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Abstract

For a self-similar set K satisfying a certain separation condition, the number N (&) of points
in a maximal e-separated subset and the number M(¢) of e-balls needed to cover satisfy N(e) ~
const -~ and M(g) ~ const P as ¢ — 0 through a certain multiplicative group. Here D is
the Hausdorff dimension of K. Furthermore, the empirical distribution of points in a maximal

e-separated set converges weakly to normalized D-dimensional Hausdorff measure on K.

* Supported by National Science Foundation grant DMS-8401996.



1. Introduction

Self-Similar sets in R% occur as the limit sets (equivalently, the minimal closed invariant sets)
of certain semigroups of contractive Euclidean similarity transformations ([4], [7]). The purpose
of this note is to describe the asymptotic behavior as ¢ — 0 of the number N(¢) of points in
a maximal e-separated subset and the number M(e) of e-balls needed to cover a self-similar set,
and to investigate the relationships between maximal packings, minimal coverings, and Hausdorff
measure. The functions N(¢) and M(e) are used to define the packing and covering dimensions
(often called the capacity and metric entropy): see below.

A similarity transformation § : R — R? has the form S = rJ, where J : R* — R¢ is an
isometry and 7 > 0 is a scalar; if 0 < 7 < 1 then § is called contractive. Let S = {51, 5%,...,5n}
be a finite set of contractive similarity transformations. Then for any sequence 4y, %3, - - - of indices
and any z € R¢

A

lim Si15i2 e .Sin:II:k

41,620

exists, and the limit is independent of 2 ([4], sec. 3; two different sequences 41,142, ... and i}, 4,...

may yield the same limit). Let

K = {kii,..}

be the set of all possible limit points: this set will be the principal object of study in this paper.
Most of the fractals in [7], sec. 6-8, 14 arise in this manner. Some examples:
(1) Let Syz =rz and Sez =rz+1—7, where 0 < 7 < % r= % then K is the Cantor
set; if 7 = 1 then K is the unit interval ([7], plate 81).
(2) Let S; : R? — R? be defined by
S1(z1,22) = (21/2,22/2)
Sa(z1,22) = (1/24 21/2,22/2)
S3(z1,22) = (1/4+ 21/2,V3/4 4 25 /2);
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then K is the “Sierpinski gasket” ([7], p. 142).

(3) Let a1 = (0,0), az = (1/3,0), a3 = (1/2,V/3/6), ag = (2/3,0), and a5 = (1,0). Let
S; (¢ = 1,2,3,4) be the unique similarity transformation of R? mapping @;as onto
@;a;11 and having positive determinant. Then K is the “Koch snowflake” ([7], pp.
42-43).

The set K is always compact ([4], sec. 3), as are the images

K., éSi Sip---8;

in

K.

In the examples above the sets K, Ks,..., K are either pairwise disjoint or have “small” over-
laps. In the former case the set K is totally disconnected and each point z € K has a unique
representation ¢ = k;,;,..; in the latter case, some points have multiple representations and K may
be arcwise connected. It is always the case that K = igl K;.

Say that S satisfies the open set condition [4] if there exists a nonempty open subset U of R¢
such that S;U C U for each ¢ and S;U N S;U =0 if ¢ # j. If U can be chosen so that U N K # 0§,
say that S satisfies the strong open set condition. Notice that this holds in the examples above.

Write §; = r;J;, where 0 < r; < 1 and J; is an isometry. The similarity dimension of S ([4],[6])

is the unique D > 0 such that

Let HP(-) be the D-dimensional Hausdorff measure on R? ([4]).

Theorem 0 ([4]): IfS satisfies the open set condition then 0 < HP(K) < co and HP(K;NK;) =0

for ¢ £ 7.

Thus, D is the Hausdorff dimension of K. Since HP(K; N K;) = 0 it follows that

HP(Kii,...i,) = (riyriy -+ 13, )P HP(K).
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Therefore, if one chooses indices i,y,... at random from the set {1,2,..., N} according to the
multinomial distribution {rP,r2,...,7R}, then the random point kiji,.. will be “uniformly dis-
tributed” on K relative to D-dimensional Hausdorff measure.

Call a finite subset F' of K e-separated if dist (z,z') > ¢ for all z,2' € F such that = # z'.
Let N(¢) be the maximum cardinality of an e-separated subset of K'; this will be called the packing
function. Call a finite subset F' of K an e-covering if for every y € K there exists € F such that

dist (z,y) < €. Let M(e) be the minimum cardinality of an e-covering subset of K; this will be

called the covering function. The packing and covering dimensions Dp and D¢ are defined by

. logN(e)
Dp = lim loge—1 "’

provided these limits exist. (The covering dimension was introduced in [5], the packing dimension
in [8]. They are usually called the metric entropy and capacity.) A simple argument shows that

N(3¢) < M(e) < N(e),so D, = Dc whenever either limit exists.

Theorem 1: Assume that the strong open set condition holds.
(a) If the additive group generated by logry,logrs,...,logry is dense in R, then there

exist constants C,C' > 0 such that as ¢ — 0
N()~Ce™® and (1.1)
M(e)~C'e™ P, (1.2)

(b) If the additive group generated by logry,logrs,...,logr,, is hZ(h > 0) then for each

ﬂ € [0, h) there ezist constants Cp,Cjy > 0, uniformly bounded, such that as n — oo
N(e ™P) ~ Cyexp{D(—nh+ B)} and (1.3)

M(e™™*+F) ~ Cf exp{D(—nh + B)}. (1.4)
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Observe that case (6) obtains for the Cantor set, the Koch snowflake, and the Sierpinski gasket.

Corollary: If the strong open set condition holds then

D =Dp=Dc¢.

This answers a query in [1]. (After writing this note I learned that this relation is part of the
folklore: see, for example, [9].)

Let F, be an e-separated subset of K having maximum cardinality, and let G, be an &-covering
subset of K having minimum cardinality. Define Borel probability measures p.(v.) on K by putting

mass 1/N(¢) (1/M(e)) at each point of F.(G.).

Theorem 2:  If the strong open set condition holds then as ¢ — 0

p HP
p HP
1/6—>—HD(K). (1.6)

Theorems 1 and 2 help clarify the relations between packings, coverings, and Hausdorff ma-
sures. Maximal e-separated sets and minimal ¢-separated sets are usually very difficult to find. In
the totally disconnected case (i.e., K; N K; = @) for 7 # j) one may give an algorithm for obtain-
ing an e-separated set whose cardinality is within 0(1) of N(¢). In general one may produce an
e-separated set whose cardinality is within 0(¢~P*®) of N(¢) for some § > 0. The proofs below
should suggest how this may be done.

In proving Theorems 1-2, I shall consider only the packing function N(¢). The same arguments

apply to the covering function M(¢).

2. Totally Disconnected K
This case is particularly simple. Assume that Ky, K>, ..., Ky are pairwise disjoint; since each
K; is compact there exists § > 0 such that if z € K; and 2’ € Kj, 1 # j, then dist(z,z') > 6. Now
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if € < 6 then one may obtain an e-separated subset of maximum cardinality by finding maximal
e-separated subsets of K1, K»,..., Ky and taking their union. Since K; = §;K is similar to K ,
a maximal e- separated subset of K; is similar to a maximal er] ! separated subset of K , and

therefore its cardinality is N(er;'). Hence, if € < § then N(e) = 2%, N(er;?). It follows that

N
N(g) =) N(ery') + L(e) (2.1)

for all € > 0. Since N(¢) is a nonincreasing integer-valued function that is zero for all sufficiently
large €, L(¢) is a piecewise continuous function with only finitely many discontinuities that vanishes
for 0 < e < 6.

Equation (2.1) may be rewritten as a renewal equation ([3], ch. 11) in the following manner.
Define

Z(a) = e *PN(e™2)

for a > 0; since N D= 1, it follows from (2.1) that
i=1"1

Z(a) = #(a) + / Z(a—2)F(dz), a> 0,
(0,a]
where F(dz) is the probability measure that puts mass r? at —logr;,i = 1,2,..., N. Because F
has finite support and L is piecewise continuous with only finitely many discontinuities, z is also
piecewise continuous with only finitely many discontinuities. Moreover, z has compact support in
[0, 00) since L vanishes in (0, §). Therefore, z is directly Riemann integrable ([3], ch. 11).
There are now two cases, the nonlattice case and the lattice case, corresponding to (a) and (b)

of Theorem 1. In the nonlattice case the renewal theorem ([3], ch. 11) implies that

a—0o0

0o N
lim Z(a) = z(z)dx rPlogrt.
o (3 2
i=1

This is equivalent to (1.1). In the lattice case the renewal theorem ([2], ch. 13) implies that for

0<B<h
0o N
lim Z(nh+ ) =Y z(nh+£)/ Y rPlogr;?



This is equivalent to (1.3). Note that the constants Cs must be uniformly bounded because N(e)

is nonincreasing.

3. The General Case
If Ky, Ky, ..., K are not pairwise disjoint then the argument of the preceding section fails be-

cause the union of e-separated subsets of Ky, ... Ky will not generally be e-separated. Nevertheless,
since K = UY, K,

N

N(e) <Y N(erih).

=1

Define

N
L(e) = E N(er7Y) — N(e).
i=1

Proposition 1:  Assume that the strong open set condition holds. Then there exist constants
v > 0,8 > 0 such that
L(e) € e8P,
The proof is deferred to sec. 5.

Define, as in sec. 2, Z(a) = e *P N(e~*), and write

Z(a) = z(a) + / Z(a — z)F(dz)
(0,a
where F(dz) puts mass 7P at logr] 14 =1,2,...,N. Observe that for all sufficiently large
a, z(a) = —e *PL(e~®). Moreover, since N(¢) is-a nonincreasing, nonnegative integer valued

function and F(dz) has finite support, 2(a) is a piecewise continuous function with only finitely

many discontinuities in any finite interval. Proposition 1 implies that
|2(a)] < ve™*°

for all sufficiently large a. It follows that z(a) is directly Riemann integrable. Therefore, in the

nonlattice case

a—r o0

o0 N
lim Z(a) = / z(x)dw/z rPlogr;?!,
0 =1
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and in the lattice case

00 N
lim Z(nh+B) =Y 2(nh+B)/ > rPlogry?
n—00
n=1 i=1

for every B € [0, k). This proves (1.1) and (1.3). As before, the constants C3 are uniformly bounded

because N(¢) is nonincreasing.

4. Maximal Packings and Hausdorff Measure
Recall that p. is the probability measure that puts mass 1/N(e) at each point of a maximal

e-separated set.

Proposition 2: Assume that the strong open set condition holds. For each pair of distinct

SEQUENCES 11,12, ...,0pn AN J1, 52,y Jn,

lim NE(Ki1i2---in n I(jle---jn) = 0.

e—0
The proof will be given in sec. 5.
Since the support of y. is an ¢-separated subset of K, and since K; is similar to K , it follows

that

N(erih)

.ut-:(Kz) S Wa

i=1,2,...,N. (4.1)
For small e, Efil (N(eri_l)/N(z-:)) ~ 1 by Theorem 1, and p.(K; N K;) = o(1) for i # j, by
Proposition 2. Since p.(K) =1 and K = UK, (4.1) implies that
pe(Ki) ~ N(ery1)/N(e)
- ~rP =HP(K;)/HP(K).
Now the sets K;,;,.. ;. are all similar to K, so by an easy induction argument

l—l_l;% /‘l's(IfiliZ-Nin) = HD(I(irizmin )/HD(I()

for each sequence 41,143,...,4,. Since K = UKy, i, and diam K, ;. < (11<na<31(v r))" — 0, it
_2—
follows easily that for any continuous function f : K —» R

i = 2)HP (dz D .
lim /K fdpe = /Kf( VP (dz)/ HP(K)

e—0
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This proves (1.5).

5. The Key Estimate
Assume that the strong open set condition holds. Let 3,5 € {1,2,...,N}, i # j. Define

Q:j(¢) to be the maximum cardinality of an e-separated subset F of K; such that for each z € F,

dist(z, K;) < e.

Proposition 3:  There ezists § > 0 such that as € — 0,

Qije) = 0(*~P). (5.1)

Proposition 3 implies Proposition 1. To see this observe that one gets an e-separated subset of
K by taking maximal e-separated subsets of K;, 7= 1,2,..., N, deleting all points from K; within
€ of Uj.j2: K ;, then taking the union. Thus,
N
N(&) 2 D N(err') =323 Quie),
i=1 i#
and Proposition 1 follows.
Proposition 3 also implies Proposition 2. First notice that to prove Proposition 2 it suffices,

since K;, D K; 5, D ..., to establish that if ¢ # j then
;i_{% pe(Kiyiy..ini N Kijiy.inj) = 0.

Recall that p.(G) is N(€)~1x the cardinality of F. N G, where F. is a maximal e-separated subset
of K. Since

Kiigini N Kijig. 5 = 85,8, ...8:, (KN Kj)

and since Sj,...S5;, is a similarity transformation that contracts distances by a factor of

TiyT1y oo Ti, = Py

pe(Kivig.ini 0 Kiiy. i) < {Quj(ep™) + Qji(ep™)}/N(e).
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Proposition 3 and Theorem 1 imply that this converges to 0 as ¢ — 0.

6. Proof of the Key Estimate

Recall that the open set condition holds if there is an open set U C R? such that $;U C U for
each 7 and S;UNS;U = 0 for i # 5. Let Usyy,..5, = Si; 84, ... Si, U. If the open set condition holds
then

() UD Ui, DUiyiy D -- 5

(0) Kiyig.in C Uiyigeoin;

(©) Kjijyio NUigig...i, = 0 unless (31,...,455) = (J1,- -+ Jn)
( [4], sec. 5.2 (3)).

If the open set U can be chosen so that U N K # @ then the strong open set condition holds.
Assume that this is the case. Then there exists a point kj i,... € U. Now the diameters of the sets
Kj,j,...j, converge to zero as n — o0, and kj, j,... is an element of each; consequently, there exists

a finite sequence j;, jo,. .., j, such that
K; j,..5, CU.
Since K, j,...;, is compact there exists @ > 0 such that
dist(z,U°) >a Ve € Kj ;...

It follows upon applying the similarity transformation $;,8;,...S;, that for any sequence
11592, 0yl

Kiyig.iingrjoip C Uiyig..in

" and that for each 2 € K;

182enin f1.0dp

dist(z,Ug;, ;. ) > aryri,...1i,. (6.1)
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Let j € {1,2,...,N} and let 4y,%,...,i, be a finite sequence such that i; # j and
ory Ty ..., > & Hz € Ky, ., and dist(z,K;) < ¢ then the sequence jy, ja,...,J, cannot
occur in iy, 42, ..., because of (6.1) and the fact that U;,;,..5, N K; = 0.

Now let F' be an ¢-separated subset of K; such that for each z € F, dist(z, K;) < ¢ (where

i # j). Bach z € F lies in a set K;,;,. ;_ such that iy =i and
TiyTip =+ Ti,, diam K < e < ry 1y -7, diam K; (6.2)

since diam Kj,s,...i,, = 74, ...7;,, diam K < ¢ and F is e-separated, each # € F has its own
unique sequence il,i?,. -+, im satisfying (6.2). Let r. = max(ry,73,...,7x5) < 1 and let ¢ > 1 be
an integer such that r?* diam K < a; then (6.2) implies that ar;r;, - - “Tip_, > € Consequently,
ifz € N K;,..:, and (6.2) holds then by the preceding paragraph the sequence ji, js, .. oy Jp
does not occur in 41,%,...,im—q. Therefore, the eardinality of F', and hence Qij(€), is bounded

above by the number A(¢) of distinct sequences 41,43, . . . , i, satisfying (6.2) such that the sequence

J15J25- - -5 Jp does not occur in ¢1,43,...,4m_g. It remains to show that
A(e) = 0(e°7D) (6.3)

as € — 0 for some § > 0.
Define B(e) to be the number of distinct sequences 4;4s,...,4, such that the sequence

J1>J2,- -+, Jp does not occur in 4y,4y,...,%, and 74,74, - -7, > €. Then
A(e) < N?B(e/diam K);
consequently, to prove (6.3) it suffices to show that for some D* < D
B(e) = 0(¢~P"). (6.4)

The function B(¢) is a nonincreasing, nonnegative integer-valued function of ¢ > 0. FEach
sequence i1,%s,...,%, counted in B(e) begins with some (41,%2,...,%p) # (J1,72,.--,Jp), Provided
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in )P
€< (lg']ilanTz) , SO

B(e) < > B(e/riyriy .- .14,)

(il 1-'-vip)¢(jl P“yjp)

for all € < (1 gnj<nN 7;)P. Let D* be the unique real number such that
—2_

Z : (’I‘ilm2 . .Tip)D* =1.

(41 10e028p) Z(J1 1002 7p)

Notice that D* < D because

> (rigrip...ri)P = (Z’I‘P) =1.

(104Bp)

Define Z(z) = e~*P" B(e~%); then by (6.5)

Z(z) < > Z( + log(riyriy - . .73, ))(riy - 73,) P

(‘51,...,2’,,)#(]’1 r--vjp)

(6.5)

(6.6)

(6.7)

for all sufficiently large z € R. Moreover, for each @ € R, Z(z) is bounded on (—o0, a], because

B(e) = 0 for large €. It now follows from (6.6) and (6.7) that for all sufficiently large a € R,

sup{Z(z):z < a+ (_min )log(rilm2 cori)™h}

11 4eeylp

<sup{Z(z):z < a}.

Therefore, Z(x) is bounded on R. This proves (6.4).

7. Concluding Remarks

(1) The methods used here may also be used to determine the asymptotic behavior of various

other functions. For example, let z € R?\ K be a point in the complement of K whose orbit

O(z) = {5:,5i, - .- Si, ¢} is disjoint from K; define Q(¢) = #{y € O(z): distance (y, K) > ¢}.

Then Q(¢) satisfies an asymptotic relation analogous to (1.1)-(1.4).

(2) The methods of this paper rely heavily on the strict self-similarity of K. For fractals with

some approzimate self-similarity, such as limit sets of Kleinian groups, the analogous problems

are considerably harder, but similar results obtain (cf. [6]).
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