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A gamma distribution with arbitrary scale parameter § and shape
parameter r < 1 can be represented as a scale mixture of exponential
distributions. Arbitrary gamma distributions are thus mixtures of sums

of independent exponential random variables.

1. INTRODUCTION AND MAIN RESULT

In a paper by Proschan (1963) on failure rate analysis some data are included con-
cerning the time of successive failures of the air conditioning system of each member of a
fleet of 13 Boeing 720 jet airplanes. Proschan tested the fit of the exponential distribution
to this data using the Kolmogorov-Smirnov test of fit, and was unable to reject the hy-
pothesis that the pooled data are exponentially distributed. However, Proschan remarks
that the pooled data seem to exhibit a decreasing failure rate, and thus questions whether

the exponential distribution really does provide an adequate model for the data.

In a later paper, Dahiya and Gurland (1972) use a test based on the sample moments to
test the fit of the exponential distribution in Proschan’s data against gamma alternatives.
Their test rejects the null hypothesis of exponentiality at the .01 level of significance,
confirming Proschan’s doubts. They find that a gamma distribution with scale parameter
9 = (122.56) ! and shape parameter r = 0.76 provides a good fit to Proschan’s data. They

note that such a gamma distribution has a decreasing failure rate.
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In Olkin, Gleser and Derman (1980), Proschan’s data are used as an example of data
which appear to follow an exponential distribution. In preparing a revision of this book,
I came across Dahiya and Gurland’s paper, and became interested in how I could explain
their conclusions. Since Proschan had combined data from several airplanes, which might
be subject to different uses and environments, it was natural to suspect (as Proschan had)
that survival times might have different exponential distributions for different planes, and
thus that Proschan’s data would follow a mixture of exponential distributions. This led
to the question of whether a gamma distribution can be represented as a scale mixture
of exponential distributions. For values r < 1 of the shape parameter of the gamma

distribution, the answer to this question is “Yes”, as shown by the following theorem.

THEOREM. Let f(z) be the density of a gamma distribution with scale parameter 6

and shape parameter r, 0 < r < 1. That is,
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The proof of this theorem is an elementary exercise in calculus (change variables from
v tou = (v —6)z in (2)). That ps(7) is a legitimate probability density function can
be shown by changing variables from « to v = (v — 0) /8 in (3), and recognizing that the
resulting density of v is that of r~1(1 —r) times an F-distribution with 1—r and r degrees

of freedom.



If X has a gamma distribution with scale parameter  and arbitrary shape parameter

r > 1, then
[r]
X ~ Zo + Z Y;, [r] = integer part of r,
1=1

where Zy has a gamma distribution with scale parameter § and shape parameter r — [r],
and Y1,Y3,...,Y|, are ii.d. exponential with scale parameter §. Thus it follows from
the theorem that the distribution of X (the gamma distribution) can be represented as a

mixture of sums of independent exponential random variables. That is

[r]
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where Yo,Y1,...,Y], are ii.d. exponential with scale parameter §, and G is a random

variable with density ps(<y) given by (3).

It might be asked whether the restriction » < 1 in the theorem is necessary. Again,
the answer to this question is “Yes”. That is, the density f(z) of a gamma distribution
with shape parameter r > 1 cannot be written as a scale mixture of exponentials. To see

this, suppose that
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for some density go(7) relative to some (sigma-finite) measure A on [0, 00). In this case
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for all z > 0, since the existence of f(z) for all z > 0 ensures that we can interchange
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the operations of differentiation and integration. [Note that the integral on the right side

of (5) is a moment generating function.] On the other hand,
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which (when r > 1) is greater than 0 for 0 < z < §~!(r — 1). Consequently, the represen-

tation (5) is impossible.



2. DISCUSSION

We do not have to assume that the failure times X in Proschan’s data have a gamma
distribution with shape parameter r < 1 in order to explain the decreasing failure rate in

Proschan’s data. Any scale mizture of ezponentials has decreasing hazard rate.

To see this, let
1@ = [ plre e are)

be any scale mixture of exponential densities. Note that here again we allow X to be
any (sigma-finite) measure on [0, ), including counting measure, so that f(z) can be a
discrete mixture. It is easy to see that the survival function 1 — F(z) corresponding to
f(z) is
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The hazard function (conditional failure rate function) obtained from f(z) is

__f=
h(z) = T=F@)

Note that for all z > 0, interchanging derivative and integral,
d 2
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By the Cauchy-Schwartz Inequality,
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0
so that it follows from (6) that h(z) is a nonincreasing function of z.
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Note: The above result was previously shown for finite mixtures of exponentials (or any
other distributions with nonincreasing hazard function) by Proschan [1963; Theorem 2].
The slight generalization of his results fo arbitrary mixtures proved here (by similar meth-
ods) could also be verified using Proschan’s result, and the fact that any measurable func-
tion can be approximated by simple functions. The exponential distributions, of course,

have constant hazard functions.

In Proschan’s data, the mixing density (3) is apparently close enough to the actual
mixing density (which is probably discrete, since data from 13 planes were pooled) so that
any difference between the true mixed exponential distribution and a gamma distribution

with r = 0.76 is undetectable by the test used by Dahiya and Gurland (1972).

My conclusion from this analysis [which echoes similar conclusions reached by
Proschan (1963)] is that one can still entertain the hypothesis that times between failures
of the air conditioning systems for individual planes in Proschan’s data are exponentially
distributed, even while accepting the fact that the combined data from all planes do not
seem to follow an exponential distribution. Proschan (1963) suggests that scale mixtures
of exponentials are likely candidates for modeling time to failure data exhibiting decreasing
hazard rates. This note demonstrates that among such mixtures are the family of gamma
distributions with shape parameter r < 1. As Proschan notes, mixtures are particularly
likely to arise in pooled-data contexts. Because of the many useful properties of expo-
nential distributions in reliability theory (e.g., lack of memory, constant failure rate), it is
worth the effort to identify situations where lack of fit to the exponential distribution may
be due to pooling (mixing) of data, rather than to the nature of the process underlying

the data.
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