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ABSTRACT

The paper considers the estimation of the slope parameter § € R* for £ > 3, in
a general linear model. A class of James-Stein estimator is proposed and is compared
with the least squares estimator under an appropriate stopping rule. It is shown that
the sequential James-Stein estimator dominates the sequential least squares estimator.
Furthermore, under mild regularity conditions, a second order asymptotic risk expansion
for the sequential James-Stein estimator is obtained.
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1. Introduction. Let Y;,Y5,... be a sequence of independent vector-valued observations
generated via the general linear model

(1.1) Yi=XiB+e, i=1,2,...,

where 8 € RF(k > 3), is unknown and {¢;, ¢ > 1} is a sequence of independent and
identically distributed (i.i.d.) real-valued vectors having normal distribution with mean
zero and covariance 02]. Throughout this paper it will be assumed that {X;, 1> 1} is
a sequence of i.i.d. m X k random matrices and that they are jointly independent of ¢;’s.
Furthermore, assume also that, with probability one each X; has minimum rank r > 1. If
r < k, assume that the distribution of X; is continuous on the matrices of rank less than

n
k so that for n > p = [k/r|, the matrix M,, = Y X!X; is invertible with probability one.
i1=1
Here [-] represents the greatest integer.

Suppose one may choose a sample of size n and wish to estimate 8 by an estimator
6p = 6,(Y1,...,Yy), with loss

(1'2) Ln = Ln(ﬁa 611.) = n_l(ﬂ - 5n),Mn(ﬂ - 571.) + ¢en,
where ¢(> 0) is the cost per observation. The case when 6, is the least squares estimator

(1.3) B = M (Z Xm) ,
1=1

was considered by Finster (1983) (with a slightly more general loss than in (1.2)), where the
problem was to choose an appropriate sample size that will minimize the risk R, = EL,, .
The following arguments given in Finster (1983) show that, if 62 is unknown, there is no
fixed sample size procedure that minimizes R,,. Suppose o%(> 0) is known, then the risk

(1.4) Ry, =n" E[E{(B — Bn) Mp(B — Bn)| X1, -, Xn}] +en
=n"lko% +cn

is minimized by an integer adjacent to

(1.5) N = (ko?/c)'/?,
with corresponding minimum risk

(1.6) Ry =~ 2N.

However, if 02 is unknown, then the best fixed sample size N cannot be used. For this
case, Finster (1983) proposed a stopping rule T', given by

(1.7) T=inf{n>n n> (k/c)l/zé'nln},
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n A
where 62 = (nm — k)71 Y |Y; — X;B,|%, n(> p) is the initial sample size, £, > 1,7 > 1
i=1

and £, | 1 as n — oco. Here |Y|?2 = Y'Y for any vector Y.

This type of stopping rule was first introduced by Robbins (1959) for the sequential
estimation of the mean of a normal population with unknown variance. Using the sequen-
tial procedure A1 to estimate G, Finster (1983) showed that, when n > max(p, (k+1)/m),
the “regret”

(1.8) Rr — Ry = 27 'me + o(c), as ¢ — 0,

where Rt = ELz. The proof of regret expansion in (1.8) involves the use of non-linear
renewal theory, which was first formulated by Lai and Siegmund (1977, 1979). For a good
exposition of the literature see chapters 4 and 10 in Woodroofe (1982).

In this paper we consider a class 62 of James-Stein (J-S) estimators defined by

~ bs2 ~
1.9 62 = B — — n__ n— b>0,
(19) b (Br — Bo) Mi(Br — Bo) (B = o)

where s2 = a6Z, o> 0) is a suitable constant to be chosen later and 8o € R¥ is the known

point towards which we shrink. In what follows, first we establish the risk dominance
of the class of estimators 55’1 over B7 for each fixed ¢ and appropriate choice of b’s and
a’s. Secondly, we also obtain a second order asymptotic risk expansion for 531, under mild
regularity conditions on the design matrices. At this point it must be mentioned that
the results of the type mentioned above have been obtained by Nickerson (1987) for the
sequential shrinkage estimation of 8. The results obtained here extend Nickerson (1987)’s
work. Furthermore, the method of proof of crucial lemmas used here are different from
that of the ones in Nickerson (1987). The remarks following Theorems 1 and 2 below
clarify the extent of generalization.

The following theorems establish the risk dominance of 65’1 over ﬁT and asymptotic
risk expansion for 5{,’1. The proof of Theorems 1 and 2 will be given in sections 2 and 3
respectively. Before we state the theorems, we need to introduce the following notations.

Let
(1.10) Uy = Un(Bo) = (Br — Bo)' My (Bn — Bo),  Zi = Xi(B— Bo), fori>1,
Z; = 7!7;,
An = (B — Bo)'Mn(B — o) /20 =) _ Z;/20%,
=1

A= (B - Bo)! (EX1X1)(B — Bo) (< o0)

I(As) = (20%) " ne = i(r +k/2—1)71AL /7,
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and
a0 = (nm —k)(nm —k +2)7"

Rl = EL1(8,6%).

Theorem 1. If n > max(p,2k/m,k/m + 1)
(1.11) RL < Ry

for every b € (0,2(k — 2)) and « € [3, ag).

Remark 1. Nickerson (1987) considers the case when in model (1.1), m = 1 and X;’s are
non-random 1 X k vectors. In this case, max(p,2k/m,k/m + 1) = 2k and hence we need
n 2 2k, which agrees with Nickerson’s condition (see Nickerson (1987), Theorem 2.1).

The multiplier a of 62 in the J-S estimator 6! makes s2 a biased estimator of o2.
The need for a biased estimator was originally observed by Nickerson (1987), who uses
a = k/(k + 2), and this bias tends to zero as k — co. Our range of values for a not only
includes k/(k+2) (for n > 2k/m) but also has the additional property that the bias can be
made as small as we please by choosing a large enough initial sample size. This reduction
in bias with respect to initial sample size seems more reasonable than the reduction of bias
by increasing the dimension k (or m), especially if one has a problem of estimation of 3 of
a fixed dimension.

Theorem 2. Assume for € > 0, P[Z; < z] = 0(zf) as £ — 0. Let > max(p, (k+1)/m,1/e).
Then for 8 # Bo,

(1.12) RE — Ry = o2(Mk)"1o?b[b — 2~ (k — 2)]c + o(c), as ¢ — O,
while for 8 = o,

(1.13) Ry — Ry =262 (k— 2) "k~ 20[b — 207 (k — 2)]b + o(c*/?), as ¢ — 0.

Remark 2. This is also a generalization of Theorem 3.2 of Nickerson (1987), for similar
reasons given in the first paragraph of remark 1. The i.i.d. structure of X;’s is needed only
for Lemma 3 below to hold. If X;’s are non-random, then the proof of Lemma 3 becomes
redundant, if we assume M, /n — M(> 0). Hence the proof of Theorem 2 remains valid
for non-random X;’s.

2. Fixed ¢ domination. The proof of Theorem 1 is along the lines of the proof of
Theorem 2.1 in Nickerson (1987). The following lemma is useful for the proof of Theorem 1.
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Lemma 1. Assume the model (1.1). Then

(2.1) E{U;1 |X1, eees Xn} = n"1I(A,) almost surely (a.s.).
and
(2.2) n~1I()\,) is nonincreasing in n.

Proof. Given X;,Xa,..., X, Mi/z(ﬁn — Bo) ~ N( ,1/2(,6’ — Bo),02I). Therefore, U, /o?
has a noncentral chi-square distribution with the noncentrality parameter A, and k degrees
of freedom.

Assertion (2.1) follows from direct computions using the density function of noncentral
chi-square random variable (r.v.).

As for assertion (2.2), use the fact that A, is nondecreasing in n to conclude that the
distribution function of the noncentral chi-square r.v. is decreasing in n (see Fabian and
Hannan (1985), Theorem 31, p. 118). That n~1(),) is nonincreasing in n now follows
easily. Hence the lemma. [J

Proof of Theorem 1. Algebraic manipulations yield
(2.3) RY — Ry = —2bET 's%Uz*(Br — Bo) Mr(Br — B)
+b2ET 's3.UL!
= (2) + (#7).

Consider (ii). Write

(2.4) b72(58) = Y E{n'siU;  1ir_n}}

n=n

o0
=Y E[E{n 'siU; " {z=n}| X1, .., Xn}]

n=n

=Y E[E{n 'silir_n}|X1,.. ., Xo}E{U; | X1, ... Xu}l,

n=n

where the last equality was obtained using the conditional independence of 0,2,, ...0% and
B, on {T = n}, given X;,..., X, (see Finster (1983), p. 405). From (2.1),

(2.5) (i2) = B’ ET~%s51(A1).

Argue as in (2.4) to get

(2.6) () = -2b Y E[E{n"'s21{r—n}|X1,..., X0}

n=n

X E{U,L_I(Bn - ,BO)IMn(:én - ,B)|X1, e ,Xn}]‘
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Let ¥ = Ma"* (B, — Bo) = (Vr,...,¥%) and § = MY?(8 — Bo) = (6s,...,0%)". Then

(2.7) U Y (Bn — Bo)' My (B — B) = Y'(V — 6)/7'Y

Observe that, given X;,...,X,, each ff, has a normal distribution with mean 6; and
variance 0%. Now use Stein’s Identity (see Stein (1981)) to get

(2.8) E{Y;(Y; (ZY ) |X1,..., X0}
k
Z IXI’ }

2
k k
= o2E{ (Z Y7 - sz,?) / (Z 1”/,.2) 1 X1,..., Xn}.
=1 J=1

From (2.6)—(2.8) and (2.1)

(2.9) E{U;*(Bn — Bo)' My (Bn — B)| X1, ..., Xn} = (k — 2)0*E{U Y| X1,..., X0}
= (k — 2)o*n 1 I(),).

Therefore,
(2.10) (¢) = —2b(k — 2)0*ET2s%I(\7).
From (2.3), (2.5) and (2.10)
(2.11) R: — Rp = bET_lI(AT)T_l 2{bs2 — 2(k — 2)0?}
= bo? Z E[n ' I(An)n " s2{bs20 ™% — 2(k — 2)}1{7—p)]
< 2(k — 2)bo? Z Eln ' I(An)n " s2{s207% — 1}1{1=n)]
n=n

where the last inequality holds for every b € (0,2(k — 2)). From this, it suffices to show
that

(2.12) Y Eln T I(An)n T s2{s207 % — 1} (r_ny] <O



Let no be the smallest integer > n such that aend/k€2 > o®. Write

no—l
ths of (2.12) = > E[n ' I(A)n " s2{s207% — 1}1{1—p)]

n=n

+ E[nalI(AnO)nalsio{sioo‘_z - l}l{TZno}]

+ Y B{n+ ) I min) (1) 62 {41077 — 1)

- (A)n sh {sh0 7 — Blironi1y}
(2.13) = (i#) + (iv) + (v).

Consider (v). Let n > no. Use the fact that on {T > n + 1}, s2 > 62, together with
(2.2) to get

214) @)<Y Bt ) )+ )62 {2077 - 1)

n=—ngp

—nts2{s207? — 1 {r>ni1}}-
Now, by the classical Helmert-type transformation

n—p
(2.15) (nm — k)32 /o* = Vo + Z Wi,

=1

where Vo, Wy, Ws,. .. are independent with ¥ having a xf,m_ i distribution and W;(v > 1)
having xZ, distribution (see Finster (1983), display (3.1)). Moreover, the distribution of
Vo, Wi, Wa,... are independent of X;,7 > 1 (see Finster (1983), p. 405).

Let Xp = (X1,...,Xn) and Wp_p = (Vo,Wy,...Wp_p), n > 1. Write the rhs of
(2.14)

(o o]

(2.16) = 3" B+ 1) (i) E{[(n + )7 21 {52 11077 — 1}

n=n

—n 182 {s207? — 1} {r>nt1}| Xnt1,Wa—p}-

By (2.15), the facts following that and letting a = nm — k we get



(2.17)

El(n+1)" sk 1 {s5110% — Bironi1)| Xnt1, Wny)
= Lrsnt13{(n + 1) 7 (e + m)"?[a®sE + 2aamo?s? + a?o*m(m + 2)|o—2
—(n+1)" (a+m)"*(ash + amo?)}
= Lzensnpn s5{sh0™% = 1} + Lironsnp{le®(a + m) 2(n+ 1)~ — n~1]sko 2
~ [ofa = m(2a— D}(o +m)(n + 1)~ — n]s2
~ [(a+m) ~ afm+ 2)am(n+1)(a-+ m)~20%)
= (A) + (B) a.s.,

where we used the fact that {T' > n + 1} is measurable w.r.t. the o-field generated by
W—p. Note that the multiple of 1{7>n+1} in (B) is a quadratic function of s2 with a
negative leading coefficient. Hence the maximum value of this function occurs at

(n 4+ 1)(a + m)? — anfa — m(2a — 1)]02 <o
2[(e + m)%(n + 1) — na?] ’

if @ < 3/2. Since on {T' > n + 1}, s2 > o2, it follows that the

(2.18)  (B) £ Lirsnip{la®(e+m) 2 (n+ 1) — n~]o?
—[a{fa —m@2a—1)} e+ m) 2 (n+ 1) — n"l]o?
—[(a +m) ~ a(m + 2)Jam(n + 1) " (a + m) 207}

= Lront1p(@+m) 2 (n + 1) 'm{(m + 2)a® + a(a — m) — a}o?.

Let §(a) = (m + 2)a® + a(a — m) — a. Clearly, the function § has a minimum value at
ap = —%f:n_—_l'_'%(< 0) and G(af) = Ofor o = [\/(a — m)2 + 4(m + 2)a— (a—m)]/2(m+2).

Hence, for each n,

G(a) <0 Val<a<dl,

where al (< 0) is the other zero of the function §. Since al increases with n, we get that

(2.19) G6{(a) <0 Vol <a<minal=a

n =
n

where & = {\/[(n —1)m — k]2 +4(m +2)(nm — k) — [(n — 1)m — k]}/2(m + 2). Now
combine (2.14)—(2.18) with (2.19) to get

(2.20) (v)<0 VoOo<a<a.
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Next, note that 1(7>,3 =1 w.p.1. Use (2.15) to get

En_lI()\,,)E{n_lsf,{sgo'_Z —1}|X,}
= En~YI(\,)n " (nm — k) lao?[a(nm — k + 2) — (nm — k)]
(2.21) <o,
since a < ag, by assumption, where ag is as in (1.10). Thus, if ng = n then (sv) < 0.
It can be checked that & > ag. Hence we need at least a < ag for the theorem to hold.
Let no > n. Consider (¢v). Once again using (2.15) and arguments similar to (2.17) and
letting ag = nom — k we get
(2'22) (“’) EnalI(Ano)E[nO 1'5 {snoa - 1}1{T>n0}]Xn0’ ng— 1"}7]
- EnEII(Ano)E{no Sn0o {snoa - 1}1{T>no}|Xnanno—1—p}
= Eng  I(Ano)L{T2no} {10 ‘a5 (@0 — m)?sp,_; + 2(ao — m)amo?sy, _,
+ a?o*m(m + 2)jo™2 — nglag [(ao — m)sZ__, + amo?]}
= EnalI( no){bno '577.()—10'_2 - cnosfr.o—l - dnoo2}1{T2no}a
where b,,, = nylag?(ao — m)?, ¢n, = ny'ag%(ap — m){ao — 2am} and d,,, = ng'agiam
{ao — a(m + 2)}. Note that since a > 1/2

Cno — by = ng tag% (a0 — m)m{1l —2a} <0

and that by arguments similar to (2.19)

dpo + (€ng — bpny) = —nalagzm{az(m + 2) + a(ap — 2m) — (ap — m)}

20,

for all a;, < a < ap,, where both a,, = [\/(ao—2m)%+4(m +2)(ao — m)
— (a0 — 2m)]/2(m + 2) and o, are zeros of the quadratic function of « above. Since
0, 1s increasing in ng we have

dpy + (€ng — bny) >0 forall0 < o < al,

where a! = {1/[(n — 2)m — k]2 + 4(m + 2)[(n — 1)m — k] —[(n —2)m—k]}/2(m+2). Once
again it can be checked that a! > ag, since n > k/m + 1 by assumption. Now, let

= (no — 1)(2bg, — €n,) = ng "ag 2 (no — 1)(ao — m){ao — 2m(1 — &)}.

Clearly f,, € (0,1), since ng > > k/m+ 1 and 0 < a < a9 < 1. Rewriting the last
expression on the rhs of (2.22) we get

(2.28) (5%) = Blng I0hno){(n0 — 1)(2bny — ena)(mo — 1) 162, _y(s2y o2 — 1)
+ (cnO - bno){s:llo—la—2 - ano—l + 02}
- (dno + Cng — bno)az}l{TZno}]

< fnoE[nalI()‘no){(no - 1)_ no I(Sno 10 1)}1{T2no}]‘
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If E{(no—1)71s2 _y(s%, _107% — 1)1{1>n,}| Xm0} <0, then by the fact that s2 < o? on
the set {T' = n} for all n < ng — 1 we get that (i) + (sv) < 0. In this case (2.12) would
follow from the above work. If not, combining (iii) with extreme rhs of (2.23) and using
fro € (0,1) and (2.2) one gets

n0—2

(727) + rhs of (2.23) < Z En 'I(Ap)n"1s2{s207% — 1}1{1=p}
n=n
(2.24) + Eng I(Ang)(no — 1) 7182 _;(s2 _1072 — 1)1{1>ne—1}-

Argue as in (2.22) and (2.23) and proceed inductively to get either the 2nd expression on
the rhs of (2.24) < 0 or finally end with

¢hs of (2.24) < EnalI(Ano)n_lsf,(sf,a_2 —1)1ir>ny
<0,

by arguments similar to (2.21). Hence the theorem follows from (2.20) and the above
arguments.

3. Asymptotic risk expansion. The proof of Theorem 2 depends on two lemmas,
the first of which deals with the necessary and sufficient condition for the assumption of
Theorem 2 to hold.

Lemma 2. Let &1, &2,... be sequence of non-negative i.i.d. r.v.’s. If for € > 0,
(3.1) P& < z] = 0(z°), asz — 0,
then for s >0

M
(3.2) Hl/ ; &

< oo for all M > s/e.
8

Conversely, if for s > 0and M > 1,

M
1/Z=:1€i

< oo, then (3.1) holds for every ¢ < s/M.

8

M
Proof. Let € > 0. Assume (3.1) holds. Let Spr = ) &;. Write
1=1
(3.3) E(1/Sm)® = / P[(1/SMm)° > z]|dz
0

° e g -1
:/ Ple™® "M > e ]dx
0

< e/ E'(e_zI/’SM)d:v

0
1 (o]
e( +/ {Ee™* /Bgl}Md:z:,
0 1
10



where the inequality above is obtained using the Markov inequality. Clearly
fol{Ee_"’”a51 ¥Mdz < 1. For 1 < z < oo, write

(o]
(3.4) Ee=/"& =/ P[e—zl/s& > y|dy
0

=/ P[¢, < —(logy)/z/%|dy

0

= zl/s/ P¢ < z]e“”mdz
0

(e o]
< C:cl/"/ e~ 4z (by assumption)
0
= Cyz— (/9

where the third equality above was obtained using change of variable and that ¢; > 0. C
and C in (3.4) are constants. From (3.4)

oo 1/e oo
/ {Be = " }yMyyz < Cl/ M/ o gy
1 1
< 00,

for all M > (s/€). This proves (3.2).

For the converse,

M
PM[¢; < z]= P[n{fi < z}]
i=1
< P{(Sam/M) < 7]
S
z
< 2°E(M/SMm)*1{(a/80) 521}
=t O(IDB), as ¢ — 0.
Hence the Lemma. ]

Henceforth all unidentified limits are as ¢ — 0.

Lemma 3. Assume the model (1.1). Let 8 # 8. Then
(3.5) IAr) — X' as,

where I(Ar) is as in (1.10) with A, replaced by Ap. Moreover, under the assumptions of
Theorem 2, for some § > 0

(3.6) sup || I(Ar)||13s < oo.
c>0

11



Hence, {[I(Ar)]'+%,c > 0} is uniformly integrable (U.L) for all ' € (0, 6).
Proof. For (3.5), write
(3.7) I(Ar) = (20%)"H(TA7Y)e™>7 Y 20(2¢+ k — 4) 7124/,
£=0
It follows from the strong law of large numbers and the fact that 7' — oo that
(3.8) (203)"H(TA7Y) — A7 as.
Let Q3 = {Ar/T — X/202}. For every fixed w € 0,
(3.9) e T (w) Y 26(20 + k — 4) T M (w) /8 = E,{2P(2P + k —4)7},
£=0

where P is a Poisson r.v. with Ar(w) as its mean. Note that P may be defined on a

different probability space. Since Ar(w) — oo we have that P ELARPNY (that is, for every
K >0, Pr[P £ K| — 0 as Ar(w) — oo0). Therefore,

(3.10) 2P(2P +k—4)"1 2 1.
Moreover,

0<2P(2P+k—4)"1<2.
Hence,
(3.11) E,2P2P +k—4)"1 — 1.

The required result now follows from (3.7) to (3.11). As for (3.6), observe that,
202I(Ar) < 2TA;1,

since 2r + k — 2 > r + 1 for k > 3. Therefore, it suffices to show that

(3.12) i1>118 |T/Ar||146 < co.
From (1.10)
(3.13) (20%)~Y(n/A,) = n/ Z Z;.

- [
Since {Z;;1 > 1} forms an i.i.d. sequence of r.v.’s, we have that {£=! }_ Z;, Go;£ > 1} is
' i=1
i .
a reverse martingale with G, = o{j 7! ) Z;;7 > £}. Let s = 1 + 6, where § is chosen so

=1

12



that ne > s. This is possible since ne > 1 by assumption. An application of the maximal
inequality for reverse submartingale yields

(3.14)

8

<ls(s- 1)]||n/i§::12i

< 00,

n
sup (n/ Z Z;)
n2n i

by (3.2) and since n > s/e. Now, use (3.13) and (3.14) to get the required result. Hence
the lemma. [

Proof of Theorem 2. Consider the case where 8 # Bo. Recall from (2.3), (2.5) and (2.10)
~ that
RY — Ry = —2b(k — 2)02ET~2s21(A1) + b2 ET2s4I(A\r)

= () + (22).
In order to obtain the required second order risk expansion for 63., it suffices to show that
(3.15) (¢) = —2b(k — 2)(Ak)"'o2ac + ofc)
(3.16) (42) = b2 (Ak) "to2aZe + ofc).

Consider (ii). The fact that T¢'/? — k1/25 a.s. (see Finster (1983), Property 3), 63 —
o2 a.s. and (3.5) yields

3.17 Tel/2)—2:4 T Ar) — (Ak)"lo%a? as..
T

From (1.7) and since £, > 1

(3.18) (Tc'/?) 24 < k™ 1a?52

< k™'a? sup 52,
n2>n
< (constant) x sup(Vo+Wy,),
n2>n

where the last inequality was obtained using (2.15). From (3.18), the fact that all powers
of sup (Vo + W) are integrable (see Finster (1983), the proof of Property 4) and Holder’s
n>n

inequality with p = (1 +6)/(1 + &) for 6'¢(0,6), we have that
(3.19) sup [|(T¢"/2) =263 (A7) |l14s < sup [[I(Ar)|I1E5 || sup (Vo + W)l
c>0 ¢>0 n>n
< 00,
by (3.6). Therefore
(3.20) {(Te?) 284 I(Ar);¢ > O} is U.L

13



Hence, (3.16) follows from (3.17) and (3.20).
Consider (7). As in (3.17),

(3.21) (Te'/?)~2s21(A1r) — a(rk)~! as.

Moreover, by (1.7)

(3.22) (Te'/?)~2s21(A1) < ak~'I(A7),

which is U.L. by Lemma 3. Thus, we obtain (3.15) from (3.21) and (3.22).
For the case when £ = (o, first observe that by Lemma 1

(3.23) o' ) =02 (k-2)"!, Vn>1.

Consequently,
RY — Rp = —2bET's% + b2~ % (k — 2) "' ET1s4.

Once again use the fact that T¢'/?2 - kY2 a.s. and 62 — 02 a.s., to get

(3.24) (Te/?) s — kY20 as.,
and
(3.25) (Tc'/?)~tsh - k=Y2026° as.

From (1.7) and arguments similar to (3.18)

k=Y 28y

(3.26) (Te'/?) sk < o
’ < (constant) x {sup(Vo +W,)}*/2
n2n
and
(3.27) (Tc'/?)~'s% < (constant) x &3
< (comstant) x {sup (Vo + Wy,)}*/2.

n2n

Now, once again recall the fact that all powers of sup(V, +W,,) are integrable to conclude

n2n
that both
(3.28) {(Te*?)~1s%; ¢ > 0} and {(T¢/?)"'s4;c > 0} are U.L.

Combine (3.24) and (3.25) with (3.28) to get the required expansion in (1.13). Hence the
theorem. [
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