IMPROVED ESTIMATORS OF MEAN RESPONSE IN SIMULATION
WHEN CONTROL VARIATES ARE USED

by

Leon Jay Gleser
Purdue University

Technical Report #87-32

Department of Statistics
Purdue University

July 1987



IMPROVED ESTIMATORS OF MEAN RESPONSE IN SIMULATION
WHEN CONTROL VARIATES ARE USED

Leon Jay Gleser!
Purdue University

ABSTRACT

In discrete event simulation the method of control variates is often used to reduce the
variance of estimation for the mean of the output response. The control variates z1,...,z,
have known means and are assumed to have a joint normal distribution with the output

response y. Consequently, the mean of y is estimated by linear regression.

In the present paper, it is shown that when the covariance matrix of the vector
(z1,...,Zp) of control variables is known, and three or more control variables are used, the
usual linear regression estimator of the mean of y is one of a large class of unbiased esti-
mators, many of which have smaller variance than the usual estimator. These estimators
are shown to be adaptive to information in the data concerning the multiple correlation

between the dependent variable and the control variables.

A new technical result obtained in this paper generalizes a result of Berger (1975)

concerning minimax estimation of location vectors for nonnormal families of distributions.
Key words: Discrete event simulation, linear regression, adaptive estimators, minimax
estimation, reduced variance, adjusted estimation of the mean, location vec-

tors, multivariate ¢ distribution.
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1. Introduction

One of the main variance reduction techniques used in discrete event simulation is the
method of control variates. This method attempts to exploit correlations between output
responses y and certain associated auxiliary variables z,z3,...,z, observed during the
course of each simulation run. The means p1,p2,...,1, of the auxiliary variables are

typically known; the goal is to estimate the mean u, of y.

The literature on the use of control variables in simulation is fairly recent. The first
comprehensive discussion appears in Kleijen (1974). More recent surveys are Wilson (1984)

and Bauer (1987).

The model underlying the use of control variables is that of linear regression with
random predictors. It is assumed that n repetitions of a simulation experiment yield

statistically independent observations

(yiaml‘hzZi,-- -,xpi)’ = (yisx;)y 1= 1,2" .oy,

on the output response y and the vector x = (z1,...,zp)’ of auxiliary (control) variables.
Since y and x result from a common set of generated random numbers and a common
probabilistic structure (for example, a multiserver queue), these variables have a joint

distribution with mean vector

= (g ttx') = (tys 15 B2y o oy Bp)

— [ Cyy Oyx
2‘(o;x zxx>'

The mean vector u, of the control variables is known (usually from theoretical distri-

and covariance matrix

butional information concerning these variables). It is also sometimes the case that the

covariance matrix X of the control variables is known.
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In the literature on the use of control variables, it is usually assumed that y and x
have a joint normal distribution. Consequently, the conditional distribution of y given

X = Xg is normal with conditional mean

Kylx=x, = My + ﬁ'(xo - I"x)

and conditional variance

Oyyx = Oyy(l — PZ-x),

where
-1t
. -1 2 _ ayxzxxayx
ﬂ = Oyacligess Pyx= """
Oyy

are the vector of slopes for the regression of y on x and the squared multiple correlation

(coefficient of determination), respectively.

Let

and

ve(om )[BT s

be the sample mean vector and sample cross-product matrix.

In the absence of data from the auxiliary variables z;, z3, ..., z,, the obvious unbiased

estimator of u, is ¥, which has variance

var (§) = n loy,.

If data from the auxiliary variables is available, and the vector 3 of slopes is known, then
(1.1) B =70 px)
is an unbiased estimator of u, with variance

1

var (F(8)) = n" oyyx = n" oy (1 - py)-
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The estimator 7(5) has smaller variance than ¥ whenever pg,x > 0.

Of course, B is typically not known. In this case, we can replace 8 in (1.1) by the

usual least squares estimator

(1.2) b = Wl wyy

of 8. The resulting estimator

(1.3) (D) =7 - B'(X — px)

is the maximum likelihood estimator of u,. This estimator is unbiased for u, and has

variance
— i - b
(1.4) var (g(b)) =n"1(1 + m) oyy(1—p2.)

when n > p+2. (When n < p+2, y(B) has infinite variance.) Consequently, the estimator

(1.4) is superior to 7 (has smaller variance) as an estimator of u, if and only if

p

2
(15) n > p+ 2 and py_x > m

As noted by Bauer (1987), there are usually a large number of possible control variables
available in a simulation experiment. Because adding extra control variables may increase
the multiple correlation py.x, there is the temptation to use as many of these variables as
possible. Since the number n of replications of the simulation experiment is often fixed by
cost considerations, this means that p may be nearly as large as n. If so, PZ-x needs to be
fairly large if ?(f)) is to be superior to ¥ as an estimate of u,. For example, if we can run
only n = 20 replications and use p = 10 control variables, (1.5) requires pg_x to exceed

0.55.

However, y(f)) is not the only estimator of the form (1.1) that is unbiased for u,.
Indeed, Theorem 1 of Section 2 shows that any function b = b(W) of W for which E[b]
exists yields an unbiased estimator
(1.6) 9(b) =7 - b'(X - x)

4



of uy. Further, it is also shown that F(b) has uniformly smaller variance than y(ﬁ) if and

only if b dominates b in risk under the loss function

b~ f)'Su(b— ).

(1'7) | L(b;ﬁaayy-xa Ex:c) = (

(The estimator b need not be unbiased as an estimator of 8).

In this paper, we consider the special case where the covariance matrix Y, of the
vector X of control variables is known. Using and extending results of Berger (1975), a class
of estimators of 8 is obtained, each of which dominates b in risk when p=>3,n>p+2.
Each member of this class thus yields an unbiased estimator F(b) of u, which has smaller
variance than y(f)) Interestingly, estimators of the form F(b) can be represented as a
linear combination of 7 and y(B), with 7 receiving greater weight when the data indicates
that p?,-x is small, and y(B) receiving greater weight when the data indicates that pz_x is

large. That is, these estimators are adaptive.

Study of the case where Yy« is unknown is currently in progress. This problem is
analytically considerably more difficult. However, Stein (1960) has shown the existence
of estimators b of 8 that improve upon b in risk under the loss function (1.7). The goal
of our research is to provide sufficient conditions under which estimators b of the type

considered by Stein improve upon b in risk.
2. Unbiased Estimators of p,
The main result of this section is the following theorem.
THEOREM 1. Let b = b(W) be any function of the sample cross-product matrix W

such that E(Db) exists, all . Then under the distributional assumptions for the data of

Section 1,
(b) =7 - b'(X - x)

is an unbiased estimator of u, with variance

E[(b — 8)'Sax(b — )] } -

(2.1) var (3(b)) = n " oyy(1 — p}.x) {1 + Oyyx
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Proof. Since the data (y;,x;) are assumed to be a random sample from the (p + 1)-variate
normal distribution with mean vector p and covariance matrix X, it is well known that

(7,X') and W are statistically independent. Thus, since E(g) = py, E(X — px) = 0,

Elg(b)] = E[g] - E(b)E(X — ux) = ny,

for all py, X. This shows that 7(b) is an unbiased estimator of u,.

Further, it is known that
T—B'(X— px)y X~ pioe, W
are mutually statistically independent. Consequently,

var [g(b)] = var [§ — B'(X — px) + (b — 8)' (X — 1x)]
— var [§— /(K — )] + var [(b — B)'(X — i)
(2.2) =n"toyyx + E[(b— B)(X — px)]?

since we have previously shown that the mean of (b — 8)/(X — px) is 0. However, since
b = b(W) and X are independent,
E[(b - B)' (X — ux)]* = E[(b — B)(X — px) (X — 1) (b — B)]
= E{(b — B)'E[X — px)(X — ux)"|(b — )}
= B|(b— )1 Bualb — )
_ Oyys {E[(b — B)'Zxx (b — B)] } _

n

Substituting this result into (2;2), and remembering that oyy.x = oyy(1 — p2.), yields

(2.1). O

It follows directly from Theorem 1 that any estimator b of 8 which is a function of
the data only through W, and which dominates b in risk as an estimator of B under the

loss function (1.7), yields an unbiased estimator 7(b) of u, having smaller variance than

A

g(b).



Note. Under the distributional assumptions of Section 1, a minimal sufficient statistic for
Ky, Y is known to be [(¥,X’'),W]. It is an immediate consequence of Theorem 1 that this

minimal sufficient statistic fails to have a complete family of distributions.

Let MVN (7,%) denote the multivariate normal distribution with mean vector 5 and
covariance matrix 9, x2 denote the chi-squared distribution with v degrees of freedom,
and W,(v, ) denote the p-dimensional Wishart distribution with v degrees of freedom

and parameter ).

Lemma 1. Define

_ -1 _ 1./ I
Wyyx = Wyy — WyxWo Wyx = wyy — b Wb,

Then

(2.3) ' Wyy. is independent of (B,Wxx)

(2.4) b|Wyx ~ MVN (8,0,yxW.21)

(2'5) Waex ~ wp(n -1, 2x.x)a Wyy.x ~ O'Zy.xXi_p_r

Proof. See Muirhead (1982, Chapter 3). O

Lemma 2. The unconditional distribution of b is that of a p-variate elliptical
t-distribution (Muirhead, 1982, p. 48) with n — p degrees of freedom, location parameter

B, and scale matrix (n — p) “loyy.x Si. That is, the density function of b is

1 » A ~ -n/
(/2 Zaelt [, B=BYEm(b-p)] "

((n —p)/2) (7“7yyoc)p/2 Oyy-x

(26  1(b) =

Proof. Use (2.4) and (2.5) to obtain the joint density function, f (f), Wiexe) = [(Wax)
X f(b|Wax), of b and Wi Let

$p~(b) = Tl + "yy-X(B —B)(b—B)".
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After some algebraic simplification, f (E,Wxx) can be written as the product of f (f)) and a
function g(Wxx,f)) recognizable (for fixed f)) as the density of a W,(n, 1,[1(5)) distribution.
Integration over Wy, where W, ranges over all positive definite matrices, now completes

the proof. O

Note: The proof of Lemma 2 also shows that

(2.7) Waex[b ~ Wy (n, 3 (b)).

3. Estimators in the Known-Y,, Case

Suppose that the covariance matrix Ty of the vector x of predictor variables is known.

Consider estimators by, of 8 of the form

A

(3.1) ba = (1—h (w;Lb'Bub) ) B,

where h(-) is a function mapping [0, 00) to [0, 00) satisfying the following requirements:

(1) h(u) is nonincreasing in v > 0,

(3.2) (ii) r(u) = uh(u) is nondecreasing in u > 0,

THEOREM 2. Assume that p > 3,n > p + 2. Let the estimator b, of 8 be defined by
(3.1) and (3.2). If

2(p—2)

(3.3) r(u) = uh(u) < =P p=1)

then by, has risk everywhere (over 8, 0yy.x) at least as small as that of b under the loss func-
tion (1.7). Consequently, 7(bs) is an unbiased estimator of 4, having variance everywhere

less than or equal to the variance of 'y‘(B)

Berger (1975, Example 3) notes that the p-variate elliptical t-densities (which he calls
“Cauchy-like”) can be represented as scale mixtures of p-variate normal densities. If Oyyx

were known, and wy,. in (3.1) replaced by 0yy.x, Theorem 2 would be a direct application
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of Theorem 1 of Berger. Since oyy.x is not known and must be estimated, proof of Theorem

2 requires a slight generalization of Berger’s result.
Generalization of Theorem 1 of Berger (1975)

Let the p-dimensional random vector z have density

(3.4) flz) = /ooo (_% Cexp |- 0)'2AT;: =9 4w

where 6 : p x 1 and 72 > 0 are unknown parameters, where A is a known positive definite
matrix, and where F'(-) is any known cdf on (0,00). Let w be a scalar random variable
distributed, independently of z, with the property that 7—2w has a known distribution on
(0,00). [Thus, 72 is a scale-parameter for the distribution of w.] Consider estimating 0

under the quadratic loss function

(6-6)Q(5—6)

(3.5) L(6;0,7%) = =

where @ is a known positive definite matrix. Since Berger (1975) shows that z is a minimax

2

estimator of # in the known-7# case, z is also minimax in the present problem. To improve

upon z in risk then requires p > 3, so we henceforth assume that this is the case.

2

In the known-7# case, Berger’s X corresponds to our 72 A, and Berger’s Q to our 7~2Q.

Thus, the class of estimators shown by Berger to dominate z in the known-72 case has the

form
IA—I —IA—I
(Ip—h(z < ”) Q—lA—1> 2.
T
Since 72 is unknown, we replace 72 by w. (We could instead replace 72 by cw for any

positive constant ¢, for example ¢ = 1/E;2_;(w), but in that case we merely redefine h(-)

to absorb the constant ¢.) Thus, we consider estimators of the form

(3.6) 5 (2, w) = [Ip —h (Z'A_IQ_IA_IZ> Q‘IA‘I] z,

w

where the function A(-) maps [0, c0) to [0,00) and satisfies (3.2).

THEOREM 3. Suppose that when 0 = 0 and 1% = 1, E(s'2), E(2'2) ™", E(w™") are all
finite. Let
d = Eg=o,r2=1 [(Z'A_IZ)_I] Eray(w).

9



Then, if
(3.7) r(v) = uh(u) < 2(d) ™1

for all w > 0, the estimator 6;(z,w) has risk everywhere (over 8,72) less than or equal to

the risk of z, and hence is minimax.

Proof. Note that

6n(17 2,7 2w) = 763 (2, w).

so that for all A (including k(-) = 0, yielding 60(z, w) = z),
L(6n(z,w); 8,72, A) = L(6p(r ™ 2,7 2w);7710,1, A).

That is, the estimation problem for the class of estimators 6;(z,w) is invariant under
the transformation z — =1z, § — 7710. Consequently, we can assume without loss of

generality that 72 = 1.

As in Berger (1975), let A; > Ay > ... > A, > 0 be the (ordered) latent roots of
AQ™!. There exists a nonsingular matrix B such that B'QB = I,, B'Y"'B = D},
where

Dy = diag(Ay,...,4,).

Transforming

z— B~ 'z, 0 - B9,

produces a “canonical” estimation problem in which the distribution of z has parameter

A = Dy, the loss function (3.5) has centering matrix Q = I,,, and the estimators 6y (z,w)

ID—2
8 (2, w) = [I,, —h (z A z) D;l] z.

w

have the form

Let
(3.8) w(0) = Eg[(z — 0)'(z — 0) — (6n(z,w) — 0)' (6n(z, w) — 6)]

be the difference in risks between z and 8, (z,w). (Remember that 72 is assumed to equal

1). We need to show that w(8) > 0 for all 4.
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Since w and z are independent, we can fix w and take expectation in (3.8) in the order
EwE,. Let hy(u) = h(uw™!). Using (3.2), it is straightforward to show that A, (u) is

nonincreasing in w, v > 0, and that r,(u) = uh,,(v) is nondecreasing in u,u > 0. Further,
6n(z,w) = (I, — hy(z' D, %z) D ")z.

Finally, if ¢ = sup r(u), then
u>0

sup 7y (u) = cw.
u>0

Consequently, we can follow the steps on pp. 1320-1322 in Berger (1975) to obtain

w(0) > Eo [(/000[2(1) P %dp@)) T(w,0)] ,

where

v [ v 2 h(Z2A%) exp {— L (2 — 6)'D3 (2 — 0)}dzdF (v)
H’Q_A A’ (2m)p/2 [T A2 | |

1

Since h(w) is nonincreasing in u > 0, T'(w,8) is nondecreasing in w for fixed . Conse-

quently,

(39) o(0) 2 B, |( [ 20-2) - L)) | Bulr(w,o)L

Since T'(w,d) > 0, all w > 0, all 4, in order for w(f) to be greater than or equal to 0 for
all @ it is sufficient that

0< Eu [ /0 Tl2to—2)— %]dF(v)]
=2(p—2) — cE{w)E(v™})
or equivalently

2(p — 2)

(3.10) °S B BT’

When 0 = 0,vz'D 4z ~ xf, and is independent of v. Thus

oo 03] = 5 [2] 5[ 1] = E),
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and we conclude that

2
3.11 c=supr(u) <
( ) u.ZI(; ( ) - E(’w)E9=0(Z’DZIZ)

is sufficient for w(#) > 0, and hence for 65 (2z,w) to dominate z in risk. Transforming back
from the canonical form of the estimation problem to our original formulation yields (3.7)

as a sufficient condition for 6,(z,w) to have risk everywhere less than or equal to z. O
Proof of Theorem 2
Make the following correspondences between the notation of Theorem 2 and that of

Theorem 3:

b < z, Z;; = A, B0, oyyx & 2, Wyy.x < W,

Further, the loss function used in Theorem 2 has Q = Y. «.

The density (2.6) of b can be written in the form (3.3) with F(v) being the cdf of
v ~ (xa-p) "' Note that from (2.5), wyy.ac ~ Oyyx X2_p_1, 50 that Elwyy.x] = (n—p—1)
when oyy.x = 1. Further, if v=1 ~ xfl_p, then E(v—!) = n—p. Making use of the condition

(3.10), which is equivalent to (3.7), yields the condition (3.3).

Adaptive Estimation

It was noted in Section 1 that ﬁ(ﬁ) has smaller variance than ¥ as an estimator of u,
only when pg_x is large. In particular, we would want to use 7 in preference to Ij(f)) as
an estimator of 4, when pz,x = 0 (equivalently, 8 = 0). An appropriate (likelihood ratio)

test statistic for testing Hy : pg,x = 0 when ¥, is known is

_ b'Exxb

wyy.x

T

We reject Hp for sufficiently large values of T'. Thus, we might naively try to use the value

of T' to choose between ¥ and y(ﬁ) as estimators of py,. Let
bbb\, .
bp=[1-h| ——] | b=(1-A(T))Db
Wyy.x
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be any of the estimators (3.1). Then

7(br) = 7 — b}, (X — ix)
(3.12) = [R(T) + (1 = A(T))] ¥ — (1 — A(T))D' (X — pix)
= h(T)F + (1 — k(T)) 7(b).

Since h(T') is nonincreasing in T, large values of T' (indicating that Hp : pf,-x = 0 may be
false) cause greater weight to be placed on g(b) in (3.12). Small values of T' cause greater
‘weight to be placed on 7. Indeed, T is stochastically increasing in pf,,x. Consequently,
each member of the class of estimators §(by) defined by (3.1) and (3.2) is adaptive to the
information provided by the data concerning the magnitude of PZ-x- This property of these

estimators in part explains why some of these estimators have lower variance than y(f))

To obtain some idea of the magnitude of improvement that can be achieved, consider

the somewhat crude estimator

" p—2 A
(3:13) v = (- Gt e

which nevertheless dominates b in risk. It can be shown directly that the difference in

risks between b and b* as estimators of B when 8 = 0 is given by

p—2 _(p—2)
(P —2)Ep=0,0,y..=1 [(n —p)n—p-— 1)T} T n—p

Consequently, the risk of b* when 8 =0 is

P _p—2_ 2(n —2)
n—p—2 n-p (n—p)n—p—2)

and the variance of F(b*) when 8 = 0 is equal to

2(n — 2) >

n—p)(n—p—2)

n_loyy <1 + (

When the number of replications n is even modestly large, and 8 = 0, the improvement

in variance of 7(b*) over y(B) is small, mainly because of the n~! term appearing in both
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variances. The relative improvement in variance, however, is impressive. Indeed, when

B =0,

var [@(f))] — var [g(b*)] _ (n—p—1)(p—2)

(3.14) . [y(B)]  (n—1)(n-p)

For example, when n = 20, p = 10, the right-hand side of (3.14) is 0.38, indicating a 38%
reduction in variance. When n = 40, p = 25, there is a 55% reduction in variance for y(b*)

versus F(b).
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