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ABSTRACT
Let COTE CYRRRNE W be k experimental populations and ) is a
standard or a control population. The o, are characterized by
the associated distribution functions FO , 1 =0,1,...,k. The ei
i ‘

of the experimental populations are unknown; however, it is known

that 81 < 92 £ s = Bk' The value of BO may or may not be
known. The goal is to select all the experimental populations
that are superior to T, (i.e. all T, for whcih Bi = 80). Under a

fairly general loss function a Bayes rule with isotonic property
(i.e. 1if ﬂi is selected, then any uj for j > 1 is alsoc selected)
is derived in a form convenient for applications. Two special
cases of the loss function are discussed. One of these loss
functions is used to discuse applications to discrete (with

Poisson example) as well as continuous exponential class of

distributions=s.
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1. INTRODUCTION

Let T, 0 denote k experimental populations where «

or e Oy i

has the associated distribution FB , 1 =1,2,...,k. The
i

parameters 8, are unknown; however, it is known that 81 < 82

i

£ s+ £ 8 This is typical, for example, in experiments

Kk
involving different dose levels of a drug where the treatment

effects will have a known ordering. These k experimental

populations are compared with the population m. having the

0o

associated distribution function Fa . Two cases arise: (1) the
0

case of a known standard 8 and (2) the case of an unknown

0'

control 80. Any experimental population o, is defined to be
superior to 7, if Gi 2 80 and inferior to T, otherwise. QOur goal

is to select all populations that are superior to &m Since the

o
ordering among the experimental populations is known, it is

reasonable to require a selection procedure to have the property:

If ﬂi j

is the so-called isgtonic property. If we were to propose rules

is selected, then any m, with j > i is also selected. This
rather heuristically, one would propose rules based on isoctonic

estimators of 81,...,9 Such procedures have been investigated

kl
in the recent years by Gupta and Yang (1984) in the case of
normal means (common variance 02 may be known or unknown), by

Gupta and Huang (1984) in the case of binomial populations with

success probabilities Bi, and by Gupta and Leu (1986) in the case



of two-parameter exponential populations with location parameters
(guarantee times) Bi and a common (known or unknown) scale
parameter. Huang (1984) has considered the problem in a
nonparametric setup. All these papers consider both cases of a
known standard and an unknown control.

In the present paper, our interest is to derive a Bayes rule
having the isotonic property for selecting the populations

superior to & Under a fairly general loss function the Bayes

0.
rule is derived in Section 2 in a form convenient for
applications. Two special cases of the loss function are
discussed in Section 3. This is followed by diécussions of the

results under one of the special loss functions to the cases of

discrete as well as continuous exponential classes of

distributions.
2. BAYES PROCEDURE
Let Ql = {QIGO = 91}, Qi = {g|ei_l < 90 = Bi}, i=23...,k,
k+1
Q .., = 1818, < 85}, and O = il;jlﬂi . Since Pr{f8, s8,<5:-+=5 §.1=1,

ve restrict our attention to the "isotonic" action space
A= 1{1,2,...,k+1}. For 1 £ i < k, action i corresponds to
selecting populations ”j' i < j < k, as superior to T, and

excluding the remaining ones as inferior to n Action k+1

O.
corresponds to declaring all the k populations as inferior.
For § € Qm' 1 <m< k+1, and any action a, 1 £ a £ k+l1, we

define the loss function L(8,a) by



m-1 X
[ (1) _ .
ifaLm'i(Bo Bi) if a < m,
a7t 2y
L(g,a) = { £ L (8,-8,) if a > m, (1)
J=m m'\j J 0
0 if a = m,
where
> 0 and nonincreasing in i for i < m,
(1)
Lm i(y)
' =0 for i = m,
LE2) (o, =0 for j <m,
m, > 0 and nondecreasing in j for jJ =2 m
(i)
and Lm e(y), i = 1,2, are nondecreasing in y.
14
We will consider here only the case of known BO. The
unknown BO case is analogous and involves only straightforward
modifications. Let X = (Xl'x2""'xk) be the sample observation
belonging to the sample space X. A decision rule
& = (61,62,...,6k+1) is a measurable mapping from X to [0,1]k+1
k+1
such that I 61(5) = 1 for each 3 € X. The value of 61(5) is the
i=1

probability of taking action i given X = x.
Let f(x|8) be the joint probability density function
(p.d.f.) of X given 8, and let g(g) denote the prior distribution

of 8 over Q. Let

f(x) = Jf(§|g>g(g>dg (2)
Y
and
glglx) = £(x|8)g(g)/£ix). (3)

Then f£(x) is the marginal joint p.d.f. of X and g(8|x) is the

posterior p.d.f. of 8.



For any decision rule g, the associated Bayes risk r(g,g) is

given by

k+1 K+l
r(g§,g) = I j I z 6a(x)L(Q,a)f(§|g)g(g)d§dg. (4)

m=1 Q =

By the usual interchanging of summations and integrals (justified

under suitable regularity conditions), letting

k+1
R(ajx) = I L(8,a)g(8|x)dE, a = 1,2,...,k+1, (3)
m=1

Q
m

and using (3), we can rewrite (4) as

k+1
r(§,g) = I 6 (x)R(a|x)f(x)dx. (6)

a=1 X

It now follows that § = (61,6 ) is a Bayes rule if

2""'6k+1

z 6§ (%) = 1, wvhere
a€A(x)

A(x) = {a|Rta|x) = min R(a' |x)}. (7)
l1<a' <k+1

In order to cbtain more insight for implementation of this Bayes

rule, let

D(a|x) = R(a+l|x) - R(a|x), a = 1,2,...,k. (8)
=]
Defining (any sum) I = 0 for s < r, we write (3) as
m=r
a-1 k +1
R(ajx) = Z L(g,a)g(@8|x)d8 + I L(g,a)g(8ix)d8. (9)
m=1 m= a+1
Q
m m

Using (1) and (9) in (8), it is easy to see that

a (2)
D(a|x) = L I 8_-8,)9(8Ix)d8
m=1 Q
k*l (1)
f Lit) e -8 rg(g1x)de. (10)
m= a+1



Lemma 2.1. For any given x € X, D(a|x) is nondecreasing in a.

Proof. For a = 1,2,...,k, by using (10), we ocbtain
D(a+l|x) - D(a|x)
a (2) (2)
-z I (L2, 1080, 1780) ~ L2008, -8)1g(g x)dg
[
m
(2)
. I ac1, as1(fa,178029¢81%)d8
Qa+1 _
k+1
+ h) [L(l)(a -8_) - L(l) (8_-8 Y1g(8|x)d8
_ ma O a ma+l O "a+l ~ T T
m=a+2 0
m
+ I L(l) (8.-8 _)gt8|x)ds. (11)
a+l,a 0 a ~ T TN
Qa+l
For m < a,
(2) (2) .
m,a+l a+l 90) Lm,a(ea_eo) ‘
(2) (2)
[Lm,a+l(ea+1 80) Lm,a(ea+1 80)]
(2) (2)
+ [Lm,a(aa+1 80) Lm'a(aa 80)]

= 0,

the differences inside the brackets being nonnegative by virtue

of the fact that 8§ - 8. =26 - 8. =20 for m < a, and of the
a+l 0 a 0

properties of the loss component.

By a similar reasoning, we can see that

(1) (1)
Lm,a(eo Ba) Lm,a+1(80 Ba+1) > 0 for m =2 a+2.
Consequently, D(a+l|x) - D(alx) =2 0 for a = 1,2,...,k. This

completes the proof of the lemma. =
We can uge Lemma 1 and obtain a more convenient form for our
Bayes rule. Let B(x) = {a|D(alx) = O}. If B(x) # 8, let

a* = max a and A*(g) = B(x) U {a*+1}. Then the Bayes rule §
a€B(x)

can be expressed as follows:



If B(x) is not empty, randomize your decision over the set
A*(g). If B(x) is vacuous, then choose action b where b is the
smallest a for which D(a|x) > O. If such an integer b does not
exist, then choose action k+l.

Remark 1. Because of the monotonicity of D(alx) in a, the set
B(x) is either vacuous or it consists of consecutive members of
the set {1,2,...,k}. We can define a nonrandomized rule, by
taking the action corresponding to the smallest member of

nonempty B(x).

3.  TWO SPECIAL LOSS FUNCTIONS

We consider two special cases of the loss function L(§,a)

given by (1):

m-1
'Z (80-81) if a < m,
i=a
a—
Ll(g,a) = ? (BJ-BO) if a>m, (12)
. j=
| O if a =m,
and
(m—a)cl if a < m,
Lz(g,a) = (a-m)c2 if a > m, (13)
0 if a = m,

where c, and C5 are known positive constants.



For the loss function L, (8,a), rewriting (10) we get

1
a k+1
D(a|x) = I (8_-8_)g(8|x)dg - j (8 -8 )g(GIx)dB
~ _ a 0 ~ e ~
m=1 m= a+1
Q
m
+
= I I 8 -8 )g(glﬁ)dg
m=1 Q

= I (8_-8,)g(gIx)dg
a

= EL8_|%) - 8 -

So E[8a+l|§] - E[Ba|§] = D(a+1l]x) - D(a|x) 2 0. The set B(x)

associated with the Bayes rule is: B(x) = {alEIGa|§] = 8_}. A

0]
nonrandomized version of the rule is: Select o, as superior to
T, if and only if E[91|§] > 80. Thug, to obtain the Bayes rule,

we need only to evaluate the posterior means E[Gi|§],
i=1'2'a¢-'ku

As for the loss function L (8,a), we get

2
k+l
D(a|x) = I g(8|x)dg - r f c,g(8|x)df
~ m= 1 2 m=a+l v
Q Q
m m
k+1 k+1
= - +
z 1 I 2g(8|x)d8 m=§+1 (c1 c2)g(Q|§)d§
Q Q
m m
= c, - (c1+c2)f g(g1x)dg,
Ql
k+1
vhere Q' = U Q . Thus
m=a+l
. c,
D(alx) 2 0 &= I g(gix)dg8 =< EI—T_E; .

Ql



4
\

4. TWO CLASSES OF DENSITY FUNCTIONS

We consider two exponential classes of density functions
f(x18), one discrete and the other continuous. Let fi(x|ei)
denote the conditional p.d.f. of Xi given Bi, and let fi(x)
denote the wmarginal p.d.f. of Xi' i.e. fi(x) =

I fi(xlei)gi(ai)dei, vhere gi(ai) denotes the prior marginal

p.d. f. of Gi. We assume that, conditional on @, the Xi are
k

independently distributed. Thus f(x|8) = T fi(xile
i=1

First, we conesider the discrete class of densitiee of the

form

- (14)

e:h(x)p(ei>, x =0,1,..., 0 <8, <d,
£ (x|8,) =

0 otherwvise,

where h(x) > 0 for all x, and d may be finite or infinite.

Under the loss function Ll(g,a) in (12), a straightforward

computation, for Xa = X, gives

hix )f (x_+1)
a “a

= a
B0 1x ) = =D =7 (15
a a a

which is the posterior mean of Ba given Xa = X, Considering the
posterior mean of Ba given X = x, we get
k
f o T Thix, JYB(8, ) 1g(grdg)
_ - i=1
EL8 1% = %1 = (x)
h(xa)f(g(a))
® R(x_+DVE(g) " (16
vhere x(a) = (xl"'ﬂ'xa—l'xa+1'xa+l'""xk)' Now, from (135) and

(16), we obtain



f (x Yf(x(a))
a “a ~

f (x +1)£f(x)
a a ~

E[g8_|X = x1 = EL8_|x_1. (17)
a'~ s a “a

Thus, the "isotonic" posterior mean E[Ba|§ = x] can be viewed as

a weighted result of the posterior mean E[Balxa] with weight
f (x Yf(x(a))
a a ~

fa(xa+l)f(¥) . Hence, for the Bayes rule, it suffices to

compute EL[6_|x_1, £ (x_), and £f(x).
a a “a ~

a
As an illustration of the above, we consider the following
example of Poisson populations.

Example. For Poisson populations,

-0, 8,
fa(xlea) = e ST * X = o,1,..., a =1,2,...,k.
It is assumed that 81'92""'9k have a joint distribution

identical to that of the order statistics from k independent

gamma random variables, each having scale parameter a and shape

parameter m. In other words,
k m
” & m-1 -of, < <o
k! T s € 4 8y 28y =058,
i=1
g(g) =
o, otherwise.
Then
_ k! ga-1 _ k-1
ga(ea) Bl v R R Ryl (Ba)[l H(aa)] h(Ba),
a=1,2,...,k,
vhere ‘
m
_ o« m-1 -«x8
h(g) = r(m)B e R 86 > 0,
and

10



8
H(8) = j h(y)dy.

0
Thus
o0
f (x ) = I f (x_{8_)g_(68_)d8_,
a “a a "a'"'a’“a "a a
0]
[Tof (x,187g,¢8)d8
o a'a a
EL6 Ix, 1 = f (x ) ’
a a
and
k m X.+m-1 -8, (1l+ax)
fix) = I k! T |—ZF g ? e * de.
~ . _G IPtm)x. i ~
0 i=1 i

In general, it is hard to evaluate the function f(x). However,
if m is a positive integer, one could compute it by obtaining a
recursive formula.

Next, we consider the class of densities

—Bix
e p(ei)h(x), X > a, ei > 0,
fi(x|ei) = {18)
0, otherwvise,
where a may be finite or infinite, and h(x) > 0 for x > a. Let
gi(Bi) denote the marginal p.d.f. of Bi. Then
-xai
fi(x) = I e h(x)ﬂ(ei)gi(ei)dai. (19)

Dividing both sides of (19) by h(x) and then differentiating with
respect to x, we get

d fi(x)

-x8,
i S me— —
I 8, e o g <8 rde, = -& L, (20)

Now, using (19) and (20), we can write

11



I -xiei
) eie B(Bi)gi(ei)dei

EL8, |x,]
i'Ti f xiei
e p(ei)gi(ei)dei
i h (xi) ) fi(xi) . (21)
h{x,) £f.(x.) '’
i i i
where h' (x) = (d/dx)h(x). Further,
_ 1
E[Ga[§J = EAE) J aaf(§|g>g(g)dg, (22)
Q
where
f(x) = I f(x18)g(8)d8. (23)
Q

As in the case of E[Gilxi], we have

1
IR I Baf(ﬁlg)g(g)dg
a Q

EL8, Ix] £(x)/h(x_)

PR ¢ S 152
Tdx [h(x )]’h(x )y (24)
a a a

Carrying out the differentiation in (24) and using (21), we

obtain

f'(xa) f(a)(ﬁ)
E[Ba|§] = f(xa) - f(§) + E[Ga|xa] (25)

wvhere f(a)(g) = (d/dxa)f(§). Thus, by evaluating the quantities
on the right-hand side of (25), we can implement the Bayes rule

using the loss function Ll(g,a) in (12),

12
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