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ABSTRACT

A self-avoiding random walk on Z! is considered. By conditioning on certain points with
regeneration type properties called “break points”, it is shown that the set of occupied points
grows in a linear fashion. The utility of break points is that they greatly simplify the conditioning

involved in studying the process.
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1. Introduction

The behavior of a stochastic process is often difficult to study owing to the complexities of
the process as it evolves over time. In this paper we are interested in studying the behavior
of such a process, a self-avoiding random walk. As defined in Spitzer (1954), a random walk is
self-avoiding if we condition on those paths which are self-avoiding, i.e. which do not step to a
point previously occupied. In order to study the process, we show the existence of points with
regeneration-type properties termed “break points”. Break points occur at times which are not
stopping times, but which have stopping time like properties, which allow one to decompose edge
behavior into independent pieces. One can then use renewal type arguments such as in Murphree
(1987) who studied a related problem of the transient renewal process. Break points have more
general applicability. In an entirely different setting, they were used to study the edge behavior of
oriented percolation (Kuczek (1989)).

Section 2 contains definitions and notation. In Section 3 break points for this process are
defined and shown to give the independent structure to the process. In Section 4 the limit behavior
of the process is studied. Section 5 contains some further results relevant to the study of the

process, while Section 6 has some concludirg comments.

2. Definitions and Notation

Let Xy, Xs,..., be a sequence of independent, identically distributed random variables, which
are integer valued with distribution function G(-). Also, assume that the distribution of the random
variable X7 is symmetric about 0, has no mass at {0}, and does not have all its mass on {-1,1}.

Let

Se=0

and



denote the partial sums of the sequence {X;}. To describe and study the self-avoiding paths, we

introduce the following notation.

Q, = {(0,21,...,zn)|z:€Z/{0},: = 1,2,...,n and z; # z;, if i # j}.
Two subsets of 2,, of interest are

QF = {(0,z1,-..,2,)|(0,21,...,%n)eQy, and z; >0 for i = 1,2,...,n}

and

Q- = {(0,z1,...,2)|(0, 21, ..., %)y and z; < 0 for s = 1,2,...,n}.

Elements of these sets will be denoted by w,. 2, contains all self-avoiding paths of n steps starting
at the origin, while QF and Q; contain all such paths which exist to one side or the other of the
origin.

I w,eQ, and wy, ey, where w, = (0,21,...,2,) and wy, = (0,y1,...,¥n) then define the

concatenation of w, with wy, (denoted wy, * wy,) by
Wy ¥ Wy, = (07317-- 3Ty Tt Y1y s Ty + ym)-

It is not necessarily true that w, * wp€Q,i+m, although it would be if, for example,
Ty, = max{0,2y,...,2,} and £, Q).

Returning to our i.i.d. sequence we note that the sequence of partial sums {S,} may be regarded
as a random walk on Z. Given the assumptions on G(-), the random walk will step eventually to a

site previously occupied, or alternatively, will try to fill a point already filled. This occurs at time
T = min[n > 1|5.€{0,S1,...,Sn-1}].

If the random walk is stopped at time T, then at time n, the random walk is still proceeding on
the set
A, = {T > n},
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which we will refer to as the set of non-extinction. As defined on page 105 of [7], the self-avoiding
random walk is the sequence 0, Sy,...,S5, conditioned on A,.
In order to study growth properties of Sp, ..., 5, on A,, it is necessary to study the distribution

of self-avoiding paths of n steps. This distribution is given by

___P[(0,81,...,5,) = wn]
Pr(wn) = —5 P[(0,51,...,5:) =wh]’

wh eQ

Several problems arise in trying this, not the least of which is that the p,(-)’s are not consistent
because the denominator does not factor. That is to say the distribution of Sy, ..., S, conditioned
on A, is not necessarily the distribution of Sp,..., S, conditioned on A, {,,. A natural approach
is to look for a well behaved subsequence where one can not only get consistent finite dimensional
probabilities, but also factor the p,(-)’s. This subsequence is defined by the “break points” of the
next section. These break points allow the process to be divided into independent pieces. With
further assumptions made on G(-), one can then get conditional limit results for S,,. Since we will
be looking at the process on a subsequence, we define (for a nonnegative, integer-valued random

variable T})
Ar, ={Th < T},

A;l = Ar, N {S7, > 0},

and

Ar =An N {St, <0}

3. Break Points

Since the main problem in studying the process arises from the complex stochastic conditioning,
one would like to avoid the necessity of conditioning on the entire past. The idea here is to find
time points where the future of the process haves independently of the past. Intuitively, it is clear
that the self-avoiding walk will cross zero finitely often and then remain on one side, especially in
the case where the random variables are bounded. So, eventually the process will not crossover
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certain points again. However, if such a point of no crossover were a relative maxima or minima,
then the future would not depend on the configuration of “filled” points on the other side of these
points of no crossover. Define these relative maxima or minima where there is no future crossover
before extinction to be break points, since they break the future and past into independent pieces.

Let

M, = Iicr;i;{Sk is a relative maxima and Sk4s > Sk if K+ m < T for m > 1}

Mu = {S} is a relative maxima and Sgym > Sk if K+ m < T for m > 1}

inf
k>Mi+...4+ M,
and

Ny = Iicgii{Sk is a relative minima and Skyp > Sk if K+ m < T for m > 1}

Npp1 = k>N1i£f.+Nn{Sk is a relative minima and Sg4m > Sk if K+ m < T for m > 1}

(We take the infimum of the empty set to be c0.)
Now, for i = 1,2,..., define

T,' = mjn[M,-,N;].
As a notational convenience, define for n = 1,2,...,
n
Tw= X T:.
i=1

Also let
wr, = (0,81, ...,57) on {1 < T}

wTr, =(0,S'rl+1_51'17---751'2_571) on {Tg <T}

W4 = (0, S,-n.|.1 - ST", ceey ST,.+1 - ST") on {Tn+1 < T}

Clearly, on the appropriate set of nonextinction,

w, e
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and

wr,eQt UQ-

for i1 = 2,3,..., where

Q= U,Q, Qt = u, 0}, Q" =U,0.

n

Note that conditioned on the set A,

(0,51,...,8:,) =wr, *wr, ... *wr,.

n

To examine distributional properties of the concatenation of these strings of “random fields”,
let

p}; (wn) = P(wTj = wn|A1+-j7wn€Qn)

and

P';J. (wn) = P(wnlA;j , wann),

The distribution p;l(-) is different than p}j(-), for j > 2 since steps below zero are permitted
before T} on {T} < oo}, while pl‘,"} (wn) = 0,7 > 2, if wy, contains a step below zero. Note that as a
consequence, for all j > 2,p_.'1".1_(-) has all of its mass on Q%, while pi() has all of its mass on Q~.

If each term of the sequence {r,},n = 1,2,..., were a stopping time for the sequence {X;},
then by the strong Markov property the sequence X, 4+1,X7,+2,..., would be independent of the
past and distributed as Xy, Xs,.... This would permit the factorization of P(0,5,...,5 |4, )-
It is somewhat surprising that while 7,,,n > 1, is never a stopping time, something like the strong
Markov property still holds; so that P(0, S1,..., S, |A} ) can still be factored as shown in the next
proposition. It is also shown that pf, (wn) = pF, (wn),j > 3.

Proposition 1 Assume that G(-) is integer valued with no mass at 0.

k
P(0,S1,.., 57, = Wn, *Wn, * ... 4wy, |[AT) = p}l(wnl) .j7=r2 p;j (Wn; )
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Proof: It will be shown for each n, that conditioned on the set A;"k R

the distribution of (0, S;.+1 —
Sreseeey ST — Sr) i85
1. exactly the same as the distributrion of (0,5,...,57) conditioned on the set {S; > 0,i =
0,1,...,T}, and
2. is independent of (0, S1,...57,)-
Let Uy, Us, . .. denote times of occurrence of successive relative maxima of the sequence {$,}. Note
that for any n, P(1i = Uy, for some m > k|A} ) = 1,i.e. any break point on the positive side of the
axis is, at some time point, a relative maxima. Note also that for every M > 1,U,, is a stopping
time for the sequence {X;}, for by the strong Markov property the sequence (Xy,, +1, Xv,+2,-++)
is distributed exactly the same as (X7, X3,...) and is independent of (X1, Xs,...,Xy,.). As a
consequence, (0, St +1— Sv,,, SU.+2— SU,. - - .) is distributed as (0, $1, Sz, . ..) and is independent
of (0,81,82,...,580,,). This holds in the particular case where (), 51, S52,...,Sv,,) is self-avoiding,
i.e., on the set {U, < T}. On this set, Sy, is a break point if and only if {Sy,,+: — Sv,, >
0, =1,2,...,T} holds, i.e., the sequence has the same distribution as (0,S51,...,S7) on the set
{S; > 0,i=1,2,...,T}, and is independent of (0, S1,...,Svu,,) which is equal to (0, 51,...,57)

for some k. a

4. Limit Behavior

Since the break points divide the point process into independent pieces, the problem of condi-
tioning on the past is greatly reduced on the subsequence S, . This being the case, one can then
study the growth on this subsequence using the results on conditional independence of the last

section. Define
pnk = P[(0,81,...,5y,) has at least k points of no crossover |A;}). (1)

The growth is linear in the following sense.
Theorem 2 Let G(-) satisfy the following conditions:
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1. G(-) is integer valued with no mass at 0.
2. Eg(|X|) < 0.
3. For every integer k,lim,_, o0 pnik = 1.

Then there ezists a positive constant m > 0, depending on G(-), such that

—’l—m‘>e|A',';)——>0

r([2
n

as n — 00.

Proof: In order to prove the result for the self-avoiding random walk, we first prove it along
the subsequence of break points. We state this preliminary result as a proposition which we will
prove later.

Proposition 3 Under the conditions of the theorem,

R -—m‘ > e|A2,"n) —0
n

P (|2
-

as n — oo.
Assuming this result for a (random) subsequence of the self-avoiding random walk, we can get

the result for the walk itself, when 7, < n < 7,41 < T, by noting the inequality:

Sr 8, < S‘rk+1 on A}

Tet1 for 7, < n < Ty

Thus on A}, |
S'rk S _‘?_n_ S S‘rk+1 .
The1 T Tk
From Proposition 3, we know
£ _m in probability,

Tk
and, since the times between break points form a renewal sequence,

Tk
Tk+1

— 1 in probability.



Thus
Sn

- ™ in probability.

However, this doesn’t work when

TkS'I’LST

and 7y is the last break point before extinction. The following lemma provides us with the necessary
result from renewal theory to complete our proof.

Unfortunately we must first introduce some more notation. Let (Vq, W), (Va, W2),... be a
sequence of i.i.d. random vectors defined on &' x N, where N is the natural numbers. Let P(-,-)

be their probability distribution, and assume P(k, k) = 0 for all keN. Define

k-1
T=/{(-§1Xi) +Y:.:Y: <Xk}

k
N(n) = sup {k : _z)lX,- < n}

N(n) )
T=n- ¥ X; ifn<T
1=1

N(n)+1
(n:-min{T—n, _El X,-—n} ifn<T
i= :

0 otherwise

Q)= 5 PGk)

Lemma 4 If there exists A such that £2,e*Q(i) = 1, and £2,ieMQ(i) = p < o0, then
2, Plmin(X,Y) > ile*

. < = = ]
Jim_Plp, < z]A(n) = 1] %%, Plmin(X,Y) > e

and

£92, P[i < min(X,Y) < i + z]e
22, Plmin(X,Y) > t]eM

lim P[, < z|A(n) = 1] =
Now, returning to the proof of the theorem, we can write

Nn
Sn = S‘r,," + 'El Xi,
i=
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where 7, is the last break point before n,7, = n — 7%, and X3,...,X,, are the step sizes. From
the lemma we see that 7,, has a finite limiting distribution, and on the set A} we know that for

k > 0,5, and X2, X; are both positive. Thus dividing by n, we get

S

Nn
Su _ Sn, + AP, SR X X;
n

=1

Tk, + Tn - Tk, + T Tk, + Tn '

The second term converges to 0 in probability as n — oo, and the first term converges to m in

probability since
Tk, T n
BT 4
Tk"
in probability as n — oo. This completes the proof of the theorem. _ O

We devote the rest of this section to the proofs of Proposition 3 and Lemma 4.
Proof of Proposition 3: Owing to the i.i.d. nature of the wr, for ¢ > 2 from Proposition 1,

1t suffices to show that

E(|ST+1; — STy |14 43) = @1 < 00

and

’E(T2]AZZ+;1+T2) =c3 <00,

in which case we may set m = ¢; /¢y and be done.
Consider P(Ty + T3 2 n|T1 + T2 < T). Clearly P(T > n) < k-p", where k > 0 and p < 1, i.e.
the time to extinction is a random variable, the tail of whose distribution decreases geometrically

with time. Evidently
PMM+T>nTi+Te<T)=P(T>Ti1+T2>n)/P(T1+T> < T) < k'p",

where
K= k/P(Th+ T, < T);

9



so that the conditional moments at 73,75, ... all exist and are finite. Since the length of a step has

finite expectation, the conditional expectation of §;,,, — S, also exists and is finite. Thus
P(|S,, /n— c1] > dlA%,) = 0

as well as
P(lta/n — c2| > €|A;,) — 0,

yielding the result. (]
Proof of Lemma 4: By conditioning on the value of (V;, W;) we obtain the following:
P[A(r) = 1] = Plmin(V, W) > n} + £ PlA(n — i) = 11Q(),
Py, < z, A(n) = 1] = Plmin(Vi, W) > nlx[o,(n) + 1___55_1 Plin—i < 2, A(n — ) = 1]Q(3),

and
P[¢n < 2, A(n) = 1] = Pln < min(V3, W1) < n + 2] + ,gl Pln-i < z, A(n — i) = 1]Q(3).

By the assumptions of the lemma, we can apply the renewal theorem to e*” P[A(n) = 1], e**P[n, <
z, A(n) = 1], and e**P[(, < z,A(n) = 1] to get

lim *"P[A(n) = 1] = % $ Plmin(X,¥) > ie¥,

lim P, < 2,A(n) = 1] = = % P[min(X,Y) > ile™,
n—0o M i=1
lim e*P[(, < z,4(n)=1] = 1 % Pli < min(X,Y) < i + z]e™.
n—oo M i=1
Division now gives us the desired results. a

5. Some Further Results

In proving our results on the growth rate of the self-avoiding random walk, we have made the
assumption that break points occur quite often, at least if the process itself lasts for a long period
of time. In this section we would like to show that at least for some distributions G(-), break points
are a common feature of the sequence (0,S4,...,5,) on the set A, for large n. It is probably
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true under very general assumptions on G(-), but difficult to prove owing to the complicated
conditioning involved. As will be seen in the following proposition, if G(-) satisfies assumption 4,
then the conditional probability that the sequence contains at least k£ points of no crossover can be
made arbitrarily high by letting » — oco. Let p,; be as defined in equation 1.
Proposition 5 If G(-) has all of its mass on a bounded interval [—r,r] and P(X = i) > 0 for
every integer 1 for which —r < i < 7, then for every integer k,lim,_, oo Prnr = 1.
Proof: Fix M > 0,¢ > 0, and let nps be such that for all n > npr, P(|Ss] > M|AT) > 1 -«
If one can show that conditioned on the set {|S,| > M} N A,, that k points of no crossover
exist with arbitrarily high probability, then the proof will be complete. On this set, suppose,
without loss of generality, that S, > 0. By assumption A, steps are < r in length. Suppose that
M = 6-r-j for some positive integer j. Thinking of the sequence (0, Sy,...,.5,) as just being
a collection of filled points, select a subsequence My, Ms,...,M; such that 0 < My < ... < M;
and My — M; > 2-r+1fori=1,2,...,5 — 1. (Such a subsequence must always exist, e.g.
M; = largest filled lattice point in [3r-%,3r .7+ r].) Suppose that w, = (0,S51,...,5,) is such
that M; is a point of crossover. It will be shown that there exists an element w), of ©, such
that w, and w! take the same steps off of [M; — r, M; + r], and p,(w},) > ¢ pn(ws), where
¢ = [(min;=1,... » P(X1 = 1))/ max;=1,.. r P(X; = ¢)]>T. Whether or not M; is a point of crossover
is determined by steps from lattice points in [M; — r, M; + r] to points in the same interval, since
steps are of length » or less. There are at most 2 - r such steps. If M; is a point of crossover for
W, it is necessary to show that a rearrangement of these at most 2 - r steps exists, yielding an w/,
where M; is a point of no crossover. For simplicity, suppose that G(-) is such that a point can only
be crossed over twice, i.e. r = 3. The argument for this case easily generalizes.

Suppose that the path w, is such that the self-avoiding walk does cross over M;. Then there
are points ¢1, g2, g3 to the left of M;, and points py, p2, p3 to the right of M;, such that the following
hold. From ¢; we step to M; in one step, from M; we step to p; in one step, and from p; we wander
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among points to the right of M; until we step to po; from p; we crossover M; and hit ¢o; from ¢,
we wander among points to the left of M; until stepping to ¢3, from which we crossover M; in one
step to p3, whereupon we remain to the right of M;. Thus these points comprise the places where

M; is crossed over, or which step to M;, or which M; steps to. This sequence of steps,
q— M;—p—...—p—r ¢ —...— g3 — D3,

where the arrows indicate a single step, is displayed in figure 1. Conditioning on the location of
q1,92,43, P1, P2, p3 and leaving segments p; — ... — p; and g2 — ... — ¢3 undisturbed, we change

a few steps obtaining a new sequence w/,,
a—q@—...— @ —M-—p—...—p—ps

which is displayed in figure 2. Thus for every path w, where M; is a point of crossover, by changing
at most 27 steps in [M; — r, M; + r], a path wj, is obtained for which M; is a point of no crossover.
In addition, since at most 2r steps were changed, p,(w},) 2 ¢-pn(wy). Given this collection of filled
points, the probability that any particular M; is a point of no crossover is at least ¢/(14c¢). By the
method of construction of w;,, this probability is independent of the behavior of w, at My, ..., M;_;.
Therefore, the distribution of the number of points of no crossover among My, ..., M; is bounded

from below by a binomial (j,¢/(1 + ¢)) random variable, that is

i (j ¢ '/ 1\
> .
Pk = iEk(i) (1+c) <1+c)

As M (or equivalently j) is made arbitrarily large, p,x can be made arbitrarily close to one. [l

6. Discussion

We have applied a technique for finding regeneration points, termed “break points”, to a self-
avoiding random walk in order to study its limit behavior. While these regeneration points do not
occur at stopping times, they still allow the decomposition of the process into independent pieces
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which greatly simplified the study of its limit behavior. The technique was also applicable to an
entirely different problem in percolation which suggests even wider applicability. The key to the
technique is asking the correct question about future behavior which will yield the regeneration

behavior.
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