Note on Some ¢,-Optimal Designs for
Polynomial Regression

by

W. J. Studden
Purdue University

Technical Report #87-22

Department of Statistics
Purdue University

May 1987



Note on Some ¢,-Optimal Designs for
Polynomial Regression

W. J. Studden *
Purdue University Statistics Dept.
W. Lafayette, IN 47907 ‘

Abstract. In a recent paper of N. Gaffke (1987) an example was given regarding the bp-
optimal designs for the highest two coefficients in a one dimensional polynomial regression.
The purpose of this paper is to supply a direct proof of this result using the theory of
canonical moments and orthogonal polynomials.

§ 1. Introduction. Consider a simple polynomial regression model on [-1,1]. Thus for

each ze [-1,1] an observation may be observed with mean value f:oﬂizi and constant
i=

variance o2, independent of z. The parameters §' = (0o,...,0,,) and 02 are unknown. An

experimental design is a probability measure ¢ on [-1,1]. If N uncorrelated observations

are taken and ¢ has mass £(1) = n;N~! at z;,¢ = 1,...,r, then n; observations are taken

at z;. The covariance matrix of the least squares estimates of § is given by (02/n)M~! (¢)

where M(€) is the information matrix of the design € given by
1
mij = [ #*9dg(a) (1.1)
-1

Generally speaking the design ¢ is chosen to “maximize” M(¢) or “minimize” M~1(¢).
Amongst criteria for this minimization are Kiefer’s ¢p-criteria, see Kiefer (1974), Eq. 4.18
or Kiefer (1975), p. 337. The function ¢, are the “p-means” of M—1(¢) given by

$p (M) ={(m +1)~" tr MP(£)}/?

m--1

{(m+1) er (3 A7)}P (1.2)

v=0
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where A, are the eigenvalues of M(£) and —1 < p < 0.

If one is only interested in a subset of the parameters, say the highest s parameters,

then we write

My M,
M =
(M21 M22>

where Ms3 is s X s. The information matrix regarding these parameters is given by
A(€) = A = M2z — Mz; M7 My, (1.3)
The corresponding ¢,-criterion is to minimize
¢p(A) = {s7 tr A7P}I/P (1.4)

the values p = 0, 1, and oo are usually singled out. These values correspond to

det A~1, tr A~! and the maximum eigenvalue of A=, respectively.

The present paper is concerned with the case s = 2 for polynomial regression. The
¢p-optimal designs where given rather explicitly in a recent paper of N.. Gaffke (1987)
which considers general regression models and is concerned with “the characterizations of
design optimality and admissibility for partial parameter estimation.” The special case
m = 2 was considered by Pukelsheim (1980). The result in question is sta,t‘ed in the follow-
ing theorem. The polynomials Ui(z) and T (z) denote the usual Tchebycheff polynomials

of the 1st and 2nd kind. See, e.g. Abromowitz and Stegun (eds.) (1964).

Theorem 1 (Gaffke). The ¢p-optimal design for the highest two coefficients in polynomial

regression of degree m on [-1,1] concentrates mass at the m + 1 zeros 1o = —1 < 13 <
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...<$m<$m+1=1,0f

(1= %) (Un-1(2) + BUm-s(a) (L5)

where § is the root of

+1
(#)p —8=0 0<f<1 (1.6)

The corresponding weights are given by

E(z;) = (1= B2)/{(m — 1)1 — B2) + (1 + B)? — 4T _,(z;)} (1.7)

forj=1,...,m—1 and
£(-1) = ¢(+1) = 5 (1= 64)/{(m—1)(1 — %) - (1 )?} (18)

The proof of Theorem 1 as given in Gaffke (1987) is rather elaborate and ingenious
and is an application of more general results concerning partial parameter estimation. The
purpose of this paper is to give a more direct proof. The proof deals directly with the mo-
ments or rather the canonical moments of theb design €. The theory of canonical moments
allows us to “identify” the @p-optimal design rather quickly. The identification or equiv-
alence with the form in Theorem 1 is then “straightforward” but somewhat algebraically
involved. For the theory of canonical moments the reader is referred to Lau (1983). See

also Lau and Studden (1985), Studden (1980) (1982), and Skibinsky (1968).

§ Proof of Theorem 1. In order to prove the theorem a short description of the canonical

moments and a statement of some of the results is needed. For an arbitrary design £ the
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information matrix M (£), and hence also A(¢), depends on the moments

1
ci=/zid§(z) 1=1,2,...,2m.
-1
The canonical moments are defined as follows. For a given set of moments cg, ¢1,...,¢;_1

let c;-*' denote the maximum of the {th moment f zidu(x) over the set of all probability
measures p4 having moments ¢;j,¢2,...,¢;—1. Similarly let ¢; denote the corresponding

minimum. The canonical moments are defined by

pi=2T%  i_12... (2.1)

+ -
¢, —¢

Note that 0 < p; < 1. We will have 0 < p; < 1 whenever €1,€2,...,¢; is in the interior
of the corresponding moment space. Whenever p; = 0 or 1 the subsequent p; are left
undefined. As an example consider the “Jacobi” measure with density proportional to

(1+x)* (1 —z)? (a > -1, 8 > —1). For this measure

= k k>0
Pk = B+ 2k+1
at+k+1
= k>0
P2k+1 atBT2k+2 >

The uniform measure (a = 8 = 0) has pag4+1 = 1/2, k > 0 and pax = k/(2k + 1). The

“arc-sin” distribution (o = 8 = —1/2) has p; = 1/2 for all k.

Since the underlying interval is [-1,1] and ¢,(A) is convex in M we may assume that
any ¢,-optimal design is symmetric. In this case all the odd moments of ¢ are zero and

A(€) reduces to

A = May — Myy M7' My
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— <“"6—1 a‘;) (2.2)

where ay, = [ P? (z) dé(z), k = m — 1,m and {P;} is the sequence of polynomials, with
leading coefficient one, which are orthogonal to d¢ (z). In terms of the canonical moments

@m—1 and ay, are given (for symmetric &) by
1
/ P} (z) dé(z Hpm g2 (2.3)
-1
where ¢; = 1 — p;.
To obtain the ¢,-optimal design in terms of the p; we may now minimize
Qg +ayF

with respect to p;. This leads immediately to the following lemma. For P = 00 we are

simply maximizing a,, since clearly a,,—1 > am,.

Lemma 2.1. The ¢,-optimal design ¢, is given by pam = 1, p; = 1/2,7=1,2,...,

2m —1, © #2m — 2 and pam—2 = (1 + B)/2 where 3 satisfies (1.6).

Lemma, 2.-1 gives, in a sense, a complete solution to the ¢,-optimal design problem
in the present situation. It is, however, relatively “straightforward” to go from the form
given in Lemma 2.1 in terms of the canonical moments to the support and weights of the
design &, given by Gaffke in Theorem 1. The remainder of the proof is a brief description

of procedure.

In the case that ps,, = 1 it is known that the corresponding measure has support at

+1 and m-1 points on the interior (-1,1). (See e.g. Karlin and Studden 1966, Ch. 4). The
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m-1 interior points are the roots of the polynomial Q,,—; where {Qx} is the sequence of
polynomial orthogonal to (1 — z2)d¢,. If ¢, is symmetric then py; ;1 = 1/2 for all ¢ and

these polynomials (with leading coefficient equal to one) are defined recursively by

Qi+1(7) = = Qr(z) — g2k Q2k42 Qi1 k>1 (24)
where Qo =1 and ¢; = 1 — p;.

We now note (as remarked earlier) that the sequence p; = 1 /2 for all 7 > 1 corresponds

to the “arc-sin” measure

die — dz
Ko = w1 — z2

The corresponding orthogonal polynomials are the Tchebycheff polynomials, Ty(z), of
the 1st kind. The polynomials orthogonal to (1 — z2)duo correspond to the Tchebycheff
polynomials of the 2nd kind devoted by Ui(z). (Ui(z) has leading coefficient 2*). Since
€p has canonical moments p; = 1/2 for ¢ < 2m — 3, it follows that, fo.r 1 <m—2,U;(z) =

ZiQ;-(z). Inserting k = m — 2 in (2.4) we find that
2m_1Qm_1(a:) = Um—1(z) + BUm—3(x) (2.5)

Thus the support of £, is on the zeros to (1 — z2)(U,,—1(z) +BUpm_3(z)) as stated in

Theorem 1.

The remaining question concerns the support &,(z;) given in Theorem 1. For the

interior points we use the fact that

m—2
¢ (zy) = (1 -2} Z (Qx(z4)) (2.6)
k=0
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where Qj are orthonormal with to (1 — z22)d¢, (z) The weight at 1 is given by

m—
g(+1) =2 Z (R;(1))? (2.7)
where R} are orthonormal with respect to (1 + z) dé,(z). Formula (2.6) and (2.7) are
given in Karlin and Studden (1966), Ch. 4.

To convert (2.6) to (1.7) we use the fact that [UZ(z)(1 — 2%*)duo = 1/2. Then
QRx(z) = V2 Ug(z) for k < m — 3. Note that the normalizing factor for Q,,_o uses

Pam—2 = 1 — gam—2. It can be shown that

(@m—2)? = Up_2(z)/g2m—2.

Using a number of trigonometric formula (2.6) will reduce to (1.7). The details of this

reduction are omitted. The considerations of (2.7) are somewhat similar and are also

omitted.
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