, the corresponding cdf’s

are given as follows:

F(t1]6(0)) = Psy{X." < t1} = ®{\/n1 (t1 — 0 + 6*) 0}
G(t2|6(0)) = Ps(0){Xs < t2} = ®{/n1 + nz (t2 — 0+ 6*)/0}
and
H(t1,£2]6(8)) = Pso){X:" < 1, X < ta}

= &, {\/n—1 (t1 — 8+ 6*) /0, /mi F s (t2 — 0+ 6*)/o|/n1/(n1 + n2) }

where ® is the cdf of the standard normal distribution and ®2{:,-|p} denotes the cdf of

the bivariate normal distribution with mean 0, variances 1 and correlation p.

Therefore the lower bounds in Theorem 3.1 are given as follows:
A(8) = E[@{/n1 (X — 0+ 6* + h)Jo, /i1 T 1z | X — 0+ 6*)/olp}]

= [ [ @m0+ wfo - o, VT 8o - slp}Ba(alp)

— 00 —0O0

and
B(6) = / S5z + /7 (6% + 1) [0} dd(z) / SE1(y + /mL T3 6% /o) dB(y)

with p = \/m . The two lower bounds do not depend on the unknown 4, and
they are exactly the bounds of Tamhane and Bechhofer (1979), in which the performance
of the procedure based on the lower bounds was investigated. The results indicafe that
the procedures improve upon the single stage procedure of Bechhofer (1954), with the one
based on A(f) being slightly better than that based on B(#). It may be noted that the
lower bound A(#) in this case can be handled without much difficulty, since the integration

involves only a bivariate normal distribution.

Example 3.2. (Scale Parameters Problem). Suppose that 8; is a scale parameter of

the population m;(1 < 7 < k). In this case, the preference-zone can be given as that in
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Example 2.1 (b). Suppose further that 6; is a scale parameter of the distributions of Ti(l)
and T; which are assumed to take only positive real numbers. Then, for the scale-type

screening procedure with h(z) = cz(c > 1), A(6) and B(f) are given by
A(0) = A(8*) = Boy [H*1(c8* T, 6°Ts)|
and
B(6) = B(6*) = Eg1[F* =Y (c6* T{V)| Eo=r [G* 1 (6*Tk))

where F,G and H denote the cdf’s of Ti(l),T,- and (Ti(l), T;), respectively when 6; = 1.

4. Expected total sample size

In order to employ the u-minimax criterion in Section 2, it is necessary to know the
set of parameter points in 0 at which the supremum of Ey(TSS|R) occurs. In this section,
it is shown that the supremum is attained when 8, = 6, = ... = 0, the equal parameter

configuration (EPC).

First, we derive a general expression of the expected total sample size. Note that the

total sample size (TSS) can be written as
TSS = knl + nZS (4.1)

where S is the number of populations to be sampled at the second stage, i.e., S = 0 if

|[I| =1 and S = |I| otherwise.
Since Fy(S|R) = Ba((lIR) — Pa{/1] = 1/R}
we have

Ey(S|R
(SIR) ] n

I
=
|
—
=
3
vV
=
&
SR
——

— P {Ti“’ > max h(T}”)}]

-,
i
A

/ FWMMMMM~/HHV%WMNW4

i#i i

.a
Il
-

li
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Thus, a general expression of Eg(TSS|R) is given by

Ep(TSS|R) —kn1+nzz [/HF z)|0,)dF (x]6;) /H(h 1(2)|6;)dF (z)6;)
J#e FH#L
(4.2)
In order to obtain the maximum value of Eg(TSS|R), we consider, along the lines of

Gupta (1965), a parameter configuration 6 = ... = ,(= 6) < 04+1 < ... < Ok. Then, for

such a 8 € {1, we have

EQ(S|R)=( ) [/HF 2)[6;)dF (z16:) /HF(h— )10,)dF (z0: )]
=1 i=q+l1 J#L

J#i

:;{/Fq 1(h(z)|9) H F(h(z)|0;)dF (z|0)

j=q+1 7
/Fq 1 z)|0) H F(h~(z)|6;) dF(xw)}
k —q+1
+ ) {/Fq(h )16) H F(h(=)[6;)dF (<|0;)
t=q+1 Iz
k
—/qF"(h‘l(x)lﬂ) _H F(h*l(z)lﬁj)dF(xlﬁi)}

J#A

=/qu 1 (h(z)|0) H F(h(z)|0;)dF (z9)

j= q+1

/ FI7Y(n™1(z)|9) H F(h™(z)|6;)dF (z|6)

j= q+1
+ Z /Fq z)|6) H F(k(z)|0;)dF (z|6;)
i=q+1 Ja;ﬂ-l
k
S [P @) T Fee@)e)arEs)
1=q+1 J?;—;—l

= I1(0) — I(0) + Is(0) — I4(0), say.

We need the following regularity condition to know the behavior of Eg(S|R) as a

function of 4.
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Regularity Condition (C1). For the cdf F(z|6;) of Ti(l), the partial derivatives f(z|0) =
2 F(z]0) and F(z|6) = 2 F(z|0) exist for all £ and for all § € ©, and for the function
h(-), the derivatives h(z) = £ h(z) and A7 (z) = 4 p=1(z) exist for all z.

Lemma 4.1. Suppose that 8; =02 = ... =04(=0) < 0541 < ... < 0. Then, under the

regularity condition (C1),

Sy Fa(S1R)
= [ dta - DF20(a)10) {F((2)10)1 (510) — hio) F(h(2)]0) (elo) }

k

x [ F(h(z)l6;)dz

J=q+1

k
+ 30 [ e b(@)10) {F((2)10)S(e105) ~ h(a) F(b(a) 10 ()

1=q+1

k
x [] F(h=*(2)10;)dz
et

- [ ala=DF 67 @)0) (B0 @101 (l0) - ) (@) 10)E (a10)

k

x ] F(r~'(z)6;)dz

J=q+1
- % [t @) (P @10 ) - 5 @) @16 F(ale)

t=q+1

k
x [[ F(r™(z)l6;)ds.
r-*h
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Proof. Using the integration by parts, it can be shown that

k
25110) = [ ala— 1P (3(@)10)F (A=) 6) 1 (210 j:IqIHF(h(x)wj)dz
k

+ [ ar @10 g (el0) T] F(b(a)l)d
J=q+1
k

= [ da - D2 G@ 0O RS0 T] FbE)de
j=q+1
k

- / a(g — 1)F*7*(h(2)|0)h(z) f (h(2)8)F (<]6) ] F(h(2)|6;)dz

—q+1

- Y [ @0 e TT PR

i=g+1 =g+l
=q Ji#i

9 1(0) = / a(g = )FI* (k7 (2)|0)F (7 (2)[6)F (=]0) H F(h™(2)(60;)d=

J=q+1

—/q(q—l)F"_z(h“l(z)lﬂ)h"l(z)f(h'l(x)IH)F(wlﬂ) F(h™(z)|0;)dz

— Z / gFI (b= (z)|0) f (R~ () |0:) A~ (z) F(|6) F(h™(z)|0;)dz,

i=g+1 i=

k

2 10) = 3 [ e @0 s @ EEEN0) T] Fba)o)ds

1=g+1 J=q+1
and

k
d -
%14 (6) = Z /qF" ' 1(x)|0)F(h Y(2)10)f (l0:) [] F(r'(=)6;)dz
i=q+1 i=gi1
Summing up %Ii(ﬂ)(l < i < 4), the result is obtained.

We now state the main result of this section in the following theorem.

Theorem 4.1. Suppose that the regularity condition (C1) holds. Then, the supremum of
E¢(TSS|R) is attained whenever §; = 2 = ... = 0 provided that

F(h(2)[61)f (2102) — h(z)f (h(2)(02) F (z]61) > 0 (4-3)
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and
F(h™'(2)|01) f (z]62) — A~ (z) (R~ () 62) F(x]61) < 0 (4.4)
for all 8; < 02 and all z. Thus,

sup Eo(TSS|R)
oca

= kny + kngy { / F*=1(n(z)|0)dF(z|0) — / Fk—l(h—l(z)w)dF(xw)}. (4.5)

Proof. Note that, by Lemma 4.1, (4.3) and (4.4) imply %EQ(S |R) > 0 for a parameter
configuration §; = ... =0, = 0 < 0441 < ... < 0. Hence the supremum of Es(S|R) is

attained whenever 0; = 0, = ... = 0. Therefore the result follows from (4.1) and (4.2).

It should be remarked that the conditions (4.3) and (4.4) are reduced to the monotone
likelihood ratio property of the density f(z|6) of F(z|f) in location or scale pérameters

problem in the framework of Examples 3.1 and 3.2.

5. Problem of selecting the smallest

This section treats a dual problem of selecting the population with the smallest pa-

rameter value 01]. For this selection problem, the preference-zone is given by
0(6) = {8 € Aoz > 5(0p)} (5.1)
where the real valued function §(-) satisfies the following properties:
(i) 6(0) >0foralldec O
(i) &, restricted on @', is a function onto ©' where ®’ = {# € ©|6(0) € ©}.

The statistics Ti(l), Ti(z) and T; = 'u,(Ti(l), Ti(z)) in Section 2 are used in the construc-
tion of a two-stage procedure in this case. In the problem of selecting the population
with the smallest parameter the following Gupta-type procedure will be used for screening

purpose:
Include 7; in the retained populations if and only if

h(T{Y) < 22 TJ'(I) (5.2)
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where h(-) satisfies the following properties:
(i) h(z) < z for all z, and
(ii) A(z) is continuous and strictly increasing in z.

Now, a two-stage selection procedure in this problem can be constructed in exactly
the same manner as that in Section 2 except that the screening procedure in (2.5) is
replaced by that in (5.2) and obvious modifications for final decision rules are made. Such

a selection procedure in this problem will be denoted by R'.
For the procedure R’, the following results can be obtained with some slight modifi-

cations of the arguments for the procedure R in Section 2.

Theorem 5.1. Under the assumptions (A1) and (A2) in Section 3, the following inequalities
hold.

. 7 > 3 ) > 7 )
at PCSIR) > jaf, 4'0) 2 jaf B'(0) (53)

where A’(0) and B’(0) are defined by
4'(0) = Bo [M*}(b(T{), T1|5(6))] (5.4)

and |

1 k—1
{1-Foasen} }Ee[{l—amw(e»} ](s.s)

with M(z,y|0;) = Po,.[Ti(l) >z,T; >y, 1 <:<k.

B'(ﬁ) = Ey

Theorem 5.2. Suppose that the regularity condition (C1) in Section 4 holds. Then, the
supremum of Ey(TSS|R') is attained whenever 8; = 02 = ... = 0, provided (4.3) and (4.4)

are satisfied. Thus,

sup Ey(TSS|R')
o

— kny + kng [ / {1 — F(h(z)|6)}*1dF (z]0) — / (1 - F(h~1(2)|0)}s~1dF(z]0) | (5.6)
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Finally, a remark on the case with nuisance parameters should be in order. It can
be easily observed that the characterizations of the procedures R and R’ depend on the
parameters only through statistics Ti(l) and T;(1 < ¢ < k). Thus, the results obtained so
far remain valid as long as the distributions of Ti(l) and T; do not depend on the nuisance

parameters.

6. Normal variances problem

For the problem of selecting the population associated with the smallest variance
from among several normal populations, Bechhofer and Sobel (1954) proposed a single-
stage procedure Rg, in the framework of the indifference-zone approach. Gupta and Sobel
(1962a, 1962b) investigated the same problem under the framework of subset selection.
The values of the sample sizes needed in the single-stage procedure R of Bechhofer and
Sobel (1954) can also be obtained from the tables of Gupta and Sobel (1962b). An extended
tables are also available from Gibbons, Olkin and Sobel (1977). Later, Tamhane (1975)
formulated this problem in the two-stage sampling scheme with screening in the first stage
and proposed a lower bound on the probability of correct selection. However, due to the

computational difficulties involved, no tables were given.

Let m;(1 < ¢ < k) denote k normal populations with unknown means p;(—oo0 < p; <
00,1 < 4 < k) and unknown variances 62(0 < 02 < 00,1 < ¢ < k). The ordered variances
are denoted by 0[21] < 0[22] <...< U[Zk]' It is assumed that there is no priori information
available about the correct pairing between 7; and "[zi] (1 <17 < k). The goal is to select a

population associated with 0[21].

It can be easily shown that this problem falls into the framework of Section 5 with

6(0?) = 0%/6* (0 < 6* < 1), while p1,..., s are the nuisance parameters.
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Let

T =3 (%5 - XV)?
j=1

TH = 3 (X5 - X))
J=n1+1

T; = o(T, 7P) = 1M + 7D

and
h(t)=ct (0<e<1)

ni n2
where Y,(-l) = Z X; j/n, and yz@ = Z Xij[na.
§=1 J=ni+1

An elimination type two-stage selection procedure R; is proposed as follows:

(Stage 1) Take n; independent observations X; 1,...,X;, from each m;(1 < ¢ < k),

compute Ti(l) and determine a subset I of {1,2,...,k} where

— {4leT(D) o (1)
I={i|cT;” < 11511_7'1_I<_1ij }ho<ex<1 (6.1)

(a) If |I| = 1, stop sampling and assert that the population associated with min

1<;<k
TJ-(I) is the best.
(b) If |I| > 2, proceed to the second stage.
(Stage 2) Take no additional independent observations X; n,+1,...,Xin,+n, from each

populations in {m;|¢ € I}, compute T; = Ti(l) + Ti(2) and assert that the population

associated with mii} T; is the best.
je

Note that Ti(l) /o2, Ti(z) /o? and T;/o? all have the chi-squared distributions with vy =
ni—1,v9 =ne—1and v = vy +vy = n; +ng —2 degrees of freedom, respectively. However,
the joint distribution of Ti(l) and T; is rather complicated and inconvenient to compute
in this case. Thus, we use the lower bound B’(#) in Theorem 5.1 to determine the design

constants (ny,n2,¢) for the two-stage procedure R;. By straightforward computation,

B'(6*) = /000{1 — F,, (c6*2)}Ys~1dF,, (2) /Ooo{l — F,(6*y)}*1dF, (v) (6.2)
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where F, () denotes the cdf of chi-squared distribution having v degrees of freedom.

Remark. Tamhane (1975) proposed almost the same procedure as the procedure R;.

The only difference is the statistic T; used in Stage 2. His T; is defined by

] No
Ti=) (Xij—X)*+ Y (Xi;—X)?
j=1 J=ni1+1
. ni1+ng
where X; = ) X;;/(n1+ n2). Hence the degrees of freedom of T} is v = ny + ng — 1.
j=1

When the population mean u;(1 < ¢ < k) are all known, with the obvious definitions of
the statistics, the two procedures are exactly the same. He also derived a lower bound

C(6*), say, on the probability of a correct selection, of the form
o0 o0
C(6%) = / {1~ F,,(c6*z)}*"1dF,, (z) +/ {1-F,(6*z)}Y*"'dF,(z) - 1. (6.3)
0 0

For the same v; and v (this is the case when all y;’s are known), B'(6*) > C(6*) since

ab>a+b—1 for a,b € (0,1), and hence B’(6*) is a less conservative lower bound.

The supremum of the expected total sample size can be obtained from Theorem 5.2
and is given as follows.

sup Eg(TSS|R1)
oen

= kny + kng [/;w{l ~ F,, (cz)}f~1dF,, (z) — /000{1 — F,, (z/c)}*"1dF,, (z)]. (6.4) |

Therefore, the corresponding optimization problem to determine the design constants
(n1,n2,¢) is to minimize (6.4) subject to B’(6*) > P*. This is an extremely complicated

integer programming problem with a non-linear objective function.

In solving the optimization problem, we have treated n; and ny as continuous vari-
ables, and used the SUMT (Sequential Unconstrained Minimization Technique) algorithm
of Fiacco and McCormick (1968). A source program in FORTRAN for SUMT algorithm is
given by Kuester and Mize (1973). We denote by (%1, 22, ¢) a solution to this continuous
version of the optimization problem. The problem has been solved numerically for £ =

2(1) 10, P* = 0.90, 0.95 and v/é6* = 0.50 (0.05) 0.70. The results are given in Table 6.1.
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In supplying the objective function (6.4) and the constraint function (6.2) to SUMT
algorithm, we used the 32-point Laguerre numerical quadrature formula to evaluate the
integrals, and the values of the chi-square cdf’s were evaluated using the 32-point Legendre
numerical quadrature formula. All the computations were carried out in double precision
arithmatic on VAX-11/780 of Purdue University’s Statistics Department. The convergence
criterion was fixed throughout to be 1 x 1078, The tabulated values are rounded off in the

fourth decimal places for 71, and fiz, and in the sixth decimal places for é.

The Performance of R; relative to Ro.

In order to get insight into the performance of the two-stage procedure R, we consider

the ratio (termed relative efficiency RE),
RE = {E4(TSS|R1)/kno} x 100(%) (6.5)

where ng is the sample size needed for the single-stage procedure of Bechhofer and Sobel
(1954) to satisfy the same probability requirement. Clearly RE depends on §, (6*, P*) and
k.

Since Ro is a special case of R; (with ¢ = 1 or o0), it immediately follows that 1 >
RE (EPC) > RE (LFC) and R; is uniformly at least as good as Ro. The values of RE are
given in Table 6.2.

From Table 6.2 one finds that the relative savings by applying the two-stage procedure
R1 are not dramatic. However, even a small relative saving means a lot in terms of total
sample size when k£ and/or n; is moderately large. Also, it can be observed that the
relative saving increases as k becomes large. This is in accordance with one’s intuition

that the screening process would be helpful when k is large.

To illustrate the use of Table 6.1, suppose that ¥ = 6 and that the experimenter
specifies 6* = (0.7)2, P* = 0.90. Then the design constants necessary to implement the
two-stage procedure R, are given by fi; = 17.775,72 = 20.145 and ¢é = 0.62632. Thus
we take n; = 18 observations from each populations and compute the sample variances

S2(1 <1 <6). If the number of S?’s smaller than 11é1_i£16 S2/0.62632 is one, stop sampling
_—1—
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and assert that the population associated with min S? is the best. If more than one S2’s
are smaller than min S?/0.62632, take n, = 21 additional observations from each of the
contending populations and assert that the population associated with the smallest sample
variance based on the pooled sample of size n; + ne = 39 is the best. In using this two-
stage procedure R;, the average value of the total number of observations is 90.4% at EPC
and 77.0% at LFC compared with that of the single-stage procedure Ry of Bechhofer and
Sobel (1954).

Large Sample Approximation

In solving the optimization problem involving (6.4) and (6.2), it is extremely tedious
to compute the integrals when n; and/or n, are large. Hence an approximate solution for
large sample size is useful. We shall give an approximate solution to the problem based

on normal theory.

It is well known that if S? is the sample variance associated with the variance o2,

then /(v —1)/2 log(S%/0?) is asymptotically normally distributed with mean zero and
variance unity as the number of degrees of freedom v, associated with S2, tends to infinity.

From this fact, it can be shown that, when v is large

(oo}

/0 "1 = F, (az)}*1dF, () = / 81 (z + d)dd (=) (6.6)

—o0
where d = /(v —1)/2 log(a~1), and F,(-) is the cdf of chi-square distribution with v

degrees of freedom and ®(-) is the cdf of the standard normal distribution.

Replacing the integrals in (6.2) and (6.4) involving the chi-square cdf’s by the corre-
sponding integrals of the right hand side of (6.6) involving the normal cdf, we can obtain

after slight modifications the following asymptotic version of the optimization problem:

Minimize :
oo

ke? + kel / (85 1(z + d) — 3*1(z — d)}d% (x) (6.7)
—00

subject to

/oo 851(g + d+ ¢1)d0 (2) /oo S5y + /3 + ) dB(x) = P*  (6.8)
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If we denote the solutions to (6.7) and (6.8) by (&1, é2, cz), then the approximate values

of the design constants (#1, iz, &) of the procedure R; are computed using the following

formulas: g
P _él_ —_
b =2{ gy el
N 2
" ) .
=2 {—zog(a—*—l) } + 2og(k—1)
and

¢ = exp {-dy 2w =3}

The second term in the formula for #; (or #2) is a slight correction term based on
empirical results cited from Gibbons, Olkin and Sobel (1977). The correction term is

added since the first term drifts below the true value of #; (or fi) as k increases.

The values of (&1, &2,d) can be found in the tables of Tamhane and Bechhofer (1979).
To illustrate numerically the closeness of the normal approximation we take the values
of (61,62,@ out of Table II of Tamhane and Bechhofer (1979) corresponding to P* =
0.95,k = 10, namely, ¢; = 2.452,¢; = 2.744 and d = 1.322. Then the approximate values
of (f1, s, ¢) for §* = (0.7)? are (28.025, 33.988, 0.69317). These approximate values are
slightly larger than the corresponding exact values (27.292, 31.970, 0.69114) given in Table
6.1.
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Table 6.1

Design Constants for the Two-Stage Procedure R,

k=2
P* = 0.90 P* = 0.95
V& A1 fug é fn g &
0.50 4672 6.029 _ 0.09999 6.544 6.354  0.02158
0.55 5.365 3.804  0.76742 6.178 3.825  0.46474
0.60 5.039 2211  0.17160 7.771 4964  0.45385
0.65 6.453 3.426 0.21494 10.181 6.975 0.4'7896
0.70 8.621 5450  0.27360 13.060  10.354  0.52255
k=3
P* = 0.90 P* = 0.95
V& 1 fig ¢ iy fog ¢
0.50 6.208 6.542 0.00887 6.901 5.003 _ 0.63690
0.55 5.746 3.936  0.43711 8.328 5.527  0.56113
0.60 7.204 4.982  0.42234 10.606 7.206  0.56670
0.65 9.417 6.820  0.44267 14037  10.107  0.59111
0.70 12.201  10.822  0.47227 190.426  14.711  0.62732
k=4
P* = 0.90 P* =095
N/ 71 fia é o9 fig é
~0.50 5.551 4649  0.54605 7459 5377 0.57673
0.55 6.721 5609  0.51311 9.313 6.036  0.58219
0.60 8.479 7.240  0.51621 11.950 9.270  0.60041
0.65 11.119 0.822  0.53815 15.807  12.840  0.62928
0.70 15.293  14.016  0.57488 21.727  18.912  0.66103

23



Table 6.1

Design Constants for the Two-Stage Procedure R,

(continued)
k=5
P* =0.90 P* =0.95
V6* fi1 fig é il fia ¢
0.50 5.899 5.547 0.53513 7.850 6.194 0.56399
0.55 7.287 6.799 0.52954 9.880 8.087 0.58431
0.60 9.264 8.923 0.54652 12.733 10.866 0.60955
0.65 12.202 12.165 0.57446 16.992 15.071 0.64215
0.70 16.754 17.388 0.60969 23.766 21.753 0.68249
k=6
P* = 0.90 P* =095
V6* fiy fig é 1 > ¢
0.50 6.138 6.034 0.561152 8.128 6.906 0.55542
0.55 7.663 7.763 0.53191 10.260 9.061 0.58159
0.60 9.787 10.273 0.55662 13.257 12.206 0.61114
0.65 12.943 14.057 0.58952 17.737 16.930 0.64665
0.70 17.775 20.145 0.62632 24.894 24.289 0.68800
k=17
P* =0.90 P* =0.95
V& 2 fig é Ay 2 é
0.50 6.238 6.640 0.49599 8.345 7.534 0.54877
0.55 7.940 8.589 0.53035 10.537 9.900 0.57717
0.60 10.174 11.410 0.55998 13.643 13.344 0.60980
0.65 13.488  15.661 0.59628 18.563 18.491 0.65756
0.70 18.569 22.392 0.63444 25.741 26.644 0.69189
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Table 6.1

Design Constants for the Two-Stage Procedure R;

(continued)
k=38
P* = 0.90 P* =0.95
Vo* iy fog ¢ i iy é
0.50 6.440 7.118 0.48408 8.528 8.075 0.54346
0.55 8.157 9.308 0.52725 10.754 10.640 0.57246
0.60 10.477 12.403 0.56057 13.946 14.345 0.60751
0.65 13.923 17.032 0.59933 19.344 20.491 0.66845
0.70 19.214 24.432 0.64026 26.431 28.944 0.69637
k=9
P* =0.90 P* = 0.95
Vé* 1 g ¢ 71 172 ¢
0.50 6.504 7.693 0.47554 8.685 8.558 0.53907
0.55 8.335 9.949 0.52377 10.931 11.297 0.56789
0.60 10.724 13.274 0.55959 14.192 15.237 0.60478
0.65 14.269 18.254 0.60020 19.834 21.536 0.66514
0.70 19.741 26.317 0.64419 26.924 30.716 0.69566
k=10
P* =0.90 P* =0.95
V6 Ay fg ¢ g fg é
0.50 6.609 8.126 0.46947 8.822 8.991 0.53317
0.55 8.484 10.524 0.52004 11.085 11.888 0.56385
0.60 10.932 14.058 0.55798 14.399 16.037 0.60188
0.65 - 14.560 19.347 0.60004 20.013 22.682 0.66819
0.70 20.125 27.832 0.64840 27.292 31.970 0.69114
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Table 6.2
Relative Efficiencies RE of the Procedure R;

P* =0.90
A /5*
0.50 0.55 0.60 0.65 0.70
k EPC LFC EPC LFC EPC LFC EPC LFC EPC LFC
2 99.9 94.5 99.9 97.6 99.9 94.9 96.3 91.2 97.5 92.0
3 98.1 92.7 98.3 85.2 95.6 83.6 95.9 84.5 97.5 86.0
4 99.5 85.7 92.7 79.5 94.7 81.3 94.0 80.8 96.4 83.0
5 95.8 82.3 91.9 78.8 95.7 81.9 88.4 75.6 94.3 80.5
6 91.0 78.4 89.4 76.7 89.3 76.5 93.1 79.5 90.4 77.0
7 93.4 80.7 86.2 74.2 87.7 75.2 88.8 76.0 88.5 75.5
8 88.4 76.5 88.5 76.3 85.5 73.5 84.6 72.4 86.2 73.5
9 89.9 77.9 79.6 68.9 87.3 75.2 86.4 74.2 85.8 73.4
10 84.3 73.2 80.9 70.1 84.6 73.0 81.9 70.4 82.5 70.7
P* =0.95
VE
0.50 0.55 0.60 0.65 0.70

k . EPC LFC EPC LFC EPC LFC EPC LFC EPC LFC
2 99.9 96.0 99.9 85.8 99.9 84.3 99.9 85.2 98.4 83.4
3 99.9 86.8 99.7 82.7 98.1 81.2 96.6 79.9 96.9  80.0
4 94.9 79.1 95.5 79.1 97.5 80.3 91.9 75.4 93.6 76.5
5 92.6 77.1 04.8 78.6 93.7 77.2 91.0 4.7 92.6 75.7
6 89.1 74.4 92.7 76.9 89.0 73.4 88.7 72.9 89.8 73.6
7 91.5 76.5 90.0 74.8 87.7 72.5 85.8 70.8 86.5 71.0
8 87.1 73.0 87.0 72.5 86.0 71.3 83.6 69.0 86.6 71.2
9 88.5 4.4 84.0 70.2 84.1 69.9 85.4 70.7 84.5 69.6
10 84.2 70.9 81.1 67.9 85.2 ' T71.0 81.0 67.4 82.1 68.0
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