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ABSTRACT

We study an inhomogenéous branching Brownian motion in which individual parti-
cles execute standard Brownian movements and reproduce at rates depending on their
locations. The rate of reproduction for a particle located at = is §(z) = b + Bo(z), where
Bo(z) is a nonnegative, continuous, integra,blé function. Let M(t) be the position of the
rightmost particle at time ¢; then as ¢ — oo, M(t) — med (M(t)) converges in law to a
location mixture of extreme value distributions. We determine med (M(t)) to within a
constant + o(1). The rate at which med (M (¢)) — oo depends on the largest eigenvalue X

of a differential operator involving B(z); the cases A < 2,A = 2, and A > 2 are qualitatively

different.
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1. Statement of Principal Results

An inhomogeneous branching Brownian motion (IBBM) is a branching process in
which individual particles execute independent Brownian motions and undergo binary
fission at a rate §(z) depending on the spatial position z. At time ¢ = O there is a single
particle located at z = 0. In [6] (cf. also [4]) we showed that if 8 is continuous and
JZo.B(z)dz < oo then the distribution of M(t), the position of the rightmost particle
at time ¢, approaches a travelling wave as ¢t — oco. In this paper we consider the case
B(z) = b+ Bo(z), where b > 0, fo(z) > 0, Bo is continuous, and [*°_fo(z)dz < co.

The asymptotic behavior of the distribution of M(t) depends on B(z) primarily
through the largest eigenvalue A and corresponding L2-eigenfunction ©(z) (normalized
so that ©(0) = 1) of the differential operator g(z) — 1¢"(z) + b~ '8(z/Vb)g(z). Since
b=18(z/vb) > 1 and [%_Bo(z)dz < 00, A > 1; also p(z) > 0 everywhere (cf. [3], Ch. 9).
Set u = A{2(A — 1)} 3.

THEOREM: If A > 2 there exists a cumulative distribution function F(z) such that as
t — oo

P{M(t) < Vbut + z} — F(z) (1.1)

for all z € R. If A = 2 there exists a c.d.f. F(z) such that as t — oo
P{M(t) < Vb (ﬁt (L )10g t> + 2} — F() (1.2)
2v2
for all z € R. If X < 2 there exists a c.d.f. F(z) such that
P{M(t) < Vb (\/Et — (3/2v/2) log t) + 2} = F(q) (L.3)

for all z € R.



This result should be compared with the corresponding result for homogeneous (8 = 1)
branching Brownian motion (YBBM). For this process it is known (cf. [8], also [1]) that
the distribution of the position of the rightmost particle at time ¢ approaches a travelling
wave, and the median m; satisfies m; = /2t — (3/2v/2) logt + constant + o(1) as t — oo.
Comparing (1.1)-(1.3) when b = 1, one sees that if A > 2 the right edge travels much
faster than for BBM, if A = 2 the right edge travels a little faster, and if A < 2 it travels
at essentially the same rate. Thus there is a “threshold” effect: when the enhancement
Bo(z) of the base reproductive rate 1 becomes sufficiently “large” that the eigenvalue A
crosses from A < 2 to A > 2, suddenly the production of extra particles allows the process
to outrun the homogeneous BBM.

We shall refer to the different cases A > 2, A = 2, and A < 2 as the supercritical, crit-
ical, and subcritical cases, respectively. We shall assume throughout the rest of the paper
that b = 1; the general case may be recovered by rescaling time and space. Furthermore,
we shall only consider the special case where 8y(z) has compact support: the general case
may be obtained by a modification of the argument similar to that in sections 6-7 of [6].
For our analysis of the critical case we shall borrow some delicate estimates from Bramson
[2]. For the subcritical and supercritical cases, .however, no such heavy machinery will be

needed.

2. The Basic Argument for the Critical and Supercritical Cases

Consider an IBBM with branching rate function 8(z) = 1 + fo(x), where §o is con-
tinuous, has compact support, fo > 0, and fo(z) > O somewhere. Using an auxiliary
randomization, classify the particles of the IBBM as “blue” or “red” as follows: if a parti-
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cle is born at postion z, label it blue with probability 8o(z)/8(z) and red with probability
1/B(z). The original particle, which is born at z = 0, ¢ = 0, is labelled blue. Observe that
all blue particles other than the original are born in the (compact) support of Go.
Clearly, each particle (blue or red) produces red descendants at constant rate 1. Thus,
for each blue particle, the movements and reproductive histories of itself and its direct red
descendants(i.e., those without an intermediate blue parent) constitute a homogeneous
BBM (constant birth rate 1). Thus, the IBBM is the superposition of a sequence of
homogeneous BBMs. If M;(t) is the position of the rightmost particle among the 7th blue

particle and its direct red descendants, then
M(t) = max (My(t), M3(t),..., My, (t))
where Np(t) is the number of blue particles born by time ¢.
The process of blue particle births looks approximately like an inhomogeneous, doubly

stochastic Poisson process for large t. This follows from a theorem of Watanabe [9], which

implies that for each bounded interval J
lim N(t;.f)/e” = Z/ p(z)dz a.s. (2.1)
t—o0 JJ

Here N(t;J) is the number of IBBM particles in J at time ¢, A > 1 (since Fo(z) > 0

somewhere) is the leading eigenvalue of the differential opera,tqr g— %g" + Bg, ©(z) the

corresponding L2-eigenfunction such that ¢ (0) = 1, and

Z = tlEIolo e~ /R p(z)N(t;dz) >0 as.
Because of (2.1) and the continuity of fo and ¢, blue particles are born in dz at rate
(approximately)

ZerBy(z)p(z)dz
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for large ¢. Therefore, conditionally on the value of Z, the process of blue particle births is
approximately an inhomogeneous Poisson process. It also follows that the number Ng (¢)

of blue particles born by time ¢ grows like ZA~1e* [ g, (z)p(z)dz.

Consider now a process in which blue particles are born in spacetime at rate
ze)‘tﬂo(:c)tp(:z:)dmdt (t >0),

where z > 0 is a constant, and each blue particle gives rise to a homogeneous BBM
of red particles started at the birthplace (in spacetime) of the blue particle. Call this
process a “Poisson wave” of BBMs. Observe that the process of blue particle births is
an inhomogeneous Poisson process. The evolutions of the various BBMs in the wave are
independent of each other and of the blue particle birth process. Let M (t) be the position
at time ¢ of the rightmost descendant of the i*» blue particle, N3 (¢) the number of blue
particles born by time ¢, and M*(t) = max (Mi“(t),...,Ml"{,;(t) (t)) For each t > 0
the positions M (t), M3 (%),...,M N2 () (t) constitute a Poisson point process on R with

intensity measure
t
z{/ / ekaﬂo(z)go(z)v(t — 8,y — z)dzds }dy
0 JR
where

o(t,z) = —%u(t, 2)

and 1 — u(t,z) is the cumulative distribution function of the position of the rightmost

particle in a homogeneous BBM at time ¢t. Thus

P{M*(t) <y} = exp{ - z/o /Ref\"ﬂo(:v)@(z)u(t —- 8,y — :c)da:ds}. (2.2)
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In Proposition 2 (sec. 3) we will prove that if A > 2 (the supercritical case) and

p=A{2A- 1)}—’1" then

, |
lim / / €**Bo(z)p()u(t — s, 4t + y — z)dzds = Kye V21
o JR

t—co

for a certain constant 0 < K; < co. Consequently,
Jim P{M*(t) < pt + y} = exp{—zK1e”V2011}, (2.3)
In Proposition 3 (sec. 3) we will prove that if A = 2 (the critical case) then
t
7tlirélo/ / e2*Bo(z)p(z)u(t — s, z: + y — x)dzds = Koe V¥ (2.4)
—®Jo JR

where z; — m; — oo as t — 00, m; being the median of the distribution of the rightmost

particle in a homogeneous BBM. Hence
tlirglo P{M*(t) <zt +y}= exp{—zKoe—ﬁy}. (2.5)

Observe that in both the supercritical and the critical case the “center” of the wave
(ut in the supercritical case, z; in the critical case) diverges to oo faster than m;. This

implies in both cases, for any t. < oo,

tlim P{leading particle at time ¢ is a direct descendant of a
->00

blue particle born before time ¢,} =0, (2.6)

because with probability 1 only finitely many blue particles are born before ¢,. But this is
true also of the IBBM, and we have already remarked that for large time the production
of blue particles in the IBBM, conditional on Z, is nearly the same as in the Poisson wave
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of BBMs. Consequently (2.6) must hold for the IBBM as well. Now (2.6) implies that for
large ¢ the distribution of M (t) is practically unaffected by the blue particles born before
t.; therefore, conditional on Z = z the distribution of M (t) is essentially the same as that

of M*(t). It follows from (2.3) and (2.5) that

tlir{}o P{M(t) < pt+y} = Eexp{—ZK;e VIA-1¥} (A > 2) (2.7)
and
tlirgo P{M(t) <z;+y}= Eexp{—ZKoe"ﬁy} (A=2). (2.8)

A rigorous proof of (2.7) and (2.8) may be fashioneci from this argument by coupling
the IBBM with Poisson waves of BBMs as in [6], sec. 5. (In this coupling, blue particles
from the IBBM are paired with blue particles from the Poisson wave; once two blue particles
are paired, they give rise to the same BBM of red descendants.) We shall not give the
details of the construction.

In the subcritical case (2.6) does not hold, so the distribution of M(t) cannot be
approximated by mixing distributions of M*(t). For this case a different approach is

needed: cf. sec. 4.

3. Asymptotics for the Critical and Supercritical Cases
The cumulative distribution function 1—u(t, z) of the position of the rightmost particle

in a homogeneous (§ = 1) BBM solves the KPP /Fisher equation

1
Ut = SUsz + u(l —u)

with the initial condition u(0,z) = 1{z < 0} (cf. [8], [1]). It is known that u(t,z)
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approaches a travelling wave with velocity v/2: in particular
u(t,m; +z) > w(z) as t— oo, ' (3.1)

where u(t,m;) = 3, m; = V2t — (3/2y/2) logt + constant + o(1) as ¢ — oo, and w(z) ~

Cze V2 as £ — 00 [2]. Moreover, the Feynman-Kac formula implies that
t
u(t,7) = ' E* exp{— / u(t — 5, X(s))ds}1{X(2) < 0} (3.2)
0

where X(s) is a Brownian motion started at = under E* [8],[2]. Conditioning on X () and

reversing time, we may rewrite (3.2) as

0
Hult,o)= [ alt, oot v.a)dy (3:3)

—00

where :

p(t, z,y) =(27t) "7~ (F-¥)7/2t

g9(t,y,z) =E*¥" exp{— /Ot u(s, X(s))ds} (3.4)

and under E%¥* X(s), 0 < s < t is a Brownian motion conditioned by X(0) = y, X(t) = z.
PROPOSITION 1: For each u > /2 and t > 0

u(t, ut) < p~1(27t) % exp{—t(u?/2 — 1)}. (3.5)

Furthermore, there exist constants C,, depending continuously on u € (v/2, 00) such that

u(t, pt) ~ Cut ™% exp{—t(u?/2 — 1)} (3.6)

as t — oo, uniformly for p in any compact subset of (\/5, 00).
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This is a large deviations theorem for the rightmost particle in a homogeneous BBM.
Similar results may be obtained for solutions of u; = %uu + f(u) for certain f by similar

methods.
PROOF: Since u > 0, (3.2) implies that
u(t,tp) < e PP{X(t) < 0},

from which (3.5) follows easily.

Let X(s), 0 < s < t, be a Brownian motion conditioned b&' X(0) =y, X(t) = ut. If
1 > +/2 and s, is large then with probability near 1 the path X(s), so < s < t lies entirely
above the straight line from (0,0) to (¢,(v2 + €)t), € < 4 — v/2. Relation (3.5) therefore

implies that for sufficiently large sq

8
< Et¥:kt exp{ fo: u(s,X(s))ds} <14n
Etyrt exp{— [, u(s,X(s))ds}
where 7 is small and ¢ > so.
As t — oo the distribution of X(s), 0 < s < s¢ conditional on X(0) =y, X (t) = ut

approaches that of a Brownian motion started at y with drift 4. Hence

89
lim Et'y""texp{—/ u(s, X(s))ds}
0

t—o0

80
=EY exp{—'/0 u(s, X(s))ds},
where under EY, X (s) is a Brownian motion started at y with drift g. Once again, if
¢ > /2 and sq is large then with P}Y-probability near 1 the path X(s), sop < s < oo lies
entirely above the line z = (v/2 + ¢)s. In view of (3.5),

EY exp{— [;° u(s, X(s))ds}
- EY exp{—f0°° u(s,X(s))ds} sl+n

9




Letting so — oo (and therefore 7 — 0) we obtain

t
tlim EbYibt exp{— / u(s, X(s))ds}

=E} exp{— /Ooou(s,X(s))ds} > 0.

A routine argument based on likelihood ratios shows that this holds uniformly for y in any
compact subset of (—~00,00) and x in any compact subset of (1/2,00).

We now apply (3.3), expanding the exponent in p(t,y, ut) , to obtain

V2t e_t+“2t/2u(t, ut)

0 t
= / eﬂy—y2/2tEt,ys#t exp{— / u(s, X(s))ds}dy
0 /

— 00

0 oo
— / e’V EY exp{— / u (s, X(s)) ds}dy.
—o0 0
This implies (3.6). g
‘Recall that for a Poisson wave of BBMs the distribution of the position of the rightmost

particle at time ¢ is given by (2.2). The following result shows that this distribution

converges to a travelling wave in the supercritical case.
PROPOSITION 2: Assume X > 2; let p = A{2(A —1}~%. As t — oo,

¢
/ / e** Bo(z)p(z)u(t — s, ut + y — z)dzds
o JR
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where

K1 = Cour—nya (r/(A - 1)) * /Rﬂo(w)so(z)emzdz,
uniformly for y in any compact subset of R.
PROOF: Consider the function
h(Zd) =(A-1)5-p?/2(1-3), 0<3<1.
The maximum of h on [0,1] is attained at 3, = (A — 2)/2(A — 1) > 0, and
h(3.) = —1,h'(3.) = 0,h"(3.) = —4(A — 1)%/A.

The relation (3.6) implies that for 0 < s < (1 —¢€)t, any € > 0,as t — oo

e*ult — s, ut) ~ w(1—s/t)-1(t — s) % exp{As+ (t — s) — B2t /2(t — )}

=Cpu1-3)—1 (1- §)—%t_% exp{t(l{ + h(?))},

where § = s/t. Similarly, (3.5) implies that for (1 —¢)t < s <t
ult —s,ut) <p (1 - E)_';'t_% exp{t(1 + A(3))}.

Therefore,
t . [Fa+6 . _
/ e*u(t — s, ut)ds ~ tz / Cuii—s)-1(1— 35) 2t (1RG5
0 S.—6

Su—

~ Cy(1-3.)-1 (1 —5.) 73 (— 21/h"(3.)) ®

=

= Coup-1yr (r/(A - 1))
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by Laplace’s method of asymptotic expansion. A similar but somewhat messier analysis

shows that
t 1
/(; e,\su(t — s, ut + z)ds ~ Czu()\—1)/,\ (ﬂ./()‘ — 1)) Ze—v2(A-1)z

uniformly for z in any compact set. Since 8o(z) has compact support, (3.7) follows directly.

|

The result (3.5) implies that there is a solution z; of the equation

¢
/ e**u(t — s, z;)ds = l (3.9)
o 2

LEMMA 1: lim;_, oo u(t, z:) = 0.

PROOF: Suppose u(t,z;) > € for arbitrarily large ¢. Since w(z) ~ Cze V2% a5
T — 00, (3.1) would imply that u(t—s, z;) > ee~2%/2 for Cp < s < Cy(t), with C; (¢) — o0

as t — oo. But this contradicts (39) m|

Lemma 1 implies that z; — m; — oo as t — co. An easy calculation based on (3.5)

shows that limsup;_, ., z:/t < v/2; since m;/t — /2, it follows that z;/t — /2.

PROPOSITION 3: Ast — oo

1 .
T —my = 7_-2- logt + constant +0(1) and (3.10)
t .
1
/ e*u(t — s,z + z)ds — Ee_ﬁ” (3.11)
0

uniformly for = in any compact subset of R.
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Since fo has compact support, (2.4) follows from (3.11), and we get that the distri-
bution of the position of the rightmost particle in a Poisson wave of BBMs approaches a

travelling wave as ¢t — oo in the critical case A = 2.

PROOF: First we show that the primary contribution to the integral in (3.11) comes from
0 < s < K+/%, where K is large. For z > v/2t, (3.5) implies that u(t,z) < (47rt)_% exp{t —
22[2t}. Let ys = my + (1/4/2) logt; recall that m; = /2t — (3/2v/2) logt. Hence, for large

t and all z in a bounded set

t ‘
/ e**u(t — s,y; + z)ds
K%

o 1 2 o0 2
< C/ t—ze % /tgs = C’/ e % ds
K\VE K

for some constant C' < oo. By choosing K sufficiently large we can make this arbitrarily
small.

Next we appeal to results of Bramson [2] to analyze ez"u(t—s, yi+z)for0<s< K V.
It follows from (8.64) and (8.65) of [2] that for r >> 0, r/t < 6, and m; + 8r < z <

V2t + K/,

B(8)~11(r) "1C(r)(z — my) exp{—V3(z — ms) — (= — VE)?/26}
< u(t, z)

< B(§)7(r)C(r) (2 — ms) exp{~V2(z — my) — (2 — V2t)*/2t}

where C(r) = \/Z/wf;o yeﬁyu(r,y + v2r)dy < oo and B(6) — 1, ~(r) = 1as 6§ — 0,
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r — oo. Consequently, as t — oo

KV
/ e**u(t — s,y + z)ds
0

K\/E —( +z—\/§(t—o))2
~ Cope™ V2 e —me+2) / (vt — ms + =+ V2s)e B ds
0

K
~ C’ooe_ﬁ"’t_l(t/ V2s'e= 'V dg"),
0

where Co, = lim,_,o, C(r) € (0,00). The relations (3.10) and (3.11) now follow directly,
with the fact that the constant coefficient in (3.11) is 1/2 following from the definition of

z; in (3.9). O

4. The Subcritical Case
Consider now the subcritical case A < 2. As in the critical and supercritical cases
we assume that the branching rate function f(z) = 1 + fBo(z), where Bo(z) > 0, Bo(z) >
0 somewhere, and By has support in a bounded interval J*. Since 8 > 1 the rate of
production of new particles in the IBBM is > that for a homogeneous (8 = 1) BBM.

Consequently, if M(t) is the position of the rightmost particle in the IBBM
P{M(t) > z} > u(t,z) Vi>0, z€R, (4.1)

and therefore the distribution of M(t) “travels” at least as fast as the travelling wave for
the BBM.

Recall the classification of IBBM particles as “red” or “blue” ( sec. 2). For a given
blue particle call a red descendant a direct descendant if there are no intermediate blue
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descendants. Recall that the direct descendants of a blue particle constitute a homogeneous

BBM.

PROPOSITION 4: For any € > 0 there exists t. < co such that for allt > 0
P{ rightmost particle at time t is descended from a blue

particle born after time t.} < e.

PROOF: Watanabe’s theorem ( cf. (2.1)) implies that N(¢,J*) ~ C'Ze*:. Blue
particles are only born in J*, and the intensity of the blue particle birth process is
J Bo(z)N(t,dz). Consequently, there is a constant C” < oo and a time s < oo such

that
P{# blue births during [s + j,s + j + 1] < C"e*(*+)Vvj =0,1,2,...} > 1 —¢/3.. (4.2)

Consider now a blue particle born at time r > 0. The position at birth is in J*,
hence to the left of Eé sup J*. The direct descendants make up a homogeneous BBM;
the probability that the position of the rightmost direct descendant is > z at time ¢ > r
is < u(t — r,z — €). It therefore follows from (4.2) that if M, (¢) is the position of the

rightmost particle at time ¢ descended from a blue particle born after time 7 > s then

P{M,(t) >z} <e/3+ /t C"erMu(t —r,x — €)dr. - (4.3)

.
Recall that u(t,m; + z) — w(z) as t — oo, w(0) = 1, w(z) ~ Cze V?® as z — oo,
and my = /2t — (3/2v/2) logt + constant + o(1) as t — oco. In fact, somewhat more is

true:
u(t,ms + z) T w(z) forz >0, (4.4)

u(t,m:+1z) w(z) forz<O (4.5)
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(cf. [2], p. 32, Cor. 1). Choose z so that w(z) > 1 — ¢/3; then (4.5) implies that

u(t,m;+z) >1—¢/3 Vt>O0 and (4.1) implies that
P{M(t) > m:+z} >1—¢/3.

Now consider f: C’"e'\"u(t —r,ms+z — £)dr. If t is sufficiently large then for 0 < r <

Vtlogt, mi = my_, + /2r + o(1), so by choosing ¢, large we can make ( by (4.4))

Vilogt
/ C"erru(t —r,my + z — €)dr
t

\/Elogt
< / O™z — £+ V2r)e VErdr
te

<e/6,

since A < 2. On the other hand, the inequality (3.5) implies that as t — oo

t
/ e u(t —r,my +z — £)dr — 0.
Vilogt

Hence, for t. sufficiently large
P{M,(t) > m:+ z} < 2¢/3

and

P{M(t)>m;+z}>1—¢/3

for all ¢ > t.. This proves the Proposition. O

Consider a branching diffusion process that evolves as follows. Until time ¢, the
movements and fissions occuf in exactly the same manner as in the IBBM; after time
te individual particles move and reproduce as in homogeneous BBM. Thus in the new
process individual particles execute independent Brownian motions; before time ¢. the
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instantaneous rate of reproduction of a particle located at z is f(z), whereas after time ¢,
the reproduction rate of any particle is 1. Let X; (t),ffz ®,..., X #(2) (t) be the positions
of the particles in this new process at time ¢, and let M (t) = max, ;. ) X; (?).

The conditional distribution of M (t), t > t, given the positions X; (te)s-- s #(t.) (te)

is as follows: . . .
P{M(t) < z|X;(t.),... Xﬁ(t,)(te)}

=1y (1 —u(t —te,z — )"(,-(te)))
Now as t — oo, u(t —t., ms + z) — w(z + 1/2t.); consequently, as ¢ — oo

P{M(t) < my + z} — ETIN () (1-w(z - Xifte) + V2t.)). (4.6)

Thus the distribution of M (t) approaches a travelling wave, and the “location” m; of the
wave is the same as for homogeneous BBM.
Now consider the IBBM. By Proposition 4 the distribution of M(t) is very little

different from that of M(t), in particular,
P{M(t) > z} < P{M(t) > z}
< P{M(t)_ >z}+e V. (4.7)
Moreover, the distribution of | (X1(te)se..r X N(t,)(te)) is the same as that of

(Xl (te),..., X ﬁ(t,)(te))= because the two processes evolve the same way up to time ¢..

Now (4.6) and (4.7) imply that for each z € R
o(z) = lim BIYY) (1 - w(e — Xi(te) + VEte) ) > 0 (4.8)

exists, and
Jlim P{M(t) < m; + z} = v(z).
—00
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REMARK: The convergence in (4.8) follows on other grounds. For homogeneous BBM

the process Hﬂ:) (1 —w(z — X;(t) + \/ft)) is a bounded, positive martingale (cf. [5]).

Because of the occasional production of “blue” particles and the fact that 0 <1 —w < 1,

for the IBBM, ]'[fi (f) (1 — w(:z: - X;(t) + \/ft)) is a supermartingale. Hence (4.8). Observe

that in the subcritical case this supermartingale has a strictly positive limit, whereas in

the critical and supercritical cases it converges to zero.

(1)

(2)

5. Concluding Remarks
The methods of this paper can be adapted to show that M(t)/t — u a. s. in the
supercritical case and M(t)/t — /2 a. s. in the critical and subcritical cases.
We have assumed throughout that the IBBM starts with a single particle located at
z = 0 at time ¢ = 0. Replacing 8(z) by B(z — 7o), we see that our results are also
valid for an IBBM started with a single particle at z, at time ¢ = 0. However, the

shape of the limiting wave-form changes with zo. In a subsequent paper [7] we shall

investigate the dependence on initial conditions in a more general framework.

It is natural to inquire about the ppssibility of characterizing those continuoﬁs func-
tions B(z) such that an IBBM run with branching rate 8(z) will exhibit the travelling
wave effect. We believe that if lim, o, 8(z) and lim,_, ., B(z) exist and are finite
then the travelling wave phenomenon should occur. It seems unlikely that this is a
necessary condition, though. We conjecture that a sufficient condition for the exis-

tence of a travelling wave is that for every € > 0, limz—, o0 [, he B(y)dy exists and is

z
finite, limsup,_,,, z ™! ffz B(y)dy < co. We have been able to prove that if 8(z) — oo
as £ — oo then there can be no travelling wave.
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(4) Burgess Davis asked us about the “genealogy” of the rightmost particle at time ¢. Our
methods lead to the following picture. In the supercritical case, the rightmost particle
at time ¢ (¢ large) is descended from a particle located at distance 0(1) away from the
origin at time {(A — 2)/2(X — 1)}t + 0(+/Zlogt), but has no ancestors that were 0(1)
away from the origin at any time after {(A —2)/2(A — 1)}¢ +¢2*°. In the critical and
subcritical cases, the rightmost particle at time ¢ has no ancestors that were within

0(1) of the origin after time ¢3¢,

Acknowledgement. We thank Prof. Maury Bramson for showing us how to obtain

(3.10).

19



References

[1]] BRAMSON, M. (1978). Maximal displacement of branching Brownian motion.
‘Comm. Pure Appl. Math. 31, 531-581.

[2] BRAMSON, M. (1983). Convergence of solutions of the Kolmogorov equation to
traveliling waves. Mem. A.M.S. 44, #285.

[3] CODDINGTON, E., and LEVINSON, N. (1955). Theory of Ordinary Differential
Equations. New York: McGraw-Hill.

[4] ERICKSON, K. (1984). Rate of expansion of an inhomogeneous branching process of
Brownian particles. Z. Warsch. 66, 129-140.

[5] LALLEY, S. AND SELLKE, T. (1987). A conditional limit theorem for the frontier
of a branching Brownian motion. Ann. Prob. 15, in press.

[6] LALLEY, S. and SELLKE, T. (1986). Travelling waves in inhomogeneous branching
Brownian motions I. To appear in Ann. Prob.

[7] LALLEY, 8. and SELLKE, T. (1988). Forthcoming manuscript on branching diffusion
processes.

[8] McKEAN, H. (1975). Application of Brownian motion to the equation of
Kolmogorov-Petrovskii-Piscounov. Comm. Pure Appl. Math. 28, 323-331.

[9] WATANABE, S. (1967). Limit theorem for a class of branching processes. Markov

Processes and Potential Theory, J. Chover, ed. New York: Wiley.

Department of Statistics
Purdue University
West Lafayette, Indiana 47907

20 i



