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Abstract

In estimation of a p—variate normal mean with identity covariance matrix, Stein-type
estimators can offer significant gains over the m.l.e. in terms of risk with respect to sum of
squares error loss. Their maximum risk is still equal to p, however, which will typically be
their “reported loss”. In this paper we consider use of data-dependent “loss estimators”. Two
conditions that are attractive for such a loss estimator are that it be an improved loss estimator
under some scoring rule, and that it have a type of frequentist validity. Loss estimators with
these properties are found for several of the most important Stein-type estimators. One such
estimator is a generalized Bayes estimator, and the corresponding loss estimator is its posterior
expected loss; thus Bayesians and frequentists can potentially agree on the analysis of this

problem.

1 Introduction

For the problem of estimating a multivariate normal mean, we consider a frequentist approach to
conditioning, based on use of loss estimators. In classical decision theory, the following noncondi-
tional approach is standard: select a procedure 6(z), define a criterion (or loss) L(#, 6), and report
(6, R(8,6)), where R(8,6) = EoL(8,6(X)) is the risk function and gives the long run performance
of § for each #. Because 8 is unknown, however, R(#, §) is also unknown. Thus it is common (and
argued in Berger(1985a) to be necessary for a valid nonconditional frequentist interpretation) to

Teport

Rs = sup R(8, ) (1)

as the operational measure of accuracy.
The approach based on loss estimators recognizes that the ideal measure of performance of
6 would be L(6,6(z)) itself, were it obtainable, and recommends reporting a data dependent

estimator, fig(x), of the loss, instead of the constant Rs. To evaluate the success with which
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L(0,6(z)) is estimated, some criterion (or communication loss, see Berger (1985b)) needs to be

considered. We will consider the simple quadratic communication loss
L*(L,I)= (L - L)% (2)

Since we are working in the frequentist domain, the performance of I will be measured by the
“communication risk”
R1(8,Ls) = EoL*(L(8,6(X)), Ls(X)). 3)

Usual notions of admissibility, etc., can be applied to loss estimators I, and their corresponding
risks R}; we will, henceforth, do so without further comment.

We will be concerned with two criteria for a loss estimator L. The first is that it improve
upon Rj, the usual constant frequentist report. Thus we seek, for L;:

(I) Improved Loss Estimation:

R1(6,Ls) < Ry(0,Rs) for all 6. (4)

A second criterion of interest is that the average long run reported loss never be less than the
average loﬁg run actual loss. (A related notion is the guaranteed conditional confidence of Brown
(1978).) Formally, we will consider:
(II) Frequentist Validity:
EoLs(X) > R(6,6) for all 6. (5)

Satisfaction of condition (I) is arguably necessary before a frequentist would have clear cause
to adopt Lg, instead of Ry, as the reported loss. Satisfaction of condition (II) is a less obvious
requirement; a traditional frequentist might feel that this is necessary, arguing (as in Berger
(19852)) that violation of (5) means that the “average reported loss” could be less than the
“average actual loss” (and hence be nonconservative), but others might disagree (cf. Robinson
(197—93., b), Johnstone (1987), and Rukhin (1987)). Inequality in (5) is typically acceptable as
being “conservative”, and necessary to obtain sensible L.

It is possible to combine the decision problems involving § and L (as in Rukhin (1987)), but
we will not do so; the losses involved in estimating # and L are typically very different and hard
to construct on a common utility scale. In this paper we will, in fact, consider only certain
previously proposed estimators §, treating them as fixed in discussing the estimation of L. Thus
our orientation is that of taking a procedure advocated for the original decision problem, and
. studying how best to estimate its actual loss.

The specific problem to be addressed in this paper is that of estimating a p-variate normal
mean 8 = (6y,---,6,)!, based on X = (Xy,--+,Xp)* ~ Ny(6,I), where I is the p x p identity



matrix and p > 3. General classes of Stein-type estimators (see Section 2) and generalized Bayes
estimators (see Section 3) will be studied; these include the following three familiar estimators,
that will be used for illustrative purposes:

(1) Positive Part James-Stein Estimator:

§(x) = (1 - |~|—:“—2)+ X; (6)

here “+” denotes the positive part, ||x]||? = fazfand 0<a < (p-2), witha = P — 2 being

the usual constant considered.
(2) Lindley-Efron-Morris-Stein Estimator (Lindley (1962), Efron-Morris (1973)):

+
a

={1-—= -z z 7

6= (1- =) - 2n) 41, (7)
wherez = 3%, z;/p,1 = (1,---,1),and 0 < a < (p—3), with @ = p—3 being the usual constant

considered.
(3) Generalized Bayes Estimator (Strawderman (1971), Berger (1980)):
rn(uxuz))
f(x)={1- 22— 2 1x, 8

where, letting v = | Ix|13,
v Jo A" exp(=Av/2)d) (9)
Jo Atn=1) exp(—Av/2)d)’

(As usual, the estimators in (6) or (8) could “shrink” towards any given point p; we simply set

rn(v) =

# = 0 for simplicity.) These estimators dominate the usual estimator §,(x) = x under sum of
squares error loss, providing p > 3 for (6) and (8) and p > 4 for (7); they also have a number
of other desirable qualities. For all such estimators, however, R5 = p (which is also the risk of
6,) and therefore does not exhibit the gain obtained through use of these estimators.

Stein (1981) provides a loss estimator, fla(x), for the problem, which he terms the “unbjased
estimator of risk”. This loss estimator satisfies the frequentist validity criterion; indeed, it is the
unique loss estimator for which equality holds in (5)- It is not clear, however, if condition (I) also
holds. Furthermore, the unbiased estimator of risk can have obviously undesirable properties as
2 loss estimator. For instance, the unbiased estimator of risk for (6) is negative if ||x||?> < a < p,
which would be a silly reported loss. (The unbiased estimator of risk can be modified to eliminate
such undesirable features; see Section 2.)

We will consider alternative loss estimators, corresponding to the § in (6), (7), and (8), which
satisfy both (4) and (5), and which are intuitively reasonable. For (8), the loss estimator we

shall consider is posterior expected loss, a report with many attractive features. Indeed, in this
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problem we demonstrate the perhaps surprising fact that the posterior mean and variance (for
natural Strawderman-type priors) are improved frequentist procedures for the original and loss
estimation decision problems, respectively. In that these priors are based on subjective input (at
a minimum, the choice of where to shrink), this provides the first illustration of which we are
aware in which there is complete agreement between frequentist and subjective Bayesian analyses,
“complete” in the sense that both the estimator of § and the reported accuracy satisfy relevant
frequentist and Bayesian criteria.

Our loss estimators also satisfy the condition
0< L(x) < Rg=p forall x. (10)

Of note here is that one will always estimate the loss to be less than p, giving immediate and
visible evidence of the expected improvement obtained through use of (6), (7), or (8).

We note that related problems have recently been considered by Johnstone (1987), although
he does not require condition (II). His efforts center around determination of the admissibility
of Stein’s unbiased estimator of risk for the m.l.e., x, and the non-positive part James-Stein
estimator. He proves the surprising result that the unbiased estimator of risk for x (which turns
out to be just p) is admissible for p < 4, but inadmissible for p > 5. For the usual James-Stein
estimator, he establishes inadmissibility of the unbiased estimator of risk. Results for confidence
procedures that are analogous to the results in this paper are given in Lu and Berger (1988).
Other work, related to the idea of estimating the loss, includes Lehmann (1959), Sandved (1968),
Kiefer (1977), and Robinson (1979a,b).

2 Loss Estimation For Positive Part Estimators

The estimators in (6) and (7) are of the form

ba(x) = x — r(x)(x — p(x)), - (11)
where 4
u(x) = a+ B(x - a), (12)
a +
r(x)=1- (1 - x)) ’ (13)
v(x) = (x — a)(I - B)(x - a), (14)

aisa specified vector, and B is an idempotent matrix with rank

v = rank(B). (15)



For instance, (6) is of this form with @ = 0 and B = 0, and (7) is of this form with @ = 0 and
B = 11%/p. 1t is well known (cf. Berger (1976)) that §, in (11) is minimax if0 < ¢ < 2(p—-2-+~).
The usual choice of a is @ = p— 2 — 4, for a variety of admissibility and empirical Bayes reasons.

We shall consider loss estimators, corresponding to §,, of the form

By(x) = 9(v(x)) ifv(x)<a 16
) { p—t/v(x) if v(x)> a, (16)
where 0 < t < b2,

b=[2(p— 2 7)a—*/2 (17)

(equaling p—2— v ifa = p— 2~ v), and g(v) is a nondecreasing convex function on (0, a] such
that g(v) > 0, g(a) = p— t/a, and the left derivative of g exists at a and is no larger than ¢/a2.

A particularly attractive special case is

L ifov(x)<L—-p+2a
I*(x) = v(X)+p~2a fL-p+2a<v(x)<a (18)

p—a?fv(x) ifv(x)>a,
where L < p— a is a specified “smallest loss” that will be reported. L can be selected according
to prior information if available (e.g., L could be chosen to be the posterior variance at zero). A

possible default value is L = p — a (although this may often be unreasonably small), in which

case L* becomes

R p—a ifo(x)< a
L™ (x) = 19
) { p—a?fv(x) if v(x)> a. : (19)

Note that a wide range of ¢ and g could be chosen in (16). Indeed, there is nothing within the
frequentist theory considered here to prevent one from choosing some g which is, say, zero over
an interval. This could result in a reported loss of zero, however, which is obviously silly. It will
be seen later (see (31)) that ¢ = b2 corresponds to modification of the unbiased estimator of risk.
The reasons for considering other ¢ will be discussed at the end of the section.

The following theorems show that L,(x) in (16) has frequentist validity and dominates Rg = p,

under suitable conditions. For use in the theorem, define

ap(7) = min{p-2-7,p-4-7+/(p-3-7)2-1},
to = 2(p—4-7)(1+a)-d’ (20)

" Theorem 2.1 Forp25+17,0<a<ap(y), and0 < t< 2t I, satisfies

EglL(X) — [16a(X) - 811”1 < Eglp - [[6.(X) ~ 6|1  for all 6. (21)



Note: If ¥ = 0, i.e., we are considering the usual positive part James-Stein estimator, relevant

values of a,(0) are a5(0) = 1+ v/3 and a,(0) = p— 2 for p > 6. Also, ay(7) = ap—,(0) for v > 1.

Corollary 2.1 Forp> 5+ and0<a< ay(7), L* (and L**) satisfy (21); here

ay(7) =min{p-2-7,p- 6- v+ /(p-4-7)2 +4}. (22)
Note: If ¥ = 0, relevant values of a}(0) are a3(0) = 1.2361, a3(0) = 2.8284, a3(0) = 4.6056, and
a;(0) = p— 2 for p > 8; also, a}(v) = a;_.(0) fory > 1.
Proof of Corollary 2.1. It can be checked that,if 0<a< a;(‘y), then
t=a? < 2. (23)

Hence Theorem 2.1 yields the result. O
Proof of Theorem 2.1  Under the given conditions on g(v), it is possible to find a sequence
gm(v) which converges to g(v) pointwise, and for which each g,, is (on (0, a]) nondecreasing,
convex, everywhere twice differentiable with piecewise continuous second derivative, and satisfies
gm(v) > 0, gm(a) = p— t/a, and g/,(a) = t/a?. It thus suffices to establish the theorem for all
such gn,. (We, henceforth, drop the subscript m.)

Define the auxiliary function

51(x,0) = (p~ [|8a(x) = 611%)* = (Lu(x) - ||6a(x) — 0]|2)%. (24)

Using Lemma A.1 in the appendix, calculation gives

EpSi(X,0) = EgS(X), 5)
where $,(x) is given by
5ux) = —(p= Le(x))(p— Lu(x) + 2r(x)*v(x))
+4g Slr (e = L))o = ) - 2{_; -g;?(p- L4o0). 26)

Calculation yields (writing v = v(x) for convenience), for v < a,
Si(x) = (p=9g())4(p—2-7)- (- 9(v) + 20)]
+8(p — 9(v) - ¢'(v)v) + 8¢"(v)v + 49'(v)(p ~ 9(v)); (27)
forv > a, |
Sy(x) = t(2tp — 1) /2. (28)
- When v < a, §(x) > 0 since ¢’(v) < 1 and the function P — g(v) + 2v is increasing in v with

2 maximum of 3b. When v > @ and 0 < t < 24, it is clear that S't(x) > 0. It follows that
E'gS"t(X) > 0, completing the proof. 0.



Theorem 2.2 Forp>2+79,0<a<(p—2-17),and0< t< b2, I, satisfies
EgL(X) > Egll6.(X) - 6|1 (29)
'Proof of Theorem 2.2 Using Lemma A.1 in the appendix, calculation gives
Eglléu(X) - 6IF = EglIX — 60— r(x)(x— u(x))||?

Bglp + r(X)*0(X) = 23 5 2=r(X)(Xi — (X)),

=1

= Egl¥(X), (30)

where L* is the unbiased estimator of risk given by

Be(x) = { v(x)-p+27 fv(x)<a (1)
p—b/v(x) if v(x)>a.
Thus
L(x) - I4(x) = { g(v(x)) - v(x)+ p— 27 Tf v(x)<a (32)
(6% — 1)/ v(x) if v(x) > a,
The above function is deceasing in v(x) when 0 < v(x) < a; hence, for all x
Ly(x) 2 1*(x). (33)

Taking expectations completes the proof. DO

To indicate the amount of improvement that can be expected in use of the loss estimator [~
in (19), instead of Rs, = p, the proportional decrease in communication risk (i.e., [R1(8,p) —
R3(6,1**)]/R3(0,p)) is given in Table 1 for v = 0, a =0, a = a}(v) and various values of ||6]|.
Clearly, substantial improvement is available for small ||#]|. Note that one should be careful in
malzing comparisons across dimensions in Table 1. A reasonable rule of thumb in making such
comparisons is to first standardize ||0]| by dividing by /p. (The risks in Table 1 were calculated
via Monte Carlo simulation; and the standard errors of the entries in Table 1 are 0.01).

Figure 1, for the case v =0, a = 0, p= 8 and a = p — 2, graphs the risk R(8,6,), ng,"(X),
Eg(p) = p, and the actual loss estimator L**; the first three are graphed as functions of |[4]],
while L** is graphed as a function of [Ix]l. Of course, (5) is satisfied by L**. Note that one could
obtain a closer correspondence between Eﬂj’ﬁ, (X) and R(6,6,) if iﬁa were chosen as in (18) with
. smaller L than the default value L = p— a used in (19), but we feel that unbiased estimation of

R(6,8,) is essentially irrelevant; if L is too small, a silly estimate of the actual loss could result.



Table 1: The Proportional Decrease in Communication Risk for L**

0l | p=5 | p=6|p=T|p=8|p=10|p=15|p=20|p=25|p=130
0.00 | 0.55 0.80 | 0.87 0.89 0.93 0.96 0.97 0.98 0.98
0.50 | 0.53 080 | 0.88 0.90 0.93 0.96 0.97 0.98 0.98
1.00|] 048} 078 | 088 | 0.90 094{ 0.9 0.97 0.98 0.98
150 | 0.36 070 | 0.84| 0.88 0.93 0.96 0.97 0.98 0.98
2.00] 0.22 0.52 1 0.68 0.79 0.88 0.94 0.96 0.97 0.98
3.00 | 0.06 0.12 0.18 0.31 0.55 0.82 0.90 0.94 0.95
4.00 | 0.02 0.04 | 0.02 0.03 0.19 0.56 0.77 0.86 0.90
5.00 | 0.01 0.02 0.02 | 0.02 0.12 0.37 0.62 0.77 0.83
6.00 | 0.00 0.01 0.01 0.01 0.07 0.28 0.53 0.69 0.77
700} 000} 001] 0.00| 0.00 0.05 0.21 0.44 0.60 0.72
8.00| 000§ 0.00] 0.00{ 0.00 0.03 0.15 0.35 0.51 0.65
9.00 § 0.00| 0.00{ 0.00] 0.00 0.02 0.11 0.28 0.42 0.57
10.00 | ©0.00 0.00] 0.00| 0.00 0.02 0.08 0.22 0.34 0.50
8
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Figure 1: Graphs of L**, its expected
value, and the risk function
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Of considerable interest are admissibility questions concerning loss estimators. Admissibility
of §, itselfis well understood; indeed it is easy to show that 8., for a < P—2—1,can be dominated
by 6(p—2-+)- Since the unbiased estimator of risk corresponding to 6(,,_2_.,) is given by (31), with
a=b=p-2-47,it might seem that only the choice ¢ = b2 in (16) would be of interest. This is

not the case, though the following corollary does rule out certain choicesof 1.
Corollary 2.2 Fort < tg,
EglL(X) ~ 116a(X) = 0112 > EglLs,(X) — [16.(X) - 8IFP  for all 0. (34)
Proof.  Since (27) is decreasing in g and (28) has a2 maximum at ¢ = #o, it follows that
Su(x) < §y,(x)  for all x. (35)

The result is immediate. O

Comparing the L, for tp < ¢ < b2 turns out to be more difficult. Indeed, none seem to be
dominated by others in the class (those with smaller ¢ doing better for large ||6]|, and those with
large t doing better for small ||6]|). This is the interesting point, and one could conjecture that the
Lifortg<t< b2, are actually all admissible (or nearly so) for suitable choices of g. Furthermore,
the choice ¢ = #o is that which does best “at infinity” (i.e. for large ||6]|), not the choice # = b2
(which corresponds to the unbiased estimator of risk). While we still feel that ¢ = b2 is a good
default choice of 2, t = t5 clearly deserves consideration.

It should be noted that a similar result can be obtained fo%)n—positive part estimator

a

6(x) = p(x)+ (- ;,—(;)-)(x - 1#(x)), (36)
and associated loss estimator |
E5(x) = o~ t/v(x), (37)

or its positive part. Indeed, (37) for t = to can be shown to minimize Rz(e,z‘;s) among all
0 <t < b2. Johnstone (1987) proved this for the basic James-Stein estimator corresponding to
a=p-2,

It would be interesting to determine if any of the I"6 considered here are themselves admissible.
We were unable to carry out any admissibility proofs, in part because of the additional difficulties
imposed by working subject to the Frequentist Validity constraint. Also, we have not lseriously
- addressed the issue of selecting from among the I, in (16). In shrinkage estimation, the only
method of selecting from among improved procedures that we are comfortable with is to use

Bayesian criteria. A partly Bayesian approach is thus considered next.
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3 Loss Estimation For A Generalized Bayes Estimator

The estimator in (8) is of the form

09 = x- - ), (39)

where
B(x) = a + B(x - a), (39)
o(x) = (x - @){(I - B)(x - a)/r?, (40)

a is a specified vector, B is an idempotent matrix with rank Y,and 7 > 1 is a constant. (Usually
72 = 1 will be chosen, but other values are sometimes desirable. Also,n = (p—2—v)/2 s the
usual choice of n, yielding estimators similar to 6(p—2—~) in (11).) This estimator is similar to
those considered in Strawderman (1971), and is a special case of the general estimator in Berger

(1980). The estimator is generalized Bayes with respect to the generalized prior
1
9a(6) = [ [det{ D)2 exp{~(0 - a)'D(A)(6 — a)/2}A-1-0/2g5, (41)
(i

where

D) =[I-XI-B)/r -1 (42)

This prior has several interesting interpretations. For a frequentist, this prior can be considered
simply as a device to generate a desirable estimator, one which dominates §,(x) = x and is
admissible (such as when vy = 0 and n = (p— 2)/2). For a Bayesian, this prior would correspond
to a belief that (6 — a){(I — B)(6 ~ a) is small to moderate; this belief can not be quantified
exactly in Bayesian terms, since typically used gn are improper, though Berger (1980) provides
some insight into such an interpretation. In any case, it is very natural to utilize this prior to
calculate the posterior expected loss for use as a loss estimator. Rather surprisingly, this loss
estimator satisfies both conditions (I) and (Im).

Since the original decision loss is sum of squares error, the posterior expected loss of 6™ is
simply the posterior variance. In Berger (1980) it is shown that this is given by (writing v = v(x)

for convenience)
Liv)=p-[2n+(p-2-y-2n— v)u(v) + vu(v)?]/r2, (43)

where u(v) = r,(v)/v. It can be shown (using Lemma A.2 of the appendix) that L,(v) is strictly
- positive and monotone with limit P as v goes to infinity.

The following lemma is given in Berger (1980); a version of this lemma was first obtained by
Morris (1977).
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Lemma 3.1 L, satisfies the Frequentist Validity crilerion (II), when n < (p— 2 - v)/2.

Thus it remains only to show that [, satisfies (4), and is hence a better report than is B §=D
The following theorem gives conditions under which this is so. Its proof is long and technical, and

is relegated to the appendix.
Theorem 8.1 Forp>3,and forn=1/20r1<n < (p—2-17)/2, L, satisfies
EglLn(v(X)) - L(8,6™(X)]? < Eglp— L(6,6™(X))]?, for allé. (44)

The gap 1/2 < n < 1 in Theorem 3.1 exists only because of technical difficulties. The theorem
is undoubtedly still true in this case.

To indicate the amount of improvement that can be expected in use of the loss estimator L, (v)
in (43), instead of Rgn = p, the proportional decrease in communication risk (i.e., [R1.(0,p) —
R3(8,1,))/R:(8,p))is givenin Table2for 7 =1,7=0,0=0,n = (p—2)/2 and various values
of ||6]|]. Clearly, substantial improvement is available for small ||8]|. (The standard errors of the
entries in Table 2 are 0.01.)

Figure 2, for the case 7 = 1, vy = 0, @ = 0, p = 8 and n = 3, graphs the risk R(8,6™),
EgL,(v(X)), Egp = p, and the actual loss estimator L,; the first three are graphed as functions
of ||6]|, while L, is graphed as a function of ||x]|. It is somewhat curious that the risk and L, are

rather similar, as functions.
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Table 2: The Proportional Decrease in Communication Risk for I,

10l | p=3 |p=4|p=5|p=8|p=10]|p=15 p=20[p=25|p=30
0.00 0.29 0.58 0.73 0.87 0.91 0.94 0.95 0.96 0.96
0.50 0.30 0.59 0.70 0.85 0.90 0.94 0.95 0.96 0.96
1.00 0.19 0.47 | 0.69 0.87 0.88 0.94 0.95 0.96 0.97
1.50 0.16 0.33 0.63 0.85 0.90 0.94 0.95 0.96 0.97
2.00 0.05 0.23 0.36 0.76 0.86 0.93 0.96 0.97 0.97
3.00 0.00 0.01 0.22 0.53 0.68 0.88 0.93 0.97 0.97
4.00 | 0.01 0.04 ] 0.03]| 0.20 0.31 0.75 0.86 0.92 0.95
5.00 | 0.01 0.00| 000 o0.01 0.21 0.52 0.77 0.83 0.90
6.00 0.00 0.00 | 0.02 0.01 0.16 0.27 0.51 0.72 0.81
7.00 0.00 0.01 0.01 0.00 0.05 0.25 0.39 0.54 0.71
8.00 0.00 0.01 0.00 0.01 0.04 0.12 0.35 0.51 0.62
$.00 0.00 0.00 0.00 0.00 0.01 0.10 0.17 0.36 0.57
10.00 0.00 0.00 0.00 0.01 0.02 0.06 0.18 0.30 0.43
13




Figure 2: Graphs of L,,, its expected
value, and the risk function
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4 Conclusions

The choice of ié as in (18) or (19) is a bit adhoc, and possibly conditionally inappropriate for
small [|x|]. The best method of assuring that a conditional error measure (or loss) is sensible is
to use a posterior measure. For this reason, we would recommend utilization of 6 and I, from
Section 3, rather than é, and L* or L** from Section 2. It is truly appealing to be able to report a
posterior mean and variance, with complete assurance of improved frequentist performance. And
note, from Berger (1980), that 6" and L, can be easily calculated using a recurrence relation.

A comparison of Tables 1 and 2 also seems to indicate superiority of I,, in terms of commu-
nication risk. For small p, L, offers much greater improvement; indeed, for p = 3 and 4, [
is actually worse than p, while I, still offers substantial improvement. (Of course, these loss
estimators refer to different estimators §, but 6™ in (38) and §, in (11) are actually very similar
for a = 2n = p ~- 2, as considered here.)

Although the numerical calculations in Sections 2 and 3 indicate the theoretical advantage
in use of these loss estimators, the main practical advantage should be stressed. This is simply
that one can report a sensible loss, f,a, which is (often significantly) smaller than p, the only
unconditional frequentist report possible. Thus the increased accuracy available through use of

Stein-type estimation can be communicated within the frequentist paradigm.
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A Appendix

Lemma A.1 Suppose X has the Np(6,I) distribution, and ¢(x) is a continuous function with

piecewtse continuous partial derivatives. Then, for all@ andi=1,---, ,

Eg#(X)(X; - 8 = Egz3-9(X), (49)

providing the ezpectation on the right hand side of (45) ezists.
Furthermore, if 8¢(x)/0z;, i = 1,---,p, are continuous and have piecewise continuous partial
derivatives, and if the expectation on the right hand side of (46) ezists, then, for all 8,

8%¢(X)

Eg#(X)(X: - 6:)" = Eg( 21

+ ¢(X))- (46)
Proof. See Stein (1981) and Johnstone (1987). O

Lemma A.2 Ifn > 0 and v > 0, then r,(v), as defined in (9), satisfies
(1) 0 < ro(v) < 21,
(2) ra(v) is increasing in v,
(3) lim; o0 Tn(2nc)/[2n min{1,c}] =1,
(4) ra(v)/v is decreasing in v,
(5) ral®)/0 < nf(n+1),
(6) limy_o T(v)/v = n/(n + 1).

Proof. See Berger (1980). O

Lemma A.3 For u(v) = rn(v)/v,

v'(v) = -;-u"’(v) - -: 1y -21-)u(v) + -:-:-; : . (47)

and

W) = 5ui(0)- LEED Y B

+[(n+1'))gn+2)+2n+1+ o) [n_(%_;.{_-_2_)+%. (48)

Proof.  Follows from formula (3.6) and (4) of Lemma 3.1.1 in Berger (1980). O.

The following lemma provides the basic representation needed to prove Theorem 3.1.

" Lemma A.4 Forall
Eglp— L(6,6™) — EglLn(v) - L(6,6™)]* = EgaZ(v)/r, (49)
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where, definingq=p— v,

4
Af(v) = 72(a—2n-2)(g - 2n - 4)[(n + 1)rn — n1]

+(2n — r,)(49g — 4 — 2v + Trp, — 10n)

+%‘[(2n - r,)(—2g — 87, + 20n) + 2¢* — 8ng — 12¢ + 8n? + 48n + 16]

2
T‘n
+v—2[(2n — 1,)(3r, — 8 — 10n) + ¢* + 4ng — 8n? — 20n — 12]. (50)
In the special case when n = (p— 2 — v)/2, we have (letting A%(v) denote AF(v))

A;(v) = (2n-rp)[12n — 7(2n — 1) + 4 — 2v]
+%"[(2n — 1)(8(2n — 14) — 4) + 24n]

+g—‘-[(2n —1p)(—8 — 4n — 3(2n — r,)) + 4n? — 4n - 8]. (51)
Proof. Using integration by parts and Lemma A.3, calculation yields

AR(v) = do + dyu + dau? + d3u® + dgut, (52)
where u = r,, /v,

do = 8ng-—-20n%-8n— 4nv - f%f(q - 2n — 4),
dy = 2¢*-12ng—12¢+ 48n% + 48n + 16 — 4qv + 24nv + 4v + 202
+ &t 1)(g-2n-9)
d; = ¢*+4ng—28n% - 36n — 12+ 2qv — 36nv — Tv?,
d3 = 16nv+ 8v+ 8032,
dg = —3v (53)

Reorganization of (52) yields (50). When n = (p— 2 — 7)/2, (50) reduces to (51), completing the
proof of Lemma A.4. O
Proof of Theorem 3.1 When n=(p—2—1v)/2:

Using Lemma A.4, it is clear that Theorem 3.1 will be established in this case if we show that
A% (v) > 0. This will be established in a series of lemmas covering the various possible situations.

For convenience define

a, = sup{2<y<6:6— —227-1-(212 —ra(ny)) >y}, forn>2; (54)
an(y) = ra(ny)/ny, for y>0; (55)
An(y) = (2n-ru(ny))/n, fory>o0. (56)
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Lemma A.5  For a fized y > 0, a, is increasing in n, an(y) is increasing in n, and An(y) is

decreasing in n. For alla > 0 and v > an, 2n — r,(v) < Ap(a)n.
Proof. By (4.6) and (4.7) in Berger (1980) we have
‘ . .
_2 o~ T(n+ 1) gy -
an(y) = ;{1 - (g m(i)) }, (57)

which is increasing in n for a fixed y, since

I‘Izszn:-ll-)i-n:) = (n Z— i) (n +7:-— 1) o (n: 1) (58)

is increasing in n. Therefore,

6~ 5e(2n = ru(ny) = 6~ 7(1 - La(y)) (59)

is increasing in 7, a, is increasing in n, and A,(y) = 2 - yan(y) is decreasing in n. Therefore, for
v > an,

2n — ro(v) £ 21 — r(an) < An(a)n. (60)

Thus, the lemma is proved. O
Lemma A.8 Forn > 1/2 and for all v > 0, A%(v) > 0.

Proof. We consider the cases 1/2<n<2,2<n<6andn>6 separately. For each case, we
prove this lemma for v < 27,2n < v < apn and v > a, separately.
Suppose 2 < n < 6. By calculating directly, we obtain 5.577 < a2 < 5.578. Taking a = 5.577
as a bound,
A2(a) < Ag(ag) = -3—(6 — a3) < 0.1209, (61)

By Lemma A.5, for any n > 2, and for v > an,
2n — rq(v) < An(a)n < Az(a). - (62)
From the definition of a,, and (2) of Lemma A.2, we have for v > ann,
12n — 7(2n - ry(v)) > 120 - 7(2n — r4(ann)) = 2ap,n. (63)

From Lemma A.5, for n > 2,

a, > a; > a. (64)
~ By (63) and (64), we have for v > an,
12n — 7(2n — r,(v)) > 2an. (65)
18



From (51) and the facts that r,(v)/v < 1, 4n?2 — 4n — 8 > 0, and, for v > an,

20~ 1a(0) < An(a) and T < IO _ o () < afa) < a(2), (66)
it follows that, for v > an,
. dnrq(v) _
AL (v) 2 2(2n — rq(v))(an+ 2 - v) + ——-1-]———(6 — Az(a) — (n + 2)ae(2)Az(a)). (67)
Let M = 6 — Az(a) — 8ag(2)A2(a). Then, by (61) and ag(2) = 0.7102 we obtain
M > 6 - 0.1209(1 + 8(0.7102)) = 5.1922. (68)

Hence, if an < v < an + 2, then A%(v) > 0 for 2 < n < 6. Now we only need to consider the case
of v > an + 2. Since r,(v) > 2n — Az(a)n, we havefor v > an+2and for2< n < 6,

AX(v) 2 220 — ra())(an +2 - 9) + = Mn?(2 ~ Ao(a). (69)
Let y = v/n. Then, for2 < n <6,
AL(v) > 220~ ra(ny))(a+ 3~ 9)n + %Mn(z ~ A5(a)). (10)

Note that
A

- 1 -
o2l - ([at e dngant < n(1- Byrep-BY),
2 0 2 n 2
where 8 = 2[1 - 2/(a+ 1)]. Thus, in order to prove that A%(v) > 0, it is sufficient to show that
1 1
wy-a-Den(-5) < 2a - Ly - m)m, (72)

since (1— g)'" is decreasing in n for fixed . The function y(y—a—1) exp(- @21) has the maximum
value of 0.0845847 at

y= 213. {g-(a +3)+2+ \/ E;—(a +3)+ 4} = 7.7858997. (73)
From (61) and (68), we have
0.186215 < %(1 - g-)2(2 — Az(a))M. (74)

Thus, for 2 < n < 6 and for v > an , A%(v) > 0 holds.

In the other cases, the proof is similar. See Lu and Berger (1986) for details. O.
Proof of Theorem 3.1 When n < (p—2-9)/2:

Using Lemma A.4, it is clear that Theorem 3.1 will be established if we show that AZ(v) > 0.
This is shown to be true in Lemma A.7; here m = p — 2n — 2 — 7. We freely use the previous

lemmas showing that A%(v) > 0.
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Lemma A.7 Form > 0, for n > 1/2, and for all v > 0, AZ(v) > 0.

Proof.  We consider the cases m > 2 and m < 2 separately. When m > 2, from (52) and (51)

calculation gives
AP(y) = A:(v) + ;4-2-m(m = 2)(n+ )ra(v) — -:t—m(m - 2)n
+4m(2n — rp(v)) + 1'-‘;‘(’-’Q[—-2m(2n = ra(v)) + 2m(m - 2)]

2
+ I-’-‘—f;—;i)—-(mz + 8nm + 4m)

2m(m — 2){2(n + 1)ra(v)
v v

> Ayv)+ + ra(v) - 2n]. (75)

Since A} (v) > 0, in order to prove that A2(v) > 0, we only need to show that

2(n + 1)ra(v)

" +ra(v) - 20 > 0. (76)
This is equivalent to
v 1 -
Ga(v) > m + pou (77)
where
Gn(v) = 2 —/IA“”lex (I_Av)dA (78)
)= = h p(—5—v)dX.
Since, for k =1, 2, .
9 1 n—-1 1-2A k 1-2A g
—_— = - — 9
S-Gn(?) /0 A=Y (25 20)k exp(—5)a), (79)
and
Ga(0)= %, G'(0)= — (80)
" n’ " 2n(n + 1)’

equation (77) holds. In the other cases, the proof is similar. See Lu and Berger (1986) for details.

This proves the lemma. O o
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