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ESTIMATED CONFIDENCE PROCEDURES
FOR MULTIVARIATE NORMAL MEANS !
by
K. L. Lu and James O. Berger

Purdue University

Abstract

In estimation of a p—variate normal mean with identity covariance matrix, confidence
sets recentered at Stein-type estimators have larger coverage probability than the usual
confidence ellipsoids (see Hwang and Casella (1982)). However, the minimum coverage
probability (say 1— a) of these improved sets is identical to that of the usual sets, so that
only 1 — a can be actually reported. Data dependent estimated confidence coefficients,
1 — &(X), can be found which (I) have frequentist validity, (II) are always larger than

1 — o, and (III) dominate the report of 1 — a via quadratic scoring.

'Research supported by National Science Foundation grant DMS-8401996 and by a David Ross fellowship.



1 Introduction

If data x is to be observed from a distribution with unknown parameter § € ©, the per-
formance of a confidence procedure C(x) (a subset of © for each x) is typically reported to
be

l1-a= irolf Pp(C(X) contains ). (1)

A well known problem with this report it is that it is an average measure of performance
over all possible data; for the actual observed data, the performance of C(x) can be quite
different (cf. Berger and Wolpert (1984)). A relatively unexplored alternative is the estimated
confidence approach, introduced formally in Kiefer (1977). The idea here is to report a data-
dependent measure of accuracy, 1 — &(x), for the confidence set C(x) when x is observed.
Data dependent measures of accuracy are, of course, common in Bayesian and conditional fre-
quentist approaches (see Kiefer (1977) and Berger and Wolpert (1984) for references). Here,
however, we consider the “pure” frequentist motivation (as described in Berger (1985a,b))
of desiring a reported accuracy which is conservatively accurate in long run repeated use.
Precisely, we require that 1 — &(x) satisfy:

(I) Frequentist Validity:

Ey(1 - &(X)) < Py(C(X) contains 8), for all 0. 2

(A related notion is the guaranteed conditional confidence of Brown (1978).)

Introduction of estimated confidence introduces a new problem: for any given confidence
procedure {C(x)}, there are many possible estimated confidences that have frequentist valid-
ity. One approach to selecting among them is based on recognizing that 1 — &(x) is, in some
sense, an estimate of I¢(y)(#), the indicator function on C(x). Clearly the ideal (though
generally unattainable) report would be 1 — &(x) = 1 if Igx(f) = 1, and 1 — &(x) = 0
if Io(x)(0) = 0. To capture this notion it is natural to introduce the decision problem of

estimating Ig(x)(#) by 1 — &(x), using (say) quadratic loss
LYIg,1 - &)= (1-&- Ip)% (3)

This has the important property of being a proper scoring rule. Using scoring rules in this
setting is appealing; for instance, in a Bayesian setting, scoring rules insure that the optimal

1 — & is the posterior probability of C(x). We will, however, be adopting the frequentist



perspective, and so will evaluate 1 — & by its communication risk
Ri(0,1 - &) = EgL*(Igx)(0),1 — &(X)). (4)

One could apply many classical decision-theoretic concepts, based on R}, to the choice
of 1 — &. Here we will focus on a rather simple condition:

(I1) Improved Reported Confidence:

R; (9,1 - &) < Rj(0,1—a) for all 0, with strict inequality for some 0. (5)

The motivation for (5) is that, in considering alternatives to the classical report of 1 — ¢,
we seek to guarantee improved accuracy in the estimate of the confidence in C(x). Without
this guarantee, use of any alternative may not be compelling. Note that this criterion was
employed by Robinson (1979Db).

Note that we will not be considering choice of {C(x)} here. The confidence procedure
will be considered to be given, and our sole concern will be that of reporting our confidence
in it. See Rukhin (1987) for an example where choice of the procedure is combined with
choosing the reported confidence.

The specific problem to be addressed in this paper concerns confidence sets for a p-
variate normal mean @, based on X = (Xj,---,X,)* ~ N,(0,I), where I is the p x p identity
matrix. Confidence sets have been proposed which are based on the positive part James-Stein

estimator
fu) = (1-225)" ©
x)=(1- X;
‘ 2/
here “+” denotes the positive part, |[x||? = 3F_, 22, and 0 < a < 2(p — 2), with a = p — 2
being the usual constant considered. Indeed, Hwang and Casella (1982) consider the sets

Ca(x) ={0 : |0 - Sa(x)||* < ™}, (7)

where P (xf, <e)=1-aq, Xf, being a central chi-squared random variable with p degrees of
freedom, and show that these sets have larger coverage probability than the usual confidence
ellipsoid |

Co(x)={0 : [l0—x|* <}, (8)

for certain choices of @ and p > 3. We henceforth assume that p > 3.



The interest in estimated confidence for this problem is that
i%f Py(Ca(X) contains 0) =1 — o, 9

even though Pp(Co(X) contains §) > 1 — o for all §. Thus the classical frequentist can only
report 1 — « as the confidence, though he knows that it is really larger than 1 — c. It is thus

natural to seek a reported confidence, 1 — &(x), which satisfies (2) and for which
1-&(x)>1—a for all x; (10)

then we will have a report which has frequentist validity and reflects the improvement ob-
tained by use of Cy(x). Satisfaction of (5) is also desirable. The construction of such 1— &(x)
will be discussed in this paper.

The idea of estimated confidence was clearly presented by Kiefer (1977). Kiefer also
considered conditional confidence as a frequentist approach to conditioning. Trying to develop
a decision theory for correct choice of the collection of conditioning sets gets very involved,
however (cf. Kiefer (1977) or Brown (1978)), in contrast with the more standard form of the
decision theory for choice of [1 — &(x)].

Robinson (1979a,b) gave a proof of inadmissibility of 1—a as a point estimator of I, x)(0)
in estimating a five dimensional normal mean with respect to squared-error loss. Theorem
2.2 below can be considered to be a generalization of this result to any p > 5 and to C, (i.e.
to confidence spheres centered about James-Stein estimators, not just confidence spheres
centered about x.) Robinson also illustrated the relationship between existence of relevant
betting procedures and admissibility properties of estimated confidence. For location and
scale parameters, a sufficient condition was given under which estimated confidence for the
Pitman estimator is admissible with respect to squared-error loss.

Estimated confidence can be considered to be a special case of estimated loss, discussed
in Lu and Berger (1987). Other work includes Sandved (1968), Kiefer (1975, 1976, 1977),
Berger and Wolpert (1984), Berger (1985a,b,d), Rukhin (1987), and Johnstone (1987).

It should be mentioned that we approach this work from the perspective of scientific
curiosity. In estimation of a multivariate normal mean, excellent confidence sets have been
found using Bayesian methodology (see Berger (1985c) for references), with 1—&(x) being the
resulting posterior probability of the confidence set. Such procedures do not, however, have

guaranteed frequentist properties, and such properties are nice to have, if possible. (Among



the large literature showing the impossibility of always having good frequentist properties,
Gleser and Hwang (1987) stands out). There is reason to expect that, in this problem, it
is possible to simultaneously have good conditional and good frequentist properties (cf. Lu
and Berger (1987)). The results here provide strong support for this conjecture, and will

hopefully encourage the use of data dependent confidence measures for this problem.

2 Estimated Confidence for Recentered Sets

2.1 Existence of Improved Estimated Confidence

Consider the estimated confidence 1 — &(x) for C,(x), where

&(x) = (1 - W%—blpl_xllz) o (11)

for certain positive numbers b and d. It is obvious that, for all x,
1-&(x)>1-a, (12)
so that (10) is satisfied. The following result establishes the frequentist validity of 1 — &(x)
for appropriate constants b and d.
Theorem 2.1 For 0 < a < ay, there exists b, > 0 such that, for 0 < b < b, and any d > 0,
Ey(1 — &(X)) < Pyp(Cu(X) contains 8) for all 0, (13)
here ay, is the mazimum value of a such that
Py(Ca(X) contains 6) >1—a, for all 0. (14)

(A lower bound for ay, is given below.)
Proof. Given in Section 3. O
A lower bound for a, given in Hwang and Casella (1984), is min{ay, as} where a;, a; are

unique solutions, respectively, of

Ve tia \;:;_Wl]"‘ze—cﬁ/z —1 (15)
N |

AR =

The next theorem shows that 1 — &(x) will also be an improved reported confidence with

and

respect to quadratic communication risk.



Table 1: Values of a, for Values p and 1 —

1—a=0.90 | 1.000 | 2.000 | 3.000 | 4.000 | 5.000 { 6.000 | 10.835 | 15.060 | 19.301 | 23.552
1—a=0.95]1.000 | 2.000 | 3.000 | 4.000 | 5.000 | 6.000 | 10.613 | 14.803 | 19.014 | 23.238

Theorem 2.2 For 0 < a < a, = min{p — 4,a1,az2}, there exist by > 0 and d, > 0 such that,
for0<b<by andd>d,,

Ep(1 - &(X) - Io,x)(0))? < Eg(1 — a— Io,x)(8))%, for all 0. (17)

Proof. Given in Section 3. O

Table 1 gives values of a, for 1 — a = 0.90 and for 1 — a = 0.95.

2.2 Choice of constants.

In the above section we only proved the existence of suitable constants b and d. Here we
suggest usable values of b and d. In Section 2.3, evidence is presented which suggests that
these choices of b and d do result in satisfaction of (2) and (5).

Suppose that a is specified and that c is the radius of the confidence set C,(x). A suggested
choice for b and d is

b=d= A(p,a,a)/pa, ' (18)
where )
a(2p — 4 — a)cPe /2

(19)
p2°/*T(p/2)
The number A(p,a,a) appears in the asymptotic expression for coverage probability given

by Hwang and Casella (1984), i.e.,

A(p,a,0) =

Pp(Ca(X) contains 8) =1—a+ A(p,a,)/||0]}* +O(]|0]|73). (20)

The choice in (18) is motivated by the following considerations. Note that the estimated

confidence can be written as

- bpa
1-&(x)=1-—a+—>P2 21
> B+ W )



and that E||X||> = ||0]|? + p. Thus, as ||8]|> — oo,

1—a(x)—>1—a+ﬁ§l‘l"—2. (22)
Equating (22) with (20) yields the choice of b in (18). The choice of d in (18) is simply to
ensure that 1 — &(x) in (21) never exceeds 1.

Values of b and d corresponding to the choice a = p — 2 are given in Table 2. Note that
this value of a exceeds a,, and hence we do not have theoretical assurance of frequentist
validity or improved communication risk for this choice. It is common in this area, however,
that theoretical results establish improvement only for values of a which are substantially
smaller than those which actually work. Such is the case here; the numerical results suggest
that @ = p — 2 does yield frequentist validity and improved communication risk. We choose
a = p — 2, of course, because it corresponds to the choice typically made in James-Stein

estimation.

2.3 Numerical Results

The numerical results below present the performance of 1 — &(x), where b and d are
chosen as in (18), and a = p — 2. Figure 1, for the case p = 8, @ = 6, and for 1 — o = 0.90
and 1 — o = 0.95, graphs the estimated confidences 1 — &(x) with respect to ||x||. Clearly,
substantial reported improvement is available for small ||x||.
~ Figure 2, for the same case, graphs the coverage probabilities of C (x) and the expectations
of the estimated confidence, termed the expected confidences, with respect to ||@]|. These
figures indicate that the frequentist validity condition (2) is indeed satisfied by 1 — &, for this
choice of b and d. Figure 3, for the same case, graphs R} (0,1 — &) and R} (8,1 — &). The
communication risk of 1— & definitely appears to be superior to that of 1 — . Further evidence
of this is provided by Table 3, which presents the proportional decrease in communication
risk in use of 1 — & instead of 1 — a (ie. [R;(0,1 — o) — R;(0,1 — &)]/R:(0,1 — @) ) for
»=15,6,7,8,10,15,20,25,30, a = p — 2, b and d as in (18), and various values of ||6]|.



Table 2: Suggested Values of b and d When a = p — 2

1-a=0.90 1-a=0.95

P c? a=p—2 b,d c? a=p—2 b,d
5 9.236 3.000 1.225 11.070 3.000 1.541
6 10.645 4.000 1.635 12.592 4.000 2.045
7 12.017 5.000 2.006 14.067 5.000 2.499
8 13.362 6.000 2.343 15.507 6.000 2.909
9 14.684 7.000 2.652 16.919 7.000 3.283
10 15.987 8.000 2.938 18.307 8.000 3.628
11 17.275 9.000 3.204 19.675 9.000 3.948
12 18.549 10.000 3.454 21.026 10.000 4.247
13 19.812 11.000 3.689 22.362 11.000 4.529
14 21.064 12.000 3.912 23.685 12.000 4.795
15 22.307 13.000 4.123 24.996 13.000 5.048
16 23.542 14.000 4.325 26.296 14.000 5.289
17 24.769 15.000 4.519 27.587 15.000 5.520
18 25.989 |  16.000 4.705 28.869 16.000 5.741
19 27.204 17.000 4.883 30.144 17.000 5.953
20 28.412 18.000 5.057 31.410 18.000 6.159
21 29.615 19.000 5.224 32.671 19.000 6.357
22 30.813 20.000 5.386 33.924 20.000 6.550
23 32.007 21.000 5.542 35.172 21.000 6.736
24 33.196 22.000 5.695 36.415 22.000 6.916
25 34.382 23.000 5.843 37.652 23.000 7.093
26 35.563 24.000 5.989 38.885 24.000 7.264
27 36.741 25.000 6.130 40.113 25.000 7.431
28 37.916 26.000 6.267 41.337 26.000 7.594
29 39.087 27.000 6.403 42.557 27.000 7.754
30 40.256 28.000 6.534 43.773 28.000 7.910




Table 3: The Proportional Decrease In Communication Risk

10| | p=5|p=6|p=T|p=8|p=10|p=15|p=20|p=25]|p=230
0.000 | 0.379 | 0.524 | 0.649 | 0.744 0.862 0.952 0971 0.978 0.982
0.500 | 0.367 | 0.512 | 0.637 | 0.735 0.857 | 0.951 0970 0977} 0.982
1.000 | 0.335 | 0.477 | 0.605 | 0.708 0.840 | 0.946 | 0.968 0.976 0.981
1.500 | 0.287 | 0.424 | 0.553 | 0.663 0.812 0.938 0.965 0.974 0.979
2.000 | 0.232 | 0.358 | 0.485 | 0.600 | 0.769 | 0.927 | 0.960 | 0.971 0.978
3.000 | 0.119 | 0.214 | 0.323 | 0.437 | 0.640 | 0.885 0944 | 0.963 0.972
4.000 0.004 | 0.029 | 0.070 | 0.131 0300 | 0.807 | 0917 0.949 | 0.963
5.000 | 0.001 | 0.007 | 0.024 | 0.050 | 0.136 | 0.525 0.866 | 0.928 0.950
6.000 | 0.000 | 0.002 | 0.009 | 0.021 0.063 0.306 | 0.660 | 0.850 | 0.932
7.000 | 0.000 | 0.000 | 0.004 | 0.010 | 0.032 0.167 | 0.443 0.730 | 0.873
8.000 | 0.000 | 0.000 | 0.002 | 0.005 0.017 | 0.095 0.271 0.534 | 0.765
9.000 | 0.000 | 0.000 | 0.001 | 0.003 0.010 | 0.058 0.167 | 0.356 | 0.591
10.000 | 0.000 | 0.000 | 0.000 | 0.002 0.006 | 0.037 | 0.107 | 0.234 | 0.420
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3 Proof of Theorems

Proof of Theorem 2.1 Theorem 3.1 in Hwang and Casella (1984) establishes the asymp-
totic expression (20). Thus it is clear that

hmmf 110][2[Pp (6 € Ca(X)) — (1 — )] > 0. (23)

118)|—c0
From Hwang and Casella (1982), we know that for ||0]] > ¢, Py(8 € C,(X)) is greater than
1 — a and is a continuous and decreasing function of 8. Also, it is continuous when ||8|] < c.

Because of these facts and (20) it follows that there is a positive number € such that

inf{(||0])" + p)[Fp(f € Ca(X)) - (1 - )]} =c. (24)
Next, we evaluate the Ep(1 — &(X)). From (11),
1-&(X)=1—a+dp%ﬁ;{”2. (25)

To calculate the expectation of the last item in (25), without loss of generality we suppose
that 0 = (01,0, ...,0)'. Then

1 1
B = Ep—
0dp + X2 0al1r)+IIX+‘9II2

_ (1- ||X||2—p+2X’0)
dP+P+I|9||2 Fo dp+ || X + 6|2
1 (1- [[X[|2 — p+ 2X1(61 +X1)—2Xf)
dp+p+ 0] dp +[[X + 0|
1+ ¢
—_— 26
dp+p+ 0]’ (26)
where €; = (3 + /2p)/dp; the last inequality follows from
|E0||XH2—P+2X1(91+X1)—2X1] Eoll X" —p| |, Eo2|X,] L Bo2|Xyf?
dp+ || X + 0|2 = dp 2dp dp
\V2p 1 2
< X, 42
dp ' dp dp
3+v2 _
= 27
. @)
Let b, = '(Tei)ﬁ?' By (24) and (26), for 0 < b < b, and for all 9,
€
Pp0eCi(X)) > 1—-a+ ——=
0( (X)) p+ 0|2
bpa
> Ey—————
SRR bV
= 1- &(X). (28)

13



Thus Theorem 2.1 is proved. 0O

Proof of Theorem 2.2. For convenience, we define § = 1 — a and B(x) = 1 — &(x).

Thus
bpa

) =F+ o T (29)
Then
Ey(1- o~ Ic,x)(9)* — Bp(1 — &(X) — Ip,(x(0))?
= Ep(B - I, x)(9))* - Ep(B(X) - Ip,x(0))?
= Eg{B* — B(X)? - 2(8 — B(X))Ic,x)(0)}
B (0 B bpo
= 2peBpl g KT~ d+ [XIE 2o+ X
= 2baByga(X), (30)
where s (0) 5
_ lea@)—F ba
9 = T e 2@ T TR/ (31)
In the special case when a = 0, define
_ ICo(x)(o) - B _ bo
S ey P I [ ey (52)

We want to show that, for all 8, Egge(X) > 0. This proof is provided by the folloWing two

lemmas.

Lemma 3.1 Forp > 5 and a < %, there exist da > 0 and by > 0 such that, for d > dy and
0<b<b,,
Eggo(X) >0 for all 0. (33)

(Note that Lemma 3.1 is a generalization of Robinson (1979b), which established the result
for p=5.)

Proof. For convenience let us suppose 8 = (04,0, ...,0)' and define

A=pd+p+||0|?), S=pd+|x+0|?% B=]|x|?~-p+ 2z, (34)
and I o) p
Co(x) -
"»b(x) Co(x)( ) ¢(x) d+ ”xnz/p ( )

14



In the following proof, we use the identities

1 1 B 1 1 B?

-_—= — 1 _—— _— — _— —

3 A( S) and 5= a2 (A-B+ 3 ) (36)
where

B? = (|Ix||* — p)® + 42161 (||x||* ~ p) + 42362. (37)

Now we have, by (36) and by the symmetry of the distribution of X,
a— (X
Egd(X) = pmp2—YK)
p B
= Lia-y@)(a- B+

2
= L BB~ )W(X) - a)

v

p B?
£ B{IXIPW(X) - ) - 2 (#(X) - a)}. (38)
To evaluate this last expression, we use the identity
X[ -p (X — p)°®
X 2 _ )2 X 2 _ _ H 2_ .2 2 _ _ .
(R ~5)? = (X1 - p)o — =2y - (i - p) - (B2
here p is a constant which a later computation will show to satisfy p? ~ 0.112. Then (37),

(38), and (39) yield

A—2E0¢(X) > Bo{|X|P@X) - o) + (X|? - p)(o— X ”

(39)

= =)y x)

(X - pyocx) - UK =P )

4 232
Ui 0 (%) - ). (40)

Since the last term in (40) does not go to zero as ||8]| — co, we evaluate it as

4ng1 (¥(X)—a) = EaXo}(s(X)~ a)(z N A%

2 2 2 2 2 _ 2X

_ Eo“”X”2”1(¢(X) @) + Js (41)

P) y(x) -

%) (p(x) - o)

where
8X1

4X120%(”X||2 —p) ($(X) - @) — Ey

AS
4o 9 9 8X30%(6,

X% () - )

£ 3) (¢(X) o)+ o

J3 = —Ep
X401

IA

(¥(X) - )

1 3

4 4 1. 4 8 L 1
zp—m,ipz(p)a+\/aimeaz+\/35m3a+dpm8az (42)

IA

15



Here we have denoted the n-th moment of (||X]||*~p) by un(p), and the n-th absolute moment
of X; by m,,. Hence

LB 2 Bo{(1- - DI - ) - LEL 0y

4p2s2
4X(Xa+ 0:9)(IIXII2 =P y(x)} - Js

= Jo-—Jl—Jz—J3, (43)

where the J's denote, respectively, the terms of the right hand of the above inequality.

Next we calculate the values of Jy, Jy, Ja.

4 4
Jo = Eo(1 - p* - ;)||X||2(¢(X) —a)=(1-p- ;)P(Tp - a), (44)
where
1
Tp = ;E0||X||2¢(X)- (45)
It is easy to check that 7, > o, if @ < % Then, using the Holder inequality, it follows that
1 1
J1 < Wﬂn(?)“a‘*: (46)
1
T2 € —=mFuna(p)Fad. (47)
14
Combining (41)-(47), we obtain, for sufficiently large d,
Bg#(X) > ——F {1 - Dplp ~ ) - O(F2) >0, (48)
(pd+p+1|0][%) P vd

It is clear that d only depends on p and o.

Next we consider the second term in (40). We shall use the inequality that for any

constants ay, ag, ..., ay,

(a1 +ag + ...+ a2)? < 2a? + 442 4 ... 4+ 27a2. (49)
Now
- ba bple A
E = Eo(—=
@RI 242 03
bp’a p— X} -2X160:1 .

< £
< 2A2E0(1+dp+(X1+01)2)
< bpla ( p+X?—-2X(X + 01))2
—~ 242 0 dp + (X]_ + 01)2

16



4X; 1 X}
—+ o T8 T8, =Ly

bpla
242

bpa 2
(+ +d+d22)

IA

= _Ey(2+ =1L

IA

bp o
= —(1+ o( 7)- (50)
Comparing (48) to (50), we obtain that, for sufficiently large d and for sufficiently small b,

4 1
Bgo(X) 2 b {(L= 47 = 2)p(t = @) = O(75) ~ bpaO(1)} > 0. (51)

Thus, the lemma is proved. O

Lemma 3.2 For 0 < a < a,, there exists a positive number dy such that for d > dy and any
b>0,
-aa—Eaga(X) >0, forall 0. (52)
a
Proof. The method of proof is very similar to the proof of Theorem 2.1 of Hwang and
Casella (1984). Let

R A +10))
We only need to show that
%ho (@) > 0. (54)

Let r = ||x|| and 8 be the angle between x and 8. The inequality

|10 — 6a(x)||* < ¢? (55)
is equivalent to
r211.(r)2 — 2ru(r)||0|| cos B + ||0||2 <c? (56)
where
a
u(r) =(1- r—2)+. (57)

A little algebra shows that the set of x values satisfying (50) equals the region

{x :r_<r<r;y and 0<B<B }. (58)
For ||0]| < ¢, we have §p = 7, r_ =0 and ry = r(a,0, B) satisfies

ryu(ry) = ||0]| cos B + (c? — ||8]|? sin® B)z. (59)

17



For ||0|| > ¢, we have fo = arcsin(c/||0]|) and r+ = r+(a,0, B) are solutions to
reu(rs) = [|0]|cos B £ (¢* — ||6]|* sin? B)3 = 1, (60)

which can be seen to be
1
r+(a,0,8) = 5["1 + /782 + 4a]. (61)

Now, writing hp(a) in terms of r and 8, we obtain

hg(a) = K / / “lgin?2 8 ; :f:’z[;;drdﬂ, (62)
where K = 1if p=2 and, if p > 3,
=3 x|
K=2 Eo /; sin® tdt, (63)
and
£*(r,B) = (27)7*/* exp(—(r* — 2r||0]| cos B + ||0]|*) /2). (64)

From the bounded convergence theorem, we can interchange the order of differentiation and

integration. Hence for ||8|| > ¢,

P Bo ry pp—1
s - [ [
_ Po X f (T+)ﬁ) d p— f*(r—)ﬂ) . p—
= / O gare ~ S gar-Ysne ™ 6
_ rpf (r+7:3) rpf (T—7IB) -2
- 5 e T e ryh e A ()
where
E) -
%ri; [r;{;(l-i-%)] 1. (66)

For the case ||0|| < ¢, we have similarly

J _ o rP [*(r+,0)
5@ =K [ Gt

sin?~% gdg, (67)

and it is clear that Zhg(a) > 0. For the case ||0]] > ¢, to show that Zhg(a) > O, it is

sufficient to prove

def rt f*(r+,8)(a+r2)(dp+r2)

PR At D) " (68)

18



From (64) we have

TV el L. _ (a+r2)(dp+r2)
R= (r_) exp( 2(T+ T_)(T++T_ 2I|0I|COSﬁ))(a+r?i_)(dp+r_2+_). (69)
The equation (60) implies
2|[0|| cos B = reu(ry) +r_u{r_)=ry + 7'_’.i — ri' (70)
+ —_
By substituting (69) into (70), and performing a little algebra, it can be shown that
2 2 d
R=58,(t) (’; ki “)(’; *dp) (71)
(ri +a)(r3 + dp)
where, for m > 1,
Sm(t) = t™exp(—a(t —t71)/2) and t= :—+ > 1. (72)

It can be shown that for a given constant 0 < 4 < 1, there exists d; > 0 such that for any
0< 8 < B, and for any ||0|| > ¢,

> 7. (73)

2 +a T r‘lz + 4a (74)
r_2|_+a ry r9'_2+4a. '

It can be shown that the unique minimum of [1'9_2 + 4a|/ [7'_?_2 + 4a] occurs at # = 0 and

||8]| = (c* + 4a)'/?, which implies that

02
r_2+4a > 2¢/a - (75)
r9"+4a  c+Velt4a

By (73) and (74), we only need to prove, for 1 <t < t*,

02
r2 " 4 4a
R>~5,_ t,|———>1, a.e. 76
= pl() 1'02 Aa ( )

2y/a

Using (61) we have

and, furthermore by (75)

R>q4S,1(t) ——=L——=>1, a.e. 77
2510 e ()

where
= r+(a,0,ﬁ) (78)

= max .
110|j>¢,0<8<80 T—(a,0,5)
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The value of t* can be calculated as follows. For fixed ||||, 7+ is decreasing in 8 and r_ is

increasing in 8. Consequently ¢ is decreasing in 8, which implies

0 0 2314 |[0|I+c
p ot | et IOTETE B
0<p<po - 18=0 ||| — c+/(]|0]] - ¢)* +4a 10— Vy% +4a
is decreasing in ||8]|. Then
Ve I a2
g CHVE T 0t (80)
Va
Straightforward calculation shows that
1 2c
- == .
t* \/a (81)

Clearly, for any m, S,(1) =1, S;,(1) = m — a, and, for ¢ > 1, S;»(t) decreases if a > m;
Sm(t) increases to a unique maximum and then decreases to zero if a < m. When a < p— 2
let t.. and t. be, respectively, the smallest and the largest solutions to Sp—2(t) = 1/, for
t > 1. Suppose a < p — 4. Let o be the unique solution to Sp—4(t) = 1,2 > 1. It is easy to
check that for sufficiently large 4 < 1, . < to. Therefore Sp_4(t.x) > 1 and, for 1 < ¢ < ¢y,

2 2
8 :“L Z;E;g i ZZ ;:3‘3 >1, ae. (82)
When t.. <t < t, Sp—2(t) > 1/7 and then
(1+ a/r2)(r2 + dp) 1+a/rk
(T+a/D) (T + dp) T+a/rE"
To prove R > 1, it is sufficient to show, for t, <t < t*, that
c+ Ve +4a

2ve
In fact, we only need to check that the above inequality holds at ¢, and t*. Since Sp—2(t«) =
1/~ and Sp_1(ts) = t«Sp—2(t«) = t«/7, (84) at t. is equivalent to

S c++ct+4a
*= 2v/a

R > Sp-4(2)

R > Sp-2(t) > Sp-2(t)

>1, ae. (83)

Sp—l(t) 2 (84)

(85)
Therefore, it is equivalent to

Sp_s(c+Ve* +4a/2/a) > 1/+. (86)
By direct substitution, it is equivalent to

(Ve 4012 i 5 1. (87)

o/
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By (80) and (81), at t*, (84) is equivalent to

B T o)

c+vVct+4a
Since the left hand sides of (87) and (88) are decreasing in a, it can be shown that, for a < a,,
we can choose 7, and then choose dj, such that (87) and (88) hold. It can be concluded that
R>1 ae.

Thus the lemma is proved. O
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