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ABSTRACT

In discrete event simulation the method of control variates is often used to reduce the
variance of estimation for the mean of the output response. The control variates zy,...,z,
have known means and are assumed to have a joint normal distribution with the output

response y. Consequently, the mean of y is estimated by linear regression.

In the present paper, it is shown that when the covariance matrix of the vector
(z1,...,zp) of control variables is unknown, and three or more control variables are used,
the usual linear regression estimator of the mean of y is one of a large class of unbiased
estimators, many of which have smaller variance than the usual estimator. These estima-
tors aie adaptive to information in the data concerning the multiple correlation between

the dependent variable and the control variables.

Key words: Discrete event simulation, linear regression, adaptive estimators, minimax

estimation, reduced variance, adjusted estimation of the mean.
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IMPROVED ESTIMATORS OF MEAN RESPONSE IN SIMULATION
WHEN CONTROL VARIATES WITH UNKNOWN COVARIANCE MATRIX ARE USED

Leon Jay Gleser

Purdue University
1. Introduction

One of the main variance reduction techniques used in discrete event simnulation is the
method of control variates. This method attempts to exploit correlations between output
responses y and certain associated auxiliary variables z1,z2,...,z, observed during the
course of each simulation run. The means pi,us,...,u%, of the auxiliary variables are

typically known; the goal is to estimate the mean u, of y.

The literature on the use of control variables in simulation is fairly new. The first
comprehensive discussion appears in Kleijen (1974). More recent surveys are Wilson (1984)

and Bauer (1987).

The model underlying the use of control variables is that of linear regression with
random predictors. It is assumed that n repetitions of a simulation experiment yield

statistically independent observations
(Yis T1is T2is- - - Tpi) = (¥ir X)), 1 =1,2,...,n,

on the output response y and the ve¢tor x = (z1,...,z,)" of auxiliary (control) variables.
Since y and x result from a common set of generated random numbers and a common
probabilistic structure (for example, a multiserver queue), these variables have a joint

distribution with mean vector

B’ = (p,y,p,x’) = (”’yallfla/'l'Za- --,lj'p)’

and covariance maftrix
_ [ %9y O9yx
5 - (o;,x Exx) .
The mean vector u, of the control variables is known (usually from theoretical distribu-

tional information concerning these variables).
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In the literature on the use of control variables, it is usually assumed that y and x
have a joint normal distribution. Consequently, the conditional distribution of y given

X = X¢ is normal with conditional mean

By|x=x, = My + ,B,(XO - ﬂx)

and conditional variance
_ 2
Oyyx = O'yy(l - py-x)’

where

' -1,
— »-1 2 _ OyxZisex Oyx
:3 - ny p o & py-x - ?

Oyy
are the vector of slopes for the regression of y on x and the squared multiple correlation

(coefficient of determination), respectively.

Let

and

be the sample mean vector and sample cross-product matrix.

In the absence of data from the auxiliary variables z1, z3,.. ., zp, the obvious unbiased
estimator of py is 7, which has variance n™loy,. If data from the auxiliary variables is

available, and the vector 8 of slopes is known, then
(1.1) 7(8) =7 B'(X— px)
is an unbiased estimator of u, with variance
— -1 -1 2
var (Y(B)) =n" oyyx =n" oyy(l — Pyx)-

The estimator g(3) has smaller variance than ¥ whenever pg_x > 0.
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Of course, B is typically not known. In this case, we can replace § in (1.1) by the

usual least squares estimator

A

(1.2) b= W;xlwxy
of 8. The resulting estimator
(1.3 g(b) = 7 — B'(%X — 1)

is the maximum likelihood estimator of p,. This estimator is unbiased for y, and has
variance

p

(1.4) var (g(b)) = n™ (1 + pp—1

) oyy(1— Pf/-x)
when n > p+2. (Whenn < p+2, y(B) has infinite variance.) Consequently, the estimator

(1.4) is superior to ¥ (has smaller variance) as an estimator of py if and only if

p
n—2

(1.5) n>p+2and pl, >

However, ﬂ(f)) is not the only estimator of the form (1.1) that is unbiased for uy. In
Gleser (1987), it is shown that for any p-dimensional vector-valued function b = b(W) of
the sample cross-product matrix W for which the expected value E[b(W)] exists, all T,

the estimator
(1.6) 7(b) =7 — b/ (X — px)

is an unbiased estimator of u, with variance

(b= -pl},

oyy.x

(1.7) var (g(b)) = n—layy(l — pz.x) {1 n E

Thus, y(b) has uniformly smaller variance than y(f)) if and only if b dominates b in risk

as an estimator of § under the loss function

(1.8) L(b; B,0yy.x, Lxx) = (b 'B);Exx(b — A .
yy-x




Gleser (1987) considers the special case where the covariance matrix Y of the vector
x of control variables is known. Using and extending results of Berger (1975), a class of
estimators of B is obtained, each of which dominates b in risk when p>3,n>p+2.
Each member of this class thus yields an unbiased estimator 7(b) of 4, which has smaller
variance than ﬂ(f)) The relative (ﬁroportional) saving in variance can be substantial,

particularly when pf,.x is small, and p is large.

In the present paper we consider the case where Y, is unknown. In this case, the
results of Stein (1960) show that there exist estimators b of 8 that improve upon b in
risk under the loss function (1.8). (Stein assumes that both py and py are known. Con-
sequently, his n corresponds to our » — 1.) At the end of his paper, Stein asks whether
one can improve upon y(B) as an estimator of u, when p, is unknown, but py is known.
From Equation (1.7), it is apparent that Stein’s own results provide an affirmative answer
to his question. However, Stein’s argument is restricted to a very small class of estimators,
none of which can be admissible, and he does not provide sufficient conditions for risk

domination.

In Section 2, we exhibit a class of estimators of 8 which is hopefully large enough to
include some admissible estimators.  Every member of this class is shown to be adaptive
to the information in the data concerning the magnitude of pf,,x. Corresponding to each
such estimator b of 3, there is a corresponding unbiased estimator g(b) of uy. Theorem 1
of Section 2 gives sufficient conditions for an estimator b in the class to dominate b in risk
as an estimator of # under the loss function (1.8). These conditions then are also sufficient

A

for g(b) to have everywhere smaller variance than g(b).

The proof of Theorem 1, which is somewhat complicated, is given in Section 3. Readers
interested only in applying the results of this paper may wish to skip this section on first
reading. Finally, some indication of the relative improvement in variance that can be
obtained by use of a particular member of the class of estimators described by Theorem 1

is given in Section 4.



2. A Class of Adaptive Estimators
Let
Wyy.x = Wyy — wnyx_xlwxy.

Consider the class of estimators

AI A
(2.1) by = |15 2P}l
wyy.x

of B, where h(u) = r(u)/u and the function r(u) satisfies

(¢) r(-) maps [0, c0) to [0,c0),

(22) (¢7) r(u) is nondecreasing in u,u > 0.

These estimators depend on the data only through b and

b'W,..b R2

T = =
Wyyx 1— R2’

where R? is the sample coefficient of determination.

The estimators

a1(1—R2) A
1-— b > >0
( az(l—Rz) +R2 ’ a =2 Oa az 2 U,

considered by Stein (1960) are members of the class (2.1), (2.2) with A(u) = a4 (ag +u)~ L.

Stein showed that for sufficiently small a; and sufficiently large as such estimators dominate

b in risk under the loss function (1.8) when p >3, n > p+2.

For each member by, of the class of estimators (2.1), (2.2) of 8 there is a corresponding

estimator
(2.3) 7(br) =7 — b}, (X — 1x)

of py.

Recall that T' = (1 — R?)~1R? is a test statistic for testing Hp : pyx = 0. Indeed, T

stochastically increasing in pf],x. As remarked in Section 1, we would use 7 to estimate u,
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if pf/.x = 0 and otherwise would wish to use 7(8) or, in ignorance of ﬂ,ﬂ(ﬁ). Thus, it is of

interest to note that

7(br) =7 — b}, (X — ux)
(2.4) = h(T)7 + (1 — h(T))7(b)

is adaptive to the information provided in the data about the magnitude of pg_x. If
h(u) is nonincreasing in u, small values of T lead to greater weight being placed on ’y
as an estimator of u,, while large values of T favor y(B) As shown by Sclove, Morris
and Radhakrishnan (1972) a smooth adaptation to information in the data about the

parameters is usually preferable to using a preliminary test to choose an estimator.

We now present the main theorem of this paper.

THEOREM 1. Let p>3,n > p+ 2. Let by be any of the estimators defined by (2.1)
and (2.2). If

_ 2(p—2)
(2.5) r(u) = uh(u) < ——L all uw > 0,

then under the loss function (1.8), b, has everywhere (over 8, 0yy.x, Lxx) smaller risk than

b. Consequently, 7(bp) is an unbiased estimator of py with variance uniformly smaller

than that of y(f))

3. Proof of Theorem 1

The proof of Theorem 1 proceeds in four main steps:  reduction to a canonical
distributional form by invariance, integration by parts to produce an unbiased estimator
of risk difference, simplification of expected values, and then a final argument based on an

integration by parts for discrete variables (Hwang, 1982).

Reduction by Invariance

The foliowing arguments are essentially those used by Stein (1960). Recall that every
estimator by, in the class (2.1), (2.2) depends on the data only through b and RZ. It is

well known that R? is invariant under the group of transformations
(3.1) y—a1Y +az, x— Ax+a,
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where a;, a2 are arbitrary scalars, A is an arbitrary p-dimensional nonsingular matrix, and

a is an arbitrary p-dimensional column vector. Under such transformations
b — a; (A')_lf), by, — a1(A") by
and also
B — a1(A)7IB, oyyx — a30yy s Dox — ATy Al
Further, for b = b or by,
L(ai(A")7'bsa1(A) 718, aloyyx, ATxxA') = L(b; B, 0yyx> Tacx)-
Consequently, (3.1) leaves invariant the problem of determining the risks of ]3, by.

Choose

—1/2 -1/2 —
a; = ayyéz y A2 = _o'yy-gc Ky, A= I‘Ex_i/za a=—Apx,

where 2,1‘42 is the symmetric square root of X and T is a p-dimensional orthogonal matrix

with first row
(,Blzxxﬁ) —1/2[3/231‘4‘2.

Under this choice of the transformation (3.1), u’ = (uy, px') is transformed to the zero

_ [ Oyy Oyx 1+7 «
Exx—<0xy Exx)ﬁ< v Ip

BB _ P
Oyy-x 1- p;‘;_x

vector and

where

v = r'2(1,0,0,...,0),

Therefore, we may assume without loss of generality that oyyx = 1+ 7 — 'y = 1, and

that

— [ Wyy Wyx | _ 1+7 o
o e ) (Y )

where m = n — 1 and Ws(v,¢) denotes the s-dimensional Wishart distribution with v
degrees of freedom and parameter 9. The risks of b, and b under the loss function (1.8)

then depend only on m,p and 7. Let

w(r) = E[(b —7)'(b— )] — E[(bx — 7)'(bs — )]
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be the difference in risks between b and bj. We need to show that w(r) >0 for all 7 > 0.

To eliminate repetitious subscripts, let
(3.3) z2=b, V =Wy, w=wyyx.

The following distributional results, which are a consequence of (3.2) and (3.3) are well

known [see, for example, Muirhead (1982; Chapter 3)]:

w is independent of (z, V)
(3.4) w ~ X?n—p’ V ~ wp(m, Ip)’

zlV ~ MVN (v, V7).
By a standard argument,

(3.5) w(r) =E [2}; (z'::z> (z —v)'z — h? (Z’VZ> z'z] .

w

Integration by Parts
We will make use of the following two well-known integration-by-parts results.

Lemma 1. Let z ~ MVN (n,%) and let the real-valued function g(z) be sufficiently

regular in z for integration by parts. Let @ be a real p-dimensional symmetric matrix and

Talz) = (39(2) B 3g(Z)>'.

dz1 7 Bz

Then if F[g(z)z'z] exists,
Elg(z)(z — n)'z] = E[g(z) tr(Q¥) + 2'Q¥ v g(2)]-
Lemma 2. Let w ~ 02x2. If g(w) is sufficiently regular in w for integration by parts,
and if E{lwg(w)] exists, then
—op2m | Y (1)
E [wg(w)] =26“E [E g(w) + wg'*(w)|,
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where

90 (w) = - g(w).

Taking expected values in the order Ey, v E;v and using Lemma 1 to integrate by

z'Vz 1 z'z z'z r(l)(—zlgz)
h<w)<trV _ZZ’VZ+2?T(—_—ZITVZ) |

Next, taking expected values in the order E, v E, and using Lemma 2 to integrate by

parts over z yields

z'Vz

w

(3.6) ER(Z)z-)d=E

parts over w yields

o (£22) ] s o (222
(3.7) _oF dds ('?vv—) {(m—p+2>w_2d <z’Vz)}

(2'Vz)° 2 w

where d(u) = ur(u)r(Y(u). Substituting (3.6) and (3.7) into (3.5), and using the assump-

tion (2.2(ii)) that r(u) is nondecreasing in u,u > 0, yields

(3.8) w(r) > w*(r),

) =281 (22 fr v Z2)]

= () (o) +

Note that (2.5) is equivalent to

where

and

(3.9) k<p.

Since w is independent of z and V, taking the expectation over w in w*(7), yields

WHr) =E lH(z'VZ) {” VTi-k z?;’zz }]
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where

H(z'Vz) = E,, [2h <-Z'Zz>] = % Ew ["’ g <Z’:z>]

(3.10) R(V3).

z'Vz
Since r(u) is nondecreasing in u,u > 0, it is easy to see that R(u) = 2uH(u) is also

nondecreasing in u,u > 0.

Simplification
Let
_(tu Ti2
= (% )
satisfy
V =T'T, T,y symmetric .
Also let

s = (s1,85) =Tz

where s; is a scalar. Since TV 1T/ = I,

(3.11) s|T ~ MVN (T9,1,) = MVN ((rt11,0,...,0)", I).

Lemma 3. N o . ,
(Z) t11 ~ Xm> T12 ~ MVN (O,Ip—l))

(22) T222 ~ Wp—1(m — 1, Ip—1),
(227,) 81|t11 ~ N(T1/2t11, 1)
(Z'l)) Sg ~ MVN (0, Ip—l)

and

(v) (s1, t11), S2, T12, T2 are mutually independent.

Proof. The results (i) and (ii), and the independence of t1;, Ti2, T2z follow directly
from (3.4) and the definition of T' (Muirhead, 1982). The results (iii), (iv) and (v) are then

direct consequences of (3.11). O
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Note that _; . 3
tin —tin T2 Ty
T !'=
0 T
Further, it follows from Lemma 3 that

_ 1
E[T12] = 0, E[T1:Ty,] = Ip-1, E[T5;7] = m_p_1 v

and that (¢11, s), T12 and T2 are mutually independent.

Thus,

w*(r) = Ety,, 8)E1s, Tos [H(S'S) {tr [T T ]~k o }]

s’s

s’s

(3.12) = E(tu, 8) FH(S'S) {tr [ETm, Ths (T—I(T’)—l)] —k S,[ETm, Tzz((Tl)_lT_l)]s }]

i H(s's) { (m-2t+(p-1) [S%tﬁz  S8alld H ] H '

=F
(t11,5) m-—p—]_ S’S SIS(m_p_l)

From (3.9) and (3.12), after some algebraic simplification, it follows that

(5.13) w*(r) > i),
where
W(r) =E(4,,, s) [H(S'S) { (m _,Z,Zt_l_l;t(lp =L p [Sit,;_f + silz?:él_ztzl?)] }]

= Ety, ) [ L) (ps% - 1) (1= (m-p- 2)%‘3)}

m—p—1 1\ s’s

It follows from Lemma 3 that

o, 2 [thT 2
silt11 ~ x3 o ~ X2J+1

where x2(62) denotes a noncentral chi-squared random variable with noncentrality param-

eter 62 and v degrees of freedom, and

t2
J ~ Poisson <_1§1—> .

12
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(The representation of a noncentral chi-squared distribution as a Poisson mixture of central
chi-squared distributions is a well-known result.) Let f,(-) be the density function of a x2
random variable. It then follows from Lemma 3 that the joint density of s2, s}s,, and t2,

is given by

0 2 J _%tfl"'
(3.14) F(s3, shsy, t3) = (tlzlr) (e 7 )fzj+1(sf)fp—1(S'zsz)fm(tfl)-

j=0
The following is a well known distributional fact.

Lemma 4. If z; ~ Xﬁ.-, 1=1, 2, and z,, z, are independent, then

I1

and z; + z2 are independent
Ty + xo
and
T vy Uy
Ty + Tg ~ X12/1+V2’ m ~ Beta (7, 7) .
Let
(3.15) hj = B [H (Xp127)] -

Using (3.14) and (3.15) and Lemma 4, it is straightforward to show that

o0 . A 1.2
oy p—1 . 23 oy =2 t3,7\’ e~ ztu”
i(r) = oy Dt <2J-+p) Ey, [(1 (m—p—2) tiy) ( 2 7

§=0

_ =1 “iy, (2 _m-p—2
_m_p_IZq(jl(l—l—'r) T)h’<2j—|—p> (1 —— (L+7)

_ p— 17 iq(j—l[(1+'r)—1'r)hj(1—m+2j_2 T )

m—p—lj=1 p+2) 147
p—1)7r -1 m+ 2 T
= h 1-— : .
m_p_11=0¢I(z|(1+7) 7) 1.+1< T2 +21Fr



where

a010) = || €0 - 9%, i=0, 1.

Final Argument

Note that g(z|€) is the mass function of the negative binomial distribution with pa-
rameters £ and m /2. Hence, we can apply Hwang’s discrete analog of integration by parts

(Hwang, 1982, Equation (2.1)) to obtain
. (p—1)7 — I m+2 T
= ——:- hi 1 - .
&(r) m—p—lgq zll—l—r [his1] p+2:e+21+47

(p—1)7 o T 2t
3. =Py : . .
(3.16) m—p—1 9 zll—I—T hity th—l—Zz‘

1=0

Lemma 5. Forall:=0,1,2,...,
2 21
hivs > hi {_tp_z]zh< i )
p+ 2 p+ 2

Proof. From (3.10) and (3.15),

hiy1=FE [H(X§+2i+2)] =

R(x3 + X2, 4;)
X3+ X12:+21I ’

where x2 and XZ 4+2; are independent chi-squared random variables with the degrees of

freedom indicated in the notation. Since R(u) is nondecreasing in u > 0,

R(x% + X;2;+2i) . R(XZ+2i)
X3+ Xpizi Xpt2i

_ o3 RO+ xu) | [ROG + X342 — Blx31a0)]

P) 2 2 2
Xp+2i Xz 1T Xptai Xp+2i

> _Xg R(X2 +Xp+21,)
T Xpy2e X3+ Xpiai
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Applying Lemma 4,

R(x3 + Xp12:)
X3+ Xpiai

> _E X3 (R(X§+X§+2i)):|

hiy1 —hi=E —F

R(x ;2;+2i)
Xpt2i

_X;2>+2i X3+ X§+2i
__p| X R(x3 + Xp12:)
_XZ+2i X3 + X2y 00
2
. S
p+2i—2 ‘T1
or
p+2i—2 .
hi+12hi~p-}——2i, 220,1,2,....

Since h; > 0 all 7 and
p+2c—2 > 21
p+2t T p+2

when p > 2, the second inequality in the assertion of the lemma immediately follows. [I

Lemma 5 and (3.16) shows that &(r) > 0. It now follows from (3.8) and (3.13) that
w(r) > 0, and the proof of Theorem 1 is complete.

4. Improvement in Variance

Perhaps the simplest examples of the class of estimators by, of 8 covered by Theorem
1 are those in which r(u) is a constant, r(u) = ¢. In this case (1) () = 0 for all © > 0, so
that the inequality (3.8) is actually an equality. As Stein had already noted (Stein, 1960,

Section 6), among estimators of the form

bc = (1 - 'A—c—,\> f),
b'Wib

the estimator

(4.1) b* = (1 - -2 ) b
(n — p+1)(b'Waxb)
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has minimum risk at 8 = 0. Recall that b and all estimators by, of the form (2.1) have
risk depending on the parameters p, ¥ only through 7 = (1 — pfl_x)_1 pfj_x and that 7 =0
if and only if 8 = 0. The risk of b* when 8 = 0 (7 = 0) is found by Stein to be

2(n—1)
(r—p-2)(n—p+1)

(4.2) R(b*;0) =
The risk of b is constant for all T}

N p
(4.3) R(b;7) = p—t

The relative saving in variance of F(b*) versus (b) is (see (1.7))

_ var[g(h)] — var[y(b*)] _ R(b;7) - R(b*;7)

(44) RS(r) var 7(b) 1+ R(b;7)

Because of the term n~! in the variances of y(B) and g(b*), their variances are typically
small. Gains in accuracy of §(b*) over y(B) as an estimator of y, are more easily seen by

calculating relative variances.

From (4.2), (4.3), (4.4), when 7 =0 (i.e. § =0)

_ 2(n—1)

p p——
Rs(0) =

The relative saving will be large when p is large relative to n. For example, when n = 20
and p = 10, RS(0) = 0.32 or 32%. As ﬁoted by Bauer (1987), there are usually a large
number of possible control variables available in a siﬁmlation study. Because adding extra
control variables may increase the multiple correlation py.x, there is the temptation to use
as many of these variables as possible. Since the number n of repetitions of the simulation
experiment is often fixed by cost considerations, it is not unusual for the number p of
control variables to be large relative to n. [However, remember that Theorem 1 requires

that n > p+ 2.]

The relative savings in variance for y(b*) versus y(f)) is greatest for 7 near 0, and

least when 7 is large (p2.,, is near 1). One can use the methods of Section 3 to find a series
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representation for R(b*;7). However, the present discussion is only intended to exhibit
the virtues of the class of estimators 7(by), not to give the properties of any particular -

estimator in this class.

Indeed, b* is inadmissible as an estimator of 8, and consequently y(b*) is inadmissible

as an estimator of p,. Standard arguments show that by with

: —2
0, if u < ;;pﬁ’
h(u) =
p—2 p—2

e TU> 50

dominates b* in risk. (This is the familiar James-Stein modification.) This last estimator
is also known to be inadmissible, but serves as an adequate approximation to an admissible

estimator. Unfortunately its risk function, even at r = 0, is difficult to evaluate.

The present author believes that a Bayes, or robust Bayes (Berger, 1984a), approach
offers the most satisfactory approach to choosing an estimator b of 8. If one wants an
estimator which is equivariant under the transformations used at the start of Section 3,
the class of estimators (2.1) provides a variety of reasonable choices, even when this class
is restricted by the conditions (2.2) and (2.5). Although this paper has concentrated on
the use of estimators of 8 in simulation studies, Theorem 1 also has uses in prediction of
future y-values (Stein, 1960; Copas, 1983), and in cases where point estimation of 3 is the

final goal of inference.

In simulation studies using contrbl variates, investigators typically report a confidence
interval for py, rather than merely giving a point estimator. It is likely (see Hwang and
Casella, 1982) that replacing 'gj(f)) in such intervals by any of the estimators F(by) cov-
ered by Theorem 1 will increase the coverage probability of such intervals, particularly
when pg.x is small. However, the minimal coverage probability will still be that stated
for the interval centered at y(B), so that any gains in coverage probability will go unre-
ported. Consequently, a preferable approach would be to combine construction of such
intervals with a report of estimated coverage probability using methods similar to those
of Lu (1987). Similar comments pertain to the construction of confidence regions for 3,
confidence intervals for linear combinations of #, and prediction intervals for future values

of y. Research on such methodology is currently in progress.
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Finally, it should be mentioned that the problem treated in this paper is a special
case of more general problems in which mean vectors, matrices of means, or slope vectors
or matrices are to be estimated, and where prior knowledge is available concerning the
value(s) of certain elements (or linear combinations of elements) of these vectors or matri-
ces. Examples of such problems includle GMANOVA (Gleser and Olkin, 1966, 1970) and
seemingly unrelated regression (SUR) problems (Zellner, 1962). See also Kariya (1985) for
an overview of these problems which reveals their basic similarities and structure. Such
problems offer the potential for combining the theory of the present paper with the more

familiar shrinkage methodology of Stein (1981), Efron and Morris (1972) and other authors.
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