THE PACKING AND COVERING FUNCTIONS OF SOME SELF-SIMILAR FRACTALS

by
Steven P. Lalley*
Purdue University

Technical Report 87–26

Department of Statistics Purdue University

June 1987

^{*} Supported by National Science Foundation grant DMS-8401996.

THE PACKING AND COVERING FUNCTIONS OF SOME SELF-SIMILAR FRACTALS

by Steven P. Lalley* Purdue University West Lafayette, IN 47907

Abstract

For a self-similar set K satisfying a certain separation condition, the number $N(\varepsilon)$ of points in a maximal ε -separated subset and the number $M(\varepsilon)$ of ε -balls needed to cover satisfy $N(\varepsilon) \sim \text{const } \cdot \varepsilon^{-D}$ and $M(\varepsilon) \sim \text{const } \cdot \varepsilon^{-D}$ as $\varepsilon \to 0$ through a certain multiplicative group. Here D is the Hausdorff dimension of K. Furthermore, the empirical distribution of points in a maximal ε -separated set converges weakly to normalized D-dimensional Hausdorff measure on K.

^{*} Supported by National Science Foundation grant DMS-8401996.

1. Introduction

Self-Similar sets in \mathbb{R}^d occur as the limit sets (equivalently, the minimal closed invariant sets) of certain semigroups of contractive Euclidean similarity transformations ([4], [7]). The purpose of this note is to describe the asymptotic behavior as $\varepsilon \to 0$ of the number $N(\varepsilon)$ of points in a maximal ε -separated subset and the number $M(\varepsilon)$ of ε -balls needed to cover a self-similar set, and to investigate the relationships between maximal packings, minimal coverings, and Hausdorff measure. The functions $N(\varepsilon)$ and $M(\varepsilon)$ are used to define the packing and covering dimensions (often called the capacity and metric entropy): see below.

A similarity transformation $S: \mathbb{R}^d \to \mathbb{R}^d$ has the form S = rJ, where $J: \mathbb{R}^d \to \mathbb{R}^d$ is an isometry and r > 0 is a scalar; if 0 < r < 1 then S is called *contractive*. Let $S = \{S_1, S_2, \ldots, S_N\}$ be a finite set of contractive similarity transformations. Then for any sequence i_1, i_2, \cdots of indices and any $x \in \mathbb{R}^d$

$$\lim_{n\to\infty} S_{i_1}S_{i_2}\dots S_{i_n}x \stackrel{\triangle}{=} k_{i_1,i_2\dots}$$

exists, and the limit is independent of x ([4], sec. 3; two different sequences i_1, i_2, \ldots and i'_1, i'_2, \ldots may yield the same limit). Let

$$K=\{k_{i_1i_2\dots}\}$$

be the set of all possible limit points: this set will be the principal object of study in this paper.

Most of the fractals in [7], sec. 6-8, 14 arise in this manner. Some examples:

- (1) Let $S_1x = rx$ and $S_2x = rx + 1 r$, where $0 < r \le \frac{1}{2}$. If $r = \frac{1}{3}$ then K is the Cantor set; if $r = \frac{1}{2}$ then K is the unit interval ([7], plate 81).
- (2) Let $S_i: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$S_1(x_1, x_2) = (x_1/2, x_2/2)$$

$$S_2(x_1, x_2) = (1/2 + x_1/2, x_2/2)$$

$$S_3(x_1, x_2) = (1/4 + x_1/2, \sqrt{3}/4 + x_2/2);$$

then K is the "Sierpinski gasket" ([7], p. 142).

(3) Let $a_1 = (0,0)$, $a_2 = (1/3,0)$, $a_3 = (1/2,\sqrt{3}/6)$, $a_4 = (2/3,0)$, and $a_5 = (1,0)$. Let S_i (i=1,2,3,4) be the unique similarity transformation of \mathbb{R}^2 mapping $\overline{a_1a_5}$ onto $\overline{a_ia_{i+1}}$ and having positive determinant. Then K is the "Koch snowflake" ([7], pp. 42-43).

The set K is always compact ([4], sec. 3), as are the images

$$K_{i_1i_2...i_n} \triangleq S_{i_1}S_{i_2}...S_{i_n}K.$$

In the examples above the sets $K_1, K_2, ..., K_N$ are either pairwise disjoint or have "small" overlaps. In the former case the set K is totally disconnected and each point $x \in K$ has a unique representation $x = k_{i_1 i_2 ...}$; in the latter case, some points have multiple representations and K may be arcwise connected. It is always the case that $K = \bigcup_{i=1}^{N} K_i$.

Say that S satisfies the open set condition [4] if there exists a nonempty open subset U of \mathbb{R}^d such that $S_iU \subset U$ for each i and $S_iU \cap S_jU = \emptyset$ if $i \neq j$. If U can be chosen so that $U \cap K \neq \emptyset$, say that S satisfies the strong open set condition. Notice that this holds in the examples above.

Write $S_i = r_i J_i$, where $0 < r_i < 1$ and J_i is an isometry. The similarity dimension of \mathcal{S} ([4],[6]) is the unique D > 0 such that

$$\sum_{i=1}^{N} r_i^D = 1.$$

Let $H^D(\cdot)$ be the D-dimensional Hausdorff measure on \mathbb{R}^d ([4]).

Theorem 0 ([4]): If S satisfies the open set condition then $0 < H^D(K) < \infty$ and $H^D(K_i \cap K_j) = 0$ for $i \neq j$.

Thus, D is the Hausdorff dimension of K. Since $H^D(K_i \cap K_i) = 0$ it follows that

$$H^{D}(K_{i_{1}i_{2}...i_{n}}) = (r_{i_{1}}r_{i_{2}}\cdots r_{i_{n}})^{D}H^{D}(K).$$

Therefore, if one chooses indices i, i_2, \ldots at random from the set $\{1, 2, \ldots, N\}$ according to the multinomial distribution $\{r_1^D, r_2^D, \ldots, r_N^D\}$, then the random point $k_{i_1 i_2 \ldots}$ will be "uniformly distributed" on K relative to D-dimensional Hausdorff measure.

Call a finite subset F of K ε -separated if dist $(x, x') \geq \varepsilon$ for all $x, x' \in F$ such that $x \neq x'$. Let $N(\varepsilon)$ be the maximum cardinality of an ε -separated subset of K; this will be called the packing function. Call a finite subset F of K an ε -covering if for every $y \in K$ there exists $x \in F$ such that dist $(x, y) < \varepsilon$. Let $M(\varepsilon)$ be the minimum cardinality of an ε -covering subset of K; this will be called the covering function. The packing and covering dimensions D_P and D_C are defined by

$$D_P = \lim_{\varepsilon \to 0} \frac{\log N(\varepsilon)}{\log \varepsilon^{-1}},$$

$$D_C = \lim_{\varepsilon \to 0} \frac{\log M(\varepsilon)}{\log \varepsilon^{-1}},$$

provided these limits exist. (The covering dimension was introduced in [5], the packing dimension in [8]. They are usually called the *metric entropy* and *capacity*.) A simple argument shows that $N(3\varepsilon) \leq M(\varepsilon) \leq N(\varepsilon)$, so $D_p = D_C$ whenever either limit exists.

Theorem 1: Assume that the strong open set condition holds.

(a) If the additive group generated by $\log r_1, \log r_2, \ldots, \log r_N$ is dense in \mathbb{R} , then there exist constants C, C' > 0 such that as $\varepsilon \to 0$

$$N(\varepsilon) \sim C\varepsilon^{-D}$$
 and (1.1)

$$M(\varepsilon) \sim C' \varepsilon^{-D}$$
. (1.2)

(b) If the additive group generated by $\log r_1, \log r_2, \ldots, \log r_n$ is $h\mathbb{Z}(h > 0)$ then for each $\beta \in [0,h)$ there exist constants $C_{\beta}, C'_{\beta} > 0$, uniformly bounded, such that as $n \to \infty$

$$N(e^{-nh+\beta}) \sim C_{\beta} \exp\{D(-nh+\beta)\}$$
 and (1.3)

$$M(e^{-nh+\beta}) \sim C_{\beta}' \exp\{D(-nh+\beta)\}. \tag{1.4}$$

Observe that case (6) obtains for the Cantor set, the Koch snowflake, and the Sierpinski gasket.

Corollary: If the strong open set condition holds then

$$D = D_P = D_C$$
.

This answers a query in [1]. (After writing this note I learned that this relation is part of the folklore: see, for example, [9].)

Let F_{ε} be an ε -separated subset of K having maximum cardinality, and let G_{ε} be an ε -covering subset of K having minimum cardinality. Define Borel probability measures $\mu_{\varepsilon}(\nu_{\varepsilon})$ on K by putting mass $1/N(\varepsilon)$ $(1/M(\varepsilon))$ at each point of $F_{\varepsilon}(G_{\varepsilon})$.

Theorem 2: If the strong open set condition holds then as $\varepsilon \to 0$

$$\mu_{\varepsilon} \xrightarrow{\mathcal{D}} \frac{H^D}{H^D(K)}$$
 and (1.5)

$$\nu_{\varepsilon} \xrightarrow{\mathcal{D}} \frac{H^D}{H^D(K)}.$$
(1.6)

Theorems 1 and 2 help clarify the relations between packings, coverings, and Hausdorff masures. Maximal ε -separated sets and minimal ε -separated sets are usually very difficult to find. In the totally disconnected case (i.e., $K_i \cap K_j = \emptyset$ for $i \neq j$) one may give an algorithm for obtaining an ε -separated set whose cardinality is within 0(1) of $N(\varepsilon)$. In general one may produce an ε -separated set whose cardinality is within $0(\varepsilon^{-D+\delta})$ of $N(\varepsilon)$ for some $\delta > 0$. The proofs below should suggest how this may be done.

In proving Theorems 1–2, I shall consider only the packing function $N(\varepsilon)$. The same arguments apply to the covering function $M(\varepsilon)$.

2. Totally Disconnected K

This case is particularly simple. Assume that K_1, K_2, \ldots, K_N are pairwise disjoint; since each K_i is compact there exists $\delta > 0$ such that if $x \in K_i$ and $x' \in K_j$, $i \neq j$, then $\operatorname{dist}(x, x') > \delta$. Now

if $\varepsilon < \delta$ then one may obtain an ε -separated subset of maximum cardinality by finding maximal ε -separated subsets of K_1, K_2, \ldots, K_N and taking their union. Since $K_i = S_i K$ is similar to K, a maximal ε - separated subset of K_i is similar to a maximal εr_i^{-1} -separated subset of K, and therefore its cardinality is $N(\varepsilon r_i^{-1})$. Hence, if $\varepsilon < \delta$ then $N(\varepsilon) = \sum_{i=1}^N N(\varepsilon r_i^{-1})$. It follows that

$$N(\varepsilon) = \sum_{i=1}^{N} N(\varepsilon r_i^{-1}) + L(\varepsilon)$$
 (2.1)

for all $\varepsilon > 0$. Since $N(\varepsilon)$ is a nonincreasing integer-valued function that is zero for all sufficiently large ε , $L(\varepsilon)$ is a piecewise continuous function with only finitely many discontinuities that vanishes for $0 < \varepsilon < \delta$.

Equation (2.1) may be rewritten as a renewal equation ([3], ch. 11) in the following manner.

Define

$$Z(a) = e^{-aD}N(e^{-a})$$

for a > 0; since $\sum_{i=1}^{N} r_i^D = 1$, it follows from (2.1) that

$$Z(a) = z(a) + \int_{(0,a]} Z(a-x)F(dx), \quad a > 0,$$

where F(dx) is the probability measure that puts mass r_i^D at $-\log r_i$, $i=1,2,\ldots,N$. Because F has finite support and L is piecewise continuous with only finitely many discontinuities, z is also piecewise continuous with only finitely many discontinuities. Moreover, z has compact support in $[0,\infty)$ since L vanishes in $(0,\delta)$. Therefore, z is directly Riemann integrable ([3], ch. 11).

There are now two cases, the nonlattice case and the lattice case, corresponding to (a) and (b) of Theorem 1. In the nonlattice case the renewal theorem ([3], ch. 11) implies that

$$\lim_{a\to\infty} Z(a) = \int_0^\infty z(x)dx / \sum_{i=1}^N r_i^D \log r_i^{-1}.$$

This is equivalent to (1.1). In the lattice case the renewal theorem ([2], ch. 13) implies that for $0 \le \beta < h$

$$\lim_{n\to\infty} Z(nh+\beta) = \sum_{n=1}^{\infty} z(nh+\beta) / \sum_{i=1}^{N} r_i^D \log r_i^{-1}$$

This is equivalent to (1.3). Note that the constants C_{β} must be uniformly bounded because $N(\varepsilon)$ is nonincreasing.

3. The General Case

If K_1, K_2, \ldots, K_N are not pairwise disjoint then the argument of the preceding section fails because the union of ε -separated subsets of $K_1, \ldots K_N$ will not generally be ε -separated. Nevertheless, since $K = \bigcup_{i=1}^N K_i$,

$$N(\varepsilon) \leq \sum_{i=1}^{N} N(\varepsilon r_i^{-1}).$$

Define

$$L(\varepsilon) = \sum_{i=1}^{N} N(\varepsilon r_i^{-1}) - N(\varepsilon).$$

Proposition 1: Assume that the strong open set condition holds. Then there exist constants $\gamma > 0, \delta > 0$ such that

$$L(\varepsilon) \le \gamma \varepsilon^{\delta - D}$$
.

The proof is deferred to sec. 5.

Define, as in sec. 2, $Z(a) = e^{-aD}N(e^{-a})$, and write

$$Z(a) = z(a) + \int_{(0,a]} Z(a-x)F(dx)$$

where F(dx) puts mass r_i^D at $\log r_i^{-1}$, $i=1,2,\ldots,N$. Observe that for all sufficiently large $a, z(a) = -e^{-aD}L(e^{-a})$. Moreover, since $N(\varepsilon)$ is a nonincreasing, nonnegative integer valued function and F(dx) has finite support, z(a) is a piecewise continuous function with only finitely many discontinuities in any finite interval. Proposition 1 implies that

$$|z(a)| \le \gamma e^{-a\delta}$$

for all sufficiently large a. It follows that z(a) is directly Riemann integrable. Therefore, in the nonlattice case

$$\lim_{a\to\infty} Z(a) = \int_0^\infty z(x) dx / \sum_{i=1}^N r_i^D \log r_i^{-1},$$

and in the lattice case

$$\lim_{n \to \infty} Z(nh + \beta) = \sum_{n=1}^{\infty} z(nh + \beta) / \sum_{i=1}^{N} r_i^D \log r_i^{-1}$$

for every $\beta \in [0, h)$. This proves (1.1) and (1.3). As before, the constants C_{β} are uniformly bounded because $N(\varepsilon)$ is nonincreasing.

4. Maximal Packings and Hausdorff Measure

Recall that μ_{ε} is the probability measure that puts mass $1/N(\varepsilon)$ at each point of a maximal ε -separated set.

Proposition 2: Assume that the strong open set condition holds. For each pair of distinct sequences $i_1, i_2, ..., i_n$ and $j_1, j_2, ..., j_n$,

$$\lim_{\varepsilon \to 0} \mu_{\varepsilon}(K_{i_1 i_2 \dots i_n} \cap K_{j_1 j_2 \dots j_n}) = 0.$$

The proof will be given in sec. 5.

Since the support of μ_{ε} is an ε -separated subset of K, and since K_i is similar to K, it follows that

$$\mu_{\varepsilon}(K_i) \le \frac{N(\varepsilon r_i^{-1})}{N(\varepsilon)}, \quad i = 1, 2, \dots, N.$$
 (4.1)

For small ε , $\sum_{i=1}^{N} \left(N(\varepsilon r_i^{-1})/N(\varepsilon)\right) \sim 1$ by Theorem 1, and $\mu_{\varepsilon}(K_i \cap K_j) = o(1)$ for $i \neq j$, by Proposition 2. Since $\mu_{\varepsilon}(K) = 1$ and $K = \bigcup K_i$, (4.1) implies that

$$\mu_{\varepsilon}(K_i) \sim N(\varepsilon r_i^{-1})/N(\varepsilon)$$

$$\sim r_i^D = H^D(K_i)/H^D(K).$$

Now the sets $K_{i_1i_2...i_n}$ are all similar to K, so by an easy induction argument

$$\lim_{\varepsilon \to 0} \mu_{\varepsilon}(K_{i_1 i_2 \dots i_n}) = H^D(K_{i_1 i_2 \dots i_n}) / H^D(K)$$

for each sequence i_1, i_2, \ldots, i_n . Since $K = \bigcup K_{i_1 i_2 \ldots i_n}$ and diam $K_{i_1 i_2 \ldots i_n} \leq (\max_{1 \leq i \leq N} r_i)^n \to 0$, it follows easily that for any continuous function $f: K \to \mathbb{R}$

$$\lim_{\varepsilon \to 0} \int_K f d\mu_{\varepsilon} = \int_K f(x) H^D(dx) / H^D(K).$$

This proves (1.5).

5. The Key Estimate

Assume that the strong open set condition holds. Let $i, j \in \{1, 2, ..., N\}$, $i \neq j$. Define $Q_{ij}(\varepsilon)$ to be the maximum cardinality of an ε -separated subset F of K_i such that for each $x \in F$, $\operatorname{dist}(x, K_j) \leq \varepsilon$.

Proposition 3: There exists $\delta > 0$ such that as $\varepsilon \to 0$,

$$Q_{ij}(\varepsilon) = 0(\varepsilon^{\delta - D}). \tag{5.1}$$

Proposition 3 implies Proposition 1. To see this observe that one gets an ε -separated subset of K by taking maximal ε -separated subsets of K_i , $i=1,2,\ldots,N$, deleting all points from K_i within ε of $\bigcup_{j:j\neq i}K_j$, then taking the union. Thus,

$$N(\varepsilon) \geq \sum_{i=1}^{N} N(\varepsilon r_i^{-1}) - \sum_{i \neq j} \sum Q_{ij}(\varepsilon),$$

and Proposition 1 follows.

Proposition 3 also implies Proposition 2. First notice that to prove Proposition 2 it suffices, since $K_{i_1} \supset K_{i_1 i_2} \supset \dots$, to establish that if $i \neq j$ then

$$\lim_{\varepsilon \to 0} \mu_{\varepsilon}(K_{i_1 i_2 \dots i_n i} \cap K_{i_1 i_2 \dots i_n j}) = 0.$$

Recall that $\mu_{\varepsilon}(G)$ is $N(\varepsilon)^{-1} \times$ the cardinality of $F_{\varepsilon} \cap G$, where F_{ε} is a maximal ε -separated subset of K. Since

$$K_{i_1 i_2 \dots i_n i} \cap K_{i_1 i_2 \dots i_n j} = S_{i_1} S_{i_2} \dots S_{i_n} (K_i \cap K_j)$$

and since $S_{i_1} \dots S_{i_n}$ is a similarity transformation that contracts distances by a factor of $r_{i_1} r_{i_2} \dots r_{i_n} = \rho$,

$$\mu_{\varepsilon}(K_{i_1i_2...i_ni}\cap K_{i_1i_2...i_nj}) \leq \{Q_{ij}(\varepsilon\rho^{-1}) + Q_{ji}(\varepsilon\rho^{-1})\}/N(\varepsilon).$$

Proposition 3 and Theorem 1 imply that this converges to 0 as $\varepsilon \to 0$.

6. Proof of the Key Estimate

Recall that the open set condition holds if there is an open set $U \subset \mathbb{R}^d$ such that $S_iU \subset U$ for each i and $S_iU \cap S_jU = 0$ for $i \neq j$. Let $U_{i_1i_2...i_n} = S_{i_1}S_{i_2}...S_{i_n}U$. If the open set condition holds then

- (a) $U \supset U_{i_1} \supset U_{i_1 i_2} \supset \cdots$;
- (b) $K_{i_1 i_2 \dots i_n} \subset \overline{U}_{i_1 i_2 \dots i_n};$
- (c) $K_{j_1 j_2 \dots j_n} \cap U_{i_1 i_2 \dots i_n} = \emptyset$ unless $(i_1, \dots, i_n) = (j_1, \dots, j_n)$ ([4], sec. 5.2 (3)).

If the open set U can be chosen so that $U \cap K \neq \emptyset$ then the strong open set condition holds. Assume that this is the case. Then there exists a point $k_{j_1j_2...} \in U$. Now the diameters of the sets $K_{j_1j_2...j_n}$ converge to zero as $n \to \infty$, and $k_{j_1j_2...}$ is an element of each; consequently, there exists a finite sequence $j_1, j_2, ..., j_p$ such that

$$K_{j_1j_2...j_n}\subset U$$
.

Since $K_{j_1j_2...j_p}$ is compact there exists $\alpha>0$ such that

$$\operatorname{dist}(x, U^c) > \alpha \qquad \forall x \in K_{j_1 j_2 \dots j_p}.$$

It follows upon applying the similarity transformation $S_{i_1}S_{i_2}...S_{i_n}$ that for any sequence $i_1, i_2, ..., i_n$

$$K_{i_1 i_2 \dots i_n \, j_1 j_2 \dots j_p} \subset U_{i_1 i_2 \dots i_n}$$

and that for each $x \in K_{i_1 i_2 \dots i_n j_1 \dots j_p}$

$$\operatorname{dist}(x, U_{i_1 i_2 \dots i_n}^c) > \alpha r_{i_1} r_{i_2} \dots r_{i_n}.$$
 (6.1)

Let $j \in \{1, 2, ..., N\}$ and let $i_1, i_2, ..., i_n$ be a finite sequence such that $i_1 \neq j$ and $\alpha r_{i_1} r_{i_2} ... r_{i_n} > \varepsilon$. If $x \in K_{i_1 i_2 ... i_n}$ and $\operatorname{dist}(x, K_j) \leq \varepsilon$ then the sequence $j_1, j_2, ..., j_p$ cannot occur in $i_1, i_2, ..., i_n$, because of (6.1) and the fact that $U_{i_1 i_2 ... i_n} \cap K_j = \emptyset$.

Now let F be an ε -separated subset of K_i such that for each $x \in F$, $\operatorname{dist}(x, K_j) \leq \varepsilon$ (where $i \neq j$). Each $x \in F$ lies in a set $K_{i_1 i_2 \dots i_m}$ such that $i_1 = i$ and

$$r_{i_1}r_{i_2}\cdots r_{i_m} \operatorname{diam} K < \varepsilon \le r_{i_1}r_{i_2}\cdots r_{i_{m-1}} \operatorname{diam} K;$$
 (6.2)

since diam $K_{i_1i_2...i_m}=r_{i_1}...r_{i_m}$ diam $K<\varepsilon$ and F is ε -separated, each $x\in F$ has its own unique sequence $i_1,i_2,...,i_m$ satisfying (6.2). Let $r_*=\max(r_1,r_2,...,r_N)<1$ and let $q\geq 1$ be an integer such that r_*^{q-1} diam $K<\alpha$; then (6.2) implies that $\alpha r_{i_1}r_{i_2}\cdots r_{i_{m-q}}>\varepsilon$. Consequently, if $x\in F\cap K_{i_1i_2...i_m}$ and (6.2) holds then by the preceding paragraph the sequence $j_1,j_2,...,j_p$ does not occur in $i_1,i_2,...,i_{m-q}$. Therefore, the cardinality of F, and hence $Q_{ij}(\varepsilon)$, is bounded above by the number $A(\varepsilon)$ of distinct sequences $i_1,i_2,...,i_m$ satisfying (6.2) such that the sequence $j_1,j_2,...,j_p$ does not occur in $i_1,i_2,...,i_{m-q}$. It remains to show that

$$A(\varepsilon) = 0(\varepsilon^{\delta - D}) \tag{6.3}$$

as $\varepsilon \to 0$ for some $\delta > 0$.

Define $B(\varepsilon)$ to be the number of distinct sequences i_1i_2, \ldots, i_n such that the sequence j_1, j_2, \ldots, j_p does not occur in i_1, i_2, \ldots, i_n and $r_{i_1}r_{i_2}\cdots r_{i_n} > \varepsilon$. Then

$$A(\varepsilon) \leq N^q B(\varepsilon/\text{diam } K);$$

consequently, to prove (6.3) it suffices to show that for some $D^* < D$

$$B(\varepsilon) = 0(\varepsilon^{-D^*}). \tag{6.4}$$

The function $B(\varepsilon)$ is a nonincreasing, nonnegative integer-valued function of $\varepsilon > 0$. Each sequence i_1, i_2, \ldots, i_n counted in $B(\varepsilon)$ begins with some $(i_1, i_2, \ldots, i_p) \neq (j_1, j_2, \ldots, j_p)$, provided

 $\varepsilon < (\min_{1 \le i \le N} r_i)^p$, so

$$B(\varepsilon) \le \sum_{(i_1, \dots, i_p) \ne (j_1, \dots, j_p)} B(\varepsilon/r_{i_1} r_{i_2} \dots r_{i_p})$$

$$(6.5)$$

for all $\varepsilon < (\min_{1 \le i \le N} r_i)^p$. Let D^* be the unique real number such that

$$\sum_{(i_1,\dots,i_p)\neq(j_1,\dots,j_p)} (r_{i_1}r_{i_2}\dots r_{i_p})^{D*} = 1.$$
(6.6)

Notice that $D^* < D$ because

$$\sum_{(i_1,\ldots,i_p)} (r_{i_1}r_{i_2}\ldots r_{i_p})^D = \left(\sum_i r_i^D\right)^p = 1.$$

Define $Z(x) = e^{-xD^*}B(e^{-x})$; then by (6.5)

$$Z(x) \le \sum_{(i_1, \dots, i_p) \ne (j_1, \dots, j_p)} Z(x + \log(r_{i_1} r_{i_2} \dots r_{i_p})) (r_{i_1} \dots r_{i_p})^{D*}$$
(6.7)

for all sufficiently large $x \in \mathbb{R}$. Moreover, for each $a \in \mathbb{R}$, Z(x) is bounded on $(-\infty, a]$, because $B(\varepsilon) = 0$ for large ε . It now follows from (6.6) and (6.7) that for all sufficiently large $a \in \mathbb{R}$,

$$\sup \{ Z(x) : x \le a + \min_{(i_1, \dots, i_p)} \log(r_{i_1} r_{i_2} \dots r_{i_p})^{-1} \}$$

$$< \sup \{ Z(x) : x < a \}.$$

Therefore, Z(x) is bounded on \mathbb{R} . This proves (6.4).

7. Concluding Remarks

- (1) The methods used here may also be used to determine the asymptotic behavior of various other functions. For example, let x ∈ R^d\K be a point in the complement of K whose orbit \(\mathcal{O}(x) = \{S_{i_1}S_{i_2}...S_{i_n}x\}\) is disjoint from K; define Q(ε) = #\{y ∈ \mathcal{O}(x)\): distance (y, K) ≥ ε\}. Then Q(ε) satisfies an asymptotic relation analogous to (1.1)-(1.4).
- (2) The methods of this paper rely heavily on the *strict* self-similarity of K. For fractals with some *approximate* self-similarity, such as limit sets of Kleinian groups, the analogous problems are considerably harder, but similar results obtain (cf. [6]).

References

- [1] Diaconis, P., and Shahshahani, M. (1986) Products of random matrices and computer image generation. Random Matrices and Their Applications, ed. J. Cohen et. al., Amer. Math. Soc.
- [2] Feller, W. (1968) An Introduction to Probability Theory and its Applications, vol. 1, 3rd ed. Wiley, New York.
- [3] Feller, W. (1971) An Introduction to Probability Theory and its Applications, vol. 2, 2nd ed. Wiley, New York.
- [4] Hutchinson, J. (1981) Fractals and self-similarity. Indiana Univ. J. Math. 30, 713-747.
- [5] Kolmogorov, A. N., and Tihomirov, V. M. (1959) Epsilon-entropy and epsilon-capacity of sets in functional spaces. Amer. Math. Soc. Transl. (Ser. 2) 17, 277-364.
- [6] Lalley, S. (1987) Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations, and their fractal limits. Purdue U. Tech. Report 87–40.
- [7] Mandelbrot, B. (1983) The Fractal Geometry of Nature. Freeman, San Francisco.
- [8] Pontrjagin, L., and Schnirelman, L. (1932) Sur une propriété métrique de la dimension. Ann. Math. 33, 156-162.
- [9] Young, L.S. (1982) Dimension, entropy, and Lyapunov exponents. Ergodic Th. Dynamical Systems 2, 109-124.