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ABSTRACT

The problem of selecting the t-best cells in a multinomial distribution with t+k cells,
k > 1,2 < tis considered under the fixed sample-size indifference zone approach. The least
favourable configuration is derived for the usual procedure of selection, for large values of
N (the sample size). The result settles Conjecture I (for large N) and Conjecture IV of

Chen and Hwang (Commun. Statist. - Theory Meth. 13 (10), 1289-1298, 1984) in the
affirmative.
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1. INTRODUCTION

Consider a multinomial distribution with ko cells. Let py > p2 > ... > p; > pryg >
el > p,g_I_;g with ¢t + k = ko be the cell probabilities arranged in a descending order (the
order among the cells being unknown). Based on a sample of size N, we wish to choose
the t cells with the largest probabilities. The procedure is to select those t cells which
have the highest count in the sample, with ties broken by randomization. The preference
zone is D(t,ko,b) = {(p1,..-»---»Pt+k) : Pt > Pi+1 + b} where b is a known constant in
(0,1/t). For a given sample size N, any probability vector p in D(¢, ko, b) which minimizes
the probability of correct selection is called a least favourable configuration (LFC) over the
preference zone D(¢,kq,b). The derivation of LFC is important to find the minimum value

of the sample size N required to achieve a given level of probability of correct selection.

A direct application of Theorem 3.1 of Chen (1986) shows that the LFC is of the form

p=(01,...,0461,...,84,6441,0,...,0) where

a1=az=...=at=a,51=...=6q,a—b=51,

6> 641, +1<k ... .. .. ... (1.1)

This theorem narrows down the search for the LFC but does not identify it completely.

For the case t = 1, examples of Chen and Hwang (1984) show that the slippage
configuration is sometimes the LFC and in some other cases it is not. Bhandari and Bose
(1987) proved that the LFC for large values of N is given by (e, 6,0,... ,0) and it is not

the slippage configuration.

The case t = ko — 1 can be viewed as the problem of choosing the cell with the lowest
probability. Alam and Thompson (1972) showed that in this case the slippage configuration
is always the LFC, whatever be the value of N. Bhandari and Bose (1985) have dealt with
a more general class of indifference zones and derived the LFC for large N. They have

also provided a simple proof of the result of Alam and Thompson.

2



Our aim in this paper is to derive the LFC for large values of N when 1 <t < ko — 1.
(It should be remarked here that there does not seem to exist a general solution which
works for every N. This belief stems from the fact that for ¢ = 1, the slippage configuration
is sometimes the LFC and sometimes not). It turns out that for 1 < ¢ < ko — 1, the LFC,
for large N, is the configuration (2.1). This straightway settles Conjecture IV of Chen and

Hwang (1984) and settles their Conjecture I in the affirmative for large values of N.

2. NOTATIONS AND PRELIMINARIES

Suppose we have N observations from a multinomial population with probability

vector p.
LetX; = Number of observations in the ith cell, 1 <7 < ¢.
Y; = Number of observations in the (¢ + 7) thcell, 1 < 5 < k.
X=(X1,...,Xs), Y = (Y1,...,Y%).
Let L = (Ly,...,Lt), M = (M,..., M) where L;
1<i<tand Mj, 1< j<k are non-negative integers
Let Lg = 11%1}21: L;, My = 113112{}{ M;.
Let w = Number of indices £ such that L, = Lg
v = Number of indices £ such that M, = M.
Let a(L,M) =1 if Lo > M,
= (“1“2”)_1 if Lo = Mo
= 0 otherwise
For any probability vector p, let ¢(p) denote the probability of correct selection (PCS)

under p. By definition of our selection procedure, given in section 1,
¢(p) =X a (L,M) P, (X=L, Y = M)

where the sum is over all L, M such that XL; + YM;=N.
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The least favourable configuration is that configuration p which minimizes ¢(p) over
peD(t,ko,p). By Theorem 3.1 of Chen (1986), the search for LFC can be confined to

vectors p of the form (1.1). We will denote such vectors by p(a, q).
Let S(L,M) =a (L,M) t/u if L: = Lo
= 0 otherwise.
It is easy to see that

¢(p(a, Q)) = Z S(L’ M)Pp(a,q) (X = Ls Y = M)
XL;+¥XM;=N

For the individual probability terms which are to appear in various summations, define
F(L,M) = 1rL]'V—1r'l\4_,' T oliw 6;-\41'.
A natural conjecture would be that the slippage configuration is the LFC for all values
of N. But as we have mentioned earlier, there does not exist a general form of the LFC

which holds for all values of N. This poses serious problems for minimum sample size

determination.

We will show later that the LFC for sufficiently large values of N is given by:

p=(a...,,6,0,0,...,0) with 6 = (1 — bt)/(¢ + 1)

a=(1+b)/(t+1) (2.1)

3. THE MAIN RESULT

In this section, we will prove that for sufficiently large N, the LFC is the configuration
(2.1). Then we will discuss our results vis-a-vis some of Chen and Hwang’s conjectures.

The basic idea of the proof runs as follows:

To prove that the configuration (2.1) is the LFC, it is enough to show that the

integral w.r.t.c, of the directional derivative of ¢ w.r.t. (o1, 2,...,0¢,61,...,6,41) along
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the direction (—-1,...,-1,-1,...,—1,t+q, 0,...,0) from oo to 17}_7} is positive for suitable

. 7 a
-~

t q
values of ap. i.e. fo(‘z+qb)/(t+q) D(p(a,q))do > 0 where

£ o s 9¢
D:—(Zaai_l_;«?ai

)4—@4—@af¢ :
i=1 q+1
Let B1(N) =X {F(L,M) : Ly = M;, or L; = M;, + 1 for some i1,
Li > Ly > Mj¥i, j,i # i1}
By(N)=ZA{F(L,M):Ly =Ly —1,M; +1< L; < L;, —1Vi,5,{ # 1}
We will show that one of the terms in the integral of D is integral of (¢ — 1) By (N)/2.
The other terms are dominated by integral of ¢ B; (N) for some constant ¢ independent
of N. Using Stirling’s approximation for factorials, the above sums can be written as
approximate Riemann sums of the N** power of two functions f1 and f5 respectively. The
partition lengths of these sums are small and hence they are approximate integrals. Thus
the N'*t* root of these sums converge respectively to max f; and max fo by the well known
result from analysis that the L, norms converge to Lo, norm as p — oo. By comparing
these maximums, we will show that [ B;(N)/ [ B2(N) — 0 as N — oo. This will prove
our result.
Let fi(a,r) = r27(1 —2r)~ (=2 g7 (1 — 20+ a)' " (a—a)"

where 0 < r < (¢ +1)71,

1
——+(q+1)b§a§ 1+db anda>b>0
t+q+1 t+gq

f2 [, 7] = r72(1 — 2¢)—(1=27) o (1 - 2a)17%"

where 0 < r < t71,

1 1)b 1+ gb
+@+0b o O /t>b>0and ap is fixed.
t+q+1 t+gq

Lemma 3.1:

(i) max f; <1



(i) fo attains maximum at a = r and max f; =1

Proof: (1) fu(e7) = (a/r)'l(a = a)/r}[(1 — 2+ a)/(1 - 2r))12
By the inequality (1 + z)™ < 1+ nz which holds for 0 < n < 1, we have

file,r) <14+ (a—7)]1+(a—7)—a][1 —2(a—7) +q].

Putting A = o — r, the above bound reduces to
IA) =1—[2X3(1 + A) + A2 + 3a(=2A) (1 + A) + aZ(1 + )]
Note that -1 < A < 1.
If -1 <A <0,I(}) is clearly less than 1.
Ifo<A<1, then
IN) =1-[(8x/2—a)* + A(3X/2— @) + (3X%/4 — X3/4)] < 1.
Hence (i) is proved.

(ii) &1Lz = 27/ — 2(1 — 2r)/(1 — 20) which vanishes iff & = r.

d%log fo

S = —2r/a? + (—4)(1 — 27)/(1 — 20)% < 0.

Thus for fixed r, f2 attains its maximum at o = r (which is a possible value since b < 1/t)

and obviously at this point, fo = 1. This proves the lemma.

We now state and prove our main theorem.
Theorem 3.2: For all large N, the LFC is the configuration given by (2.1).

Proof: As we have already remarked, by Theorem 3.1 of Chen (1986), it is enough to

find the point of minimum of ¢ on the set

0={(a,...,,86,...,6,6041,0,...,0) : ¢ —b=6,6 > 8541,9+1<k}.
N s, e’

t q



The directional derivative ¢ along (—-1,...,—-1-1,...,—1,t+¢,0,...,0) is given by

7

t q
D=—ia¢—i%+(t+q) o¢
da; “ 6 06g+1

(- )5 (- 2) o (-2

where V' = Z a(L,M)F(L, M) and it is to

t q+1
Y Li+ ) Mj=N-1
=1 j=1
be remembered that all the expressions occurring are evaluated at p(e,q). Henceforth,

t
we will write S for S(L, M) and F for F(L, M) and unless mentioned otherwise, Y L; +

1=1

g+1
Z Mj = N - 1.
=1

V' can be split up into

t—1
1 .
vV=Z5{F:Mj+1<Lt<Li‘v’27ézl,VjanstzLil}

11=1

+Z{F:Mj+1<Lt<L¢Vi,j}+K1 (sa.y)
=Vi+Ve+ Ky (say)

Split up %,lgpgt—-las

d¢
E=Z{F:MJ'+1<L~¢<L£}

+Y {F:Mj+1<Li<L;¥#p, Li= Ly}

1 . -
+ ZZg{F=Lt=Li1,Mj+1<Lt<Li\7’z;éz1}
L1#p
+KP2 (Sa'Y)

= Jp1 + Jp2 + Jp3 + Ky, (say).
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Clearly, Vo = J,,,

1 :
Vi—Jpy =53 {F:Li=1Lp,Mj+1< L < L Vi # p}
1

:5 22

d¢ 1
By =3 2+ K1 —Kp, oo ... ... (3.1)

Thus V —
Split up % as

9¢

=Y {F:Mj+1<Li<L;—1Vi,j}
_aat

t—1
1 . .
+ZZE{F:MJ'+1<L75:L1I1_1aLt<Li—1V27éz1}

ty=1

+ K,
= Ju + Ji2 + Ki2 (say).

Note that Vo > Ji1 + 2 Jia.

0
HenceV—éj—S—ZV1+Jt2+K1—Kt2 (3.2)

ot

Further, since the derivatives etc. are finally evaluated at points of the form p(a,q), so

that a1 = g = ... = a4 = @, it is clear that
=
Vi=5) Tz e e (3.3)
p=1

Thus, adding (3.1) and (3.2) and using (3.3),

(v=5) - ero (V- 5i)

t
D> Jip+tKi— Y Kjz+
Jj=1 J
= Jt2 + E (say).

q9

1

t—
Note that Jy = \ 21)Z{F:M,-+1<Lt<L,-—1w,j, i#1,L =L —1}.

o a*
We will now prove that [ Eda is negligible compared to J Ji2 do where o* = (1+gb) /(t+
[T 71

g). This will prove the theorem.



We have to take care only of the terms in F which are negative. We first examine the term

t
Y Kj2. An examination of the expression for aiaﬁ, 1 < p<t~—1 shows that
j=1 ’

K,, < cZ{SF : M; + 1= L; or M; = L, for some j}
+ cZ{SF :M;+1< L; = L;; = L;, for some 71,72 and for all 5}

= ¢(B; + Bz) (say).

[Here ¢ is a constant independent of a,§ and N|.

Similarly,

Ky, <cY {SF:M;+1=L;or Mj =L}
+¢Y {SF:M;+1<Ly=L; —1=L;, — 1 for some iy # i3 # t}

= ¢ (Bs + By) (say).

For1<p<g+1,

20 .. .

-6—3; =W +V2+Z {SF: M; +1< Ly = L;j; = L;, for some i1,¢2 and for all 5}
+Z{SF:MP+1<Lt,Mj+1=Lt or M; = L; for some j}
+Z{S'F:Mp—|—1=Lt}(forsomeS',OSS'gS)

= V1 + Va2 + Bs + Bs + By (say).

Hence V — %% = K; — (Bs + Bs + Br).

Note that in the final expression for D, all K; terms cancel out.
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7 o a*
Thus it remains to show that ) f B;da is negligible compared to f Ji2 da. Clearly,

i=1a0 xXo
1 .
Jio > EZ{F:MJ-+1<Lt<Li—1Vz,y,z;élanst=L1—1}

=31 P(Xl =L1,Xt:L1—1|X1+Xt=2L1—1)
t—1 k

X P Xi+) ¥Y;=N~—(2L; —1))
i—2 j=1

X Yo P(X,;=Li,i=2,...,t—1,Yj=Mj,j=1,...k)

X n (Ll,...,Lt_l,Ml,...,Mk)
—1

t—1 k
x |P|Y Xi+) Y;=N- (2L, —1)
=2 j=1

wheren =1if M;+1<L;i—1<L;—1Vi#1,tVjand Ly =L, —1

= 0 otherwise.

and ¥; dénotes the summation over L; such that 3 < Ly < Nt~! and, for fixed Lq,%,
t—1 k
denotes summation over all L;’s and M;’s such that > L;+ > M; = N — (2L; — 1).

=2 J=1
1
Thus Jtz 2 5 Z*P(Xl = NT,Xt = Nr — 1|X1 +Xt =2Nr — 1) X f(T,5q+1,N)

t—1 k
X P|Y Xi+) Y;=N-(2Nr—1)
i=2 j=1

where * denotes summation over all 7,0 < r < ¢~! and Nr is an integer.
From the relations a — b = 6, and ta + ¢6 + 6441 = 1, it follows that
[T+ (g+1)b(t+q+1)"'<a<(1+gb)(t+q) 2.
t—1 k
P(Xy=NrX;=Nr—1X;+X;=Nr—1)-P|> X;+ Y ¥;=N—(2Nr —1)
=2 =1

N! a2Nr—1(1 _ 2a)N—(2Nr—1) 4 usi Stirling’ . .
= (N7 = N — @Nr — ! and using Stirling’s approximation

N
>¢ Nt [r"z"(l —2r) (12 g2r(1 — 2a)1_2’] where ¢ is a constant independent of

o,0441 and N.
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Recalling the definition of f3,

- >

/Jtz Zc/ [E*fév(a”')f;\;,5q+1,N)

Qg Qo

We shall show later than in open neighbourhoods arbitrary close to the point, where f

attains its maximum, f(r, 8441, N) remains bounded away from zero.

It is not difficult to show that if f(y,z) is a continuous positive function bounded
by 1 on D = [a1,b1] X [az2,bs] then for a sequence of partitions {7} of [az,b3] such that
||mal| — 0,

by
[ Y ™My zi,n)(ir1,n — i) Y™ — sup|f(y,3) |
21 g;,n€EmT, (y,z)eD

Let D be a neighbourhood of the above form, of a point where f5 attains its maximum.

Then

[-/;a ((E fév(a’r)Ajr‘(T’(SQ-f'l’N)))]l/N

by
> cI/N[/ Z 13 (e zi,m) f (i 1,m — @in) YV

ZTin
where z; 5y = 7/N such that N: < Nt~! and by the fact mentioned, the right side of the

above inequality converges to max fs. This shows that,

o 1/N

I
i / Ji2 > maz fa =1 (and in fact uniformly over ap).
N — o

o

Proceeding in a similar way

1
a* N
lim C/ B; <maz f1; <1
N—oco
o

V¢=1,3,6,7 and fy; is f1 with different a for different z.

Hence fBl,fBg,fBe,fB-; are negligible with respect to thz.
TL;

Nt > .
F(Ll,...,Lt,M]_,...,Mk) = W (a—b)EMJ 5;\'_{&1-*-1
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Let Be =X {SF : M; 4 <Li=Li—1=Ls—-2<L;—1Vjand 1 #1}

F(Lt,Lt,L;g,...Lt,Ml,...,Mk) :Lt+1<2
F(Lt,Lt-l-1,L3,...,Lt_1,Lt—1,M1,...,Mk) Ly —

This shows that B = Bs < B; + ¢ Bs.

Now

o” o o*
So we need to show that f B4 and f Bg are negligible with respect to f Jia.

Qo o e 4]

{F : F is an element of By or Bg} C {F:Fisin Ji2}.

Again as max ocr<ce—1 fa(a,r) = 1 is attained at r = & > ap > [1 + (¢ +
0<apLa<(1+gb)/(t+g)<1/t

1)b}/(t+ ¢+ 1), we can take those L; for which L;/N > ¢, for some fixed preassigned small

e>0.
LetB;"n=Z{SF:M_,-+1<Lt=L1—1=L2—m<Li—1forallja.ndz';él,Z}

Now for large N, with L; > ¢N,

F(Lt+ l,Lt+2,L3,...,Lt,Ml,...,Mk)/F(Lt,Lt+4,L3,...,Lt__1,Lt— 1,M1,...,Mk)
= (Lt + 3)(Lt + 4)/(L: + 1) Ly < (1 + ;) for some pre-assigned small &; > 0.

Hence Bg = B; < By + (1 +¢€1) Bf + &2 Jia.

In a similar way we can prove
B3m—1 < B1+ (14 &) Biiotez Jpforalll<m< ¢

and small €1,e2 > 0, with £ large (but fixed) and for sufficiently large N depending on £

and €3, €2.
So Bg < B1+ (1+¢1) By +(1+€1)2Bl+,__+(1+El)m—2B1
+ (1 +e)™ ' Bi sy +e2diz

< 6;1(1 + 61)m_1B1 + (1 + 61)m—lB;m_1 +eqa Ji2V1I<m<UL

£
Hence Bg < 61—1(1 + 61)2_131 -+ 5_1(1 + El)e_l Z B;m_l + e9Jta

m=1

<erl(l+e)t By + L (14 €)W e + €2 Jio
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Hence /BS//Jt2 551—1(14‘51)2_1/31//-7& + 014 e) 4 ey

Choosing £ such that 247! < ¢ and &; such that (1+e1)¢ < 2,62 < €, we have, J Bs
is negligible with respect to f Ji2. Similarly [ By is negligible with respect [ Jiz. Thus
[ B;,i=1,2,...,7 are all negligible with respect to f Jig for large N.

It now remains to be shown that f(r, 84+1,N) remains bounded away from 0 in open

neighbourhoods arbitrarily close to the points where f5 attains its maximum.

By the SLLN and Lemma 3.1 (ii), it suffices to show that one pair of points with o = r

is contained in the region given by
t—1 k
{(e,r) :EN"' Y2 ) X+ ¥j=N— (2L —1) | <r for all
i=2 j=1

t—1 k
1<£<kand ENT' [ XY Xi+ ) ¥Y;=N— (2L, - 1) | >r
=2 Jj=1

forall £,2<¢<t—1}

= {(a7r) =

o
1— 2«

(1-2r) <rand

1_20‘(1—27') >r}.

It is obvious that o = r belongs to this set. Hence the proof of Theorem 3.2 is

complete.

Remark 3.3: Chen and Hwang (1984) set down some conjectures regarding the LFC for
choosing the t-best cells in the same framework as ours. We quote their conjectures here.

We need the following definitions.

() =1{a,...a,6,...6,0,0,...0 | where 6 =a — b.
N’ o’
t I
p(t,ko,b) = | oy...,0,8,...,6 | where § = — b.
\\'t/_/T
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Conjecture I:  For any sample size N and any preference zone D(t,ko,b) one of the

p(8)'s,£=1,2,...,k is a LFC over D(t,ko,b).

Conjecture IV:  For each t = 1,2,...Vko > t + 2 and any be(0,1/t), there exists N, such
that p(t,ko,b) is not LFC over D(t,ko,b).

Theorem 3.2 shows that Conjecture IV is true. In fact Theorem 3.2 shows that for all
sufficiently large N, the LFC is of the form (a,...,,6,0,...,0) with § = a — b. It also
shows that Conjecture I is true for large values of N. In fact p(1) is the LFC for all large

values of N.

Remark 3.4: The problem of determining the minimum sample size N is not taken care
of by Theorem 3.2. For this we need an approximate value of N = Ny so that the LFC is

(2.1) for all N > No. But getting hold of Ny seems to be a difficult problem.
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