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ABSTRACT

A technique used in pattern recognition called Hough Space is used to derive con-
fidence regions for simple linear regression lines. These confidence regions are based on
convex confidence regions for the regression coefficients. Examples are worked out when
the latter are ellipses, rectangles, and parallelograms.
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Textbooks usually show diagrams of the loci of confidence intervals for the predictor
and of prediction intervals in simple linear regression. These are, in the case of normal
errors, hyperbolas whose minor axis is the regression line. The books usually explain that
the area between the hyperbolas is not a confidence region for the regression line and
at least two, (2, p. 460; 4, p. 154-6), present the confidence region for the regression
line as the region between two branches of a hyperbola when the joint confidence region
for the regression coefficients is elliptical (6). The same texts also discuss rectangular
Bonferroni confidence regions for the regression coefficients. Is there a confidence region
for the regression line corresponding to a rectangular confidence region for its coefficients?
If there is what does it look like?

It is easy to show that such regions exist. The methods are elementary and can be
explained in terms of a technique used in pattern recognition called Hough Space. This
originated not in a research paper, but in a U. S. patent (3). In its simplest form a Hough
space is a Cartesian space with axes 1, in which a point maps into a line, y = fo+ f1 z,
in the z,y plane. In engineering use, however, the line is expressed in normal form (1,
Ch. 9) and the Hough space coordinates are the length of the perpendicular from the
origin and the angle it makes with the z-axis. For us it is more convenient to work with
the slope intercept-form of simple linear regression. Thus a line in the z,y plane maps
into a point in the 8;,00 space. A point, (zo,yo) determines a bundle of straight lines
Yy = mzo + (Yo — mzo) which map into the locus,

Bo = Yo — mzg

.31=ma

in the Hough space. This is a straight line with slope —zo and intercept yo. In this
way a point on the z,y plane maps into a line in Hough space. In pattern recognition
the z,y plane is monitored by a television camera and points in the raster with sudden
changes in brightness are identified. If several of these lie on a line, the lines in Hough
space corresponding to them will intersect in the point that maps into the z,y-line. In
practice, of course, nothing is done to ultimate accuracy, but the mapping is continuous
so all the intersection points of the lines from the z,y discontinuities made by a line will
group around the parameters of that line. In this way (z,y) lines can be identified from
frequency data in Hough space (5).

Suppose R is a convex set in Hough space. Each point in R maps into a line in the
z,y plane. Suppose, for some value of z, U(z) = {y : I(B1,P0)eR : y = Po + Piz}.
Let y; and y, be points in U(z) and y3 = ay; + (1 — @)y, with 0 < a < 1. There
are points in Hough space such that y; = fo1 + P11z, and y2 = Boz + Pi2z. Then
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ys = afo1 + (1 — a)Boz + (af11 + (1 — a)B12)z. Since R is convex, y3 is in U(z). Therefore
U(z) is an interval in the vertical line at z in the z,y plane. The endpoints, Yy(z) and
YL(z) are the max and min of y = B¢ + B1z. Writing this as the line, 8o = —z8; + v, in
Hough space, we see that the max and min of the y’s are the intercepts of the lines of slope

—z tangent to R. ‘
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Ezample 1. Rectangular R whose sides are parallel to the coordinate axes in Hough
space. Let the lower left vertex be (811, 801), and the upper right vertex, (812, 802). When
z # 0, the tangent lines to R pass through two opposite vertices.
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When z > 0, these are (B811,001) and (B12,B02), the latter giving the maximum. The
tangent line through (811, 801) in Hough space is

Bo — Bor = —z(B1 — B11)-

The intercept of this line, which is the lower end of U(z), is o1 + S112z. Thus the locus of
the lower ends in the z,y plane is

y = Bo1 + P11z for z > 0.
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The upper end locus, by similar reasoning is

y = Boz + P12z for £ > 0.

These are diverging half-lines from the y-intercepts Bo; and Boz. For z < 0, the parallel
tangents pass through (812, fo1) and (B11, Boz), the latter giving the maximum. The points
in z,y corresponding to these tangency points are half-lines diverging to the left from the
same y-intercepts. If the rectangle in Hough space is a Bonferroni confidence region for
B1, B0, the regression estimates (b1, bo), are usually in its center. The estimated regression
line in the z,y plane passes through the midpoints of all the vertical intervals between
these boundary lines. The area between these diverging pairs of rays is the confidence
region for the regression line with the confidence of the Bonferroni region in Hough space.
The narrow neck of this figure would seem to be more appropriately placed near (Z,7)
rather than on the y-axis. This can easily be arranged by adjusting the Bonferroni region.
If we translate the z,y origin to (Z,7); i.e.

Y =y-7, f=z-%

Then a regression line, y = fo + Bz, referred to the new coordinates, is
y' = (Bo ~§+ B17) + 1’
The Bonferroni region for the parameters of this line has the form
b1 — B1] < da
60 — Bo + (b1 — B1)Z| < do.

This is a parallelogram in the Hough space with two vertical sides, the other sides having
the slope —Z. The parallel tangents again touch at vertices, but the change of vertex takes
place when the slope passes through —Z or through infinity. Thus on the z,y plane the
break in the diverging lines is at T rather than at 0.

Suppose the convex set, R, is bounded by curves so the points of tangency change
continuously as the slope, —z changes. If (81(z),80(z)) is a point of contact on the curve
for a tangent of slope —z, the upper or lower point on the vertical at z in the z,y plane is

given by y = fo(z) + B1(z)z.

Ezample 2. Suppose the confidence set for (81, 8p) is the ellipse,
A(B1 — b1)® +2B(B1 — b1)(Bo — bo) + C(Bo — bo)? < 1.

Since this is an ellipse, the left side is positive definite, i.e. A > 0,C > 0,AC — B% > 0.
The condition on r for a line g — bp = —z(B1 — b1) +r to be tangent to the ellipse is easily
derived by ensuring that the quadratic equation for the 8;-coordinate of the intersection
has a double root. It is

(B —Cz)?

1
2 _ il
r _(AC'—B2 +1)C.
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Because of the condition on the coefficients of the ellipse, the right side of this expression
is positive for all z and the values of r are real. The value of 8; at a point of contact of a
tangent line is given by the double root of the quadratic. The value of 8y comes from the
equation for the tangent line;

_ (B — Cxz)
Pr—br =1 pCm

_ (A-Bx2)
Bo bo—rA—ZB:z:—f-C'z2

Then the boundary of the z,y confidence interval for the regression lines is given by the
equation,
r(A — Bz) (b1 — r(B — Cz)

—b
Y=%+ A8z 1+ Ca? A—2B:7Ca)”

which works out to be
(y—bo—b1z)* (B-Cz)?

1/C AC — B?

=1,

a hyperbola.

The equations of the asymptotes of this curve are gotten by setting the left side of
the above equation to zero.

y— by — byz = £(B — Cz)/+/C(AC — B?).

The two asymptotes are lines which are equally distant above and below the estimated
regression line, y = bg 4+ b1z at any z. The center of the hyperbola is at the point where
the asymptotes meet. The z coordinate of this point is given by B — Cz = 0.

The elliptical confidence region for (81, o) given by normal theory has coefficients (4,
p. 148),
TX?
262F°
XX
~282F°
_n
© 262F’
where &2 is the mean squared error from the regression ANOV A and F = Fapn_2(1—a).
The intersection of the asymptotes is, therefore, at z = 8/C = Z. At T the hyperbola
intersects the vertical at distances above and below the midpoint,

V1/C = \/262F/n.

A=

The equation for the boundary of this 1 — a confidence region is

/1 [(B—Cxz)?
y=bo+ bzt 6 "AC,_—_'Ez—"f‘l
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or
E—2?
SXX

where SX X = %(X —%)2. This formula is the same as the one for the locus of endpoints of
the confidence limits for the predictor except for the multiplier \/ 2F3 n—2(1 — o) instead
of t,—2(1 — a/2).

1
y=b0+b1$i&V2F ;-I—

A useful comparison of the three examples of confidence regions for regression lines
cannot be made without having a loss function unless one region is inside another. It is
easy to show that there are no inclusions among the three regions in Hough space and
thus none also in the z,y plane. A comparison of the vertical widths of the three regions
at their narrowest parts can be made:

1 =2
Bonferroni rectangle 2¢5/ - + S;X

1
Bonferroni parallelogram Zt&\/ -~

Ellipse 2 2F&\/§ .

In these formulas ¢t = t,_2(1 — a/4). For any reasonable o they are ordered largest to
smallest from top to bottom.
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