. Distributions of Quadratic Forms

Mary Ellen Bock* and Herbert Solonion_**
Purdue University Stanford University

Technical Report #87-12

Department of Statistics
Purdue University

September 1987

*This author’s research is supported by NSF Grant Nos. RII-8310334 and DMS-8702620.
**This author’s research is supported by ONR Contract N000-14-86-K-0156.



SUMMARY

Exact expressions for the distribution function of a random variable of the form

c1x2, + eax2

are given where x2, and x2 are independent chi-square random variables with m and
n degrees of freedom respectively. (The positive ¢; are distinct). In particular, the ex-
act asymptotic distribution function for the average Kendall tau statistic is written as
a function of tables of Solomon (1960) and some found in Abramowitz and Stegun’s

Handbook of Mathematical Functions.




Section 1. Intrdduction

For independent chi-squared variables x2, and x2, with m and n degrees of freedom,

respectively, we consider the quadratic form

Q = c1x2, + cax?

where the positive ¢; are distinct. (We distinguish between variables with the same degrees

of freedom by writing (Vx2, and (y2)

This paper gives exact finite expressions for the distribution of Q in terms of available
functions such as the distribution function of chi-squared random variables, modified Bessel
Functions, Dawson’s integral (tabled in Abramowitz and Stegun (1964)) as well as the
distribution of ¢; (M} + ¢2(Px? (tabled in Solomon (1960)). These formulas are useful for
checking the accuracy of approximations and tables of the distribution of Q and provide a

simple alternative in their absence.

For large m and n, reasonable approximations to the distribution of Q are available.
For the general quadratic form Williams (1984) compares algorithms for truncations of
infinite series expansions of the distribution. (See Johnson and Kotz (1970).) Oman and
Zacks (1981) give a mixture approximation and Davies (1980) provides an algorithm for
an approximation. For small values of m and n, tables for the distribution of Q are given
by Harter (1960), Johnson and Kotz (1967), Marsaglia (1960), Owen (1962), and Solomon
(1960).

Distributions of the form @ arise in a number of applications. Solomon (1961) noted
that probabilities of hitting targets frequently reduce to the distribution of quadratic forms
of the type @. Pillai and Young (1973) show that the trace of a 2-dimensional Wishart
matrix is distributed as @ with m and n equal. The variable Q'% arises in the engineering
literature described as a weighted unbiased Rayleigh variate of dimension two. (See Miller
(1975)). A very important application is the distribution of chi-squared goodness-of-fit
tests with estimated parameters. Certain two-sample chi-squared tests described by Moore
and Spruill (1975) have asymptotic distributions of the form Q. Alvo, Cabillo and Fiegen
(1982) show this for the average Kendall tau statistic. The distribution of @ for small m
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and n for the average Kendall tau statistic is provided as an example in Section 3.

The exact expressions for the distribution of Q may also be useful for approximations
for more general quadratic forms, especially in the case where there are essentially two
groups of coefficients nearly alike within groups, i.e. the distribution of Q is an approxi-

mation for the distribution of
m+tn

Q' = Z a; 9y} -
' 1=1

where a1 ~ ¢1,i=1,...,mand a; ¥ c2,i =m +1,...,m+ n. The exact expressions for

the distribution function of Q are given in the next section.

Section 2. Exact expressions for the distribution function of a linear combination of

two chi-squared random variables

The results in this section give exact expressions for the distribution function of

Q = c1x2, + eax?t

where the positive ¢; are distinct and x2, and x2 are independent chi-squared random
variables with m and n degrees of freedom respectively. The first theorem handles the
case where at least one of m and n are even. Corollary 2.5 gives an expression for the
distribution of @ in terms of that of a quadratic form with fewer degrees of freedom. This

corollary can be applied repeatedly to give the distribution function of

2 2
C1X2k+1 + €2X22+1

in terms of modified Bessel functions Iy and I; and the distribution function of
Q1 =cVx3+ e$Px?

Tables of the distribution function of Q1 are given by Solomon (1960) and tables of I, and
I, are given in Abramowitz and Stegun (1964). In an example, a representation for the

distribution function of ¢;{(Vx2 + ¢, x2 is given.
The following theorem gives the distribution of Q unless both m and n are odd.
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Theorem 2.1

Let x2, and xg  be independent chi-squared variables with m and 2k degrees of free-
dom, respectively. Then
ag ay

bi = (ao?al)j (la1a—1%|)% ; g;a))'

¥ ay >ag,v;is P [xfn+2j <ay— ao]. If a; < ag, and m is odd,

2 2 .
et B o]
y =0

where

Jcaze ZD( so—ay ) jHimp (Bozas)i+d ()t

K (1™ P ; 21‘(t+§-)

where D(y) is Dawson’s integral tabled in Abramowitz and Stegun (1964).

Remark: Note that the result in the theorem is completely general since we may write
x5, X2
P [61X§k+czxfn >c] = P [Lk_l__m > 1]
ao 0'1

where ag = cc;! and ay = ee3 !,

Proof:
2 2
X2 Xm 2
= 2B S 1| - P >
() =P [ %k 4 Xn sy Pt >
2 1~ Xm
=P[xm<alandx2k> 1}
~B[1( <o) P [ty > —|xm]] .
a1ag
Hence,

ai uﬂ._le—u k—1 (EITF) ( a}1—u
O = [ T | 2 e
0

' 2a1a. du
=0 T

% k-1 ]
7 (zas)

J!

/l(al—u)J F-1 702 g,
0



Equation 3.393, #1, p. 318, of Gradshteyn and Ryzhik implies that the integral above is
a? 2+ B(%3+1)1F1 (B,5+1+2;(ao—ay1)/2) where 1 F; is the confluent hypergeometric

function.

For ao < a1, a theorem of Bock, Judge and Yancey (1984) implies that for odd m,

P(3) e = ao)/21F 1 Fy (51,5 + 1+ 5 (a0 — a1)/2)

(_1)(m_1)/2 j+(m+1)/2 N

= 2)(ao—a1)e ‘P [Xze—1 <a;— ao]
(g +4+1)1

— !m_;‘_ll)!(] + !mT‘Hl — !

£=(m+1)/2 (

Applying these to the integral we have we may write (*) as

it (m.;l-l) _
? Z I(e— %)(aofa,)‘ lp [Xge._1 <a — ao]
(= )5+ T gy

__(m+1
e={mtl)

Interchanging the orders of summation and setting ¢ = £ — _(mT-i-ll above gives (*) as

m k— !m—
af e—;o z:l F(Z + m)(a,o—a1 )H- kZI a <a a ]
1— Qg
INES = N(-2)%F (a1 —a 0)3 i=n ) —3)' Xai4m
Because

k—1 a y
il (le)'7 _ (%0 2
ez . (J_—z)_' = (7) P [X2(k—1.') > ao] ,
j=i
we can substitute this in the last expression for (*) and the theorem is shown for ao < ay
and odd m. A corresponding evaluation of 1 Fy(F,5 + 1+ 3; (a0 — a1)/2) for even m gives

the same result here and the definitions of 4; and 8; complete the proof of the result for
a1 > ag. If a1 < ag, then a theorem of Bock, Judge and Yancey (1984) implies that for
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odd m,

(%)
p—(m—+j—H71F1( J+1+ ,(ao ~a1)/2)
m=1 a —a —j—(m-1)/2
— e(ao ) I‘(J + S)

sl(y — s)!
o5
{ 77(002—01) - ; F(t + %) |

()= ‘“) Z(

Thus

(ag—al)
Z

29—ay )3—_7'-——('"_l

L, (223 TG+ 2 —s)
Z sl(7 — 9)!

8=0

- y — +("‘_‘31 _
2D(1/.‘7_’92—"’L) _-7 azz (alzag)t
/ 1r(a.02—a.1 ) i—o I‘(t + %)
Setting ¢ = j — s and interchanging the order of summation for ¢ and j gives
m—1

() =z (5) % Z: L(i+5)(-1)"

29(\/ ) UNT) (e | 2 ()
{ /W!aoz—aq! ; I‘(t+ %) gz=:1, (] — z)!

The result of the theorem follows because

. m—1
a. —a )_’_ 3

et (%)

W =P [xg(k_i) > ao] .

j=i

The corollary to the next theorem gives a representation for the distribution of @ in
terms of its density.
Theorem 2.2. Let W be a continuous nonnegative random variable and assume x2 has

a central chi-squared (n) distribution independent of W. Let fg, (z) be the density of
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@n =W + cox2 where ¢o > 0. For ¢ > 0, and n > 2,
P [W + cox2 > c] = (2¢0)fq,(c) + P [W + eox2_; > c] .
Ifn=2,

P [W + cox3 > ¢] = (2¢0)fg,(c) + P[W > ¢].

Corollary 2.3. For the quadratic form

Q = e1xZ, + cax2,

we have
P[Q > ] = 2e2fq(c) + P [e1x?, + cax?_y > o]

where fg(z) is the density of Q and x2 = 0.

Proof of Theorem 2.2. Let Q, =W + cox2. Let fg, () be the density of Q,,. Then

fQu(e) = djc_ [P [W +coxZ < c]].

We may write

' ¢/co pnf2—1,—u/2 c—cou
P\W 2 = —_—— d d
[W + cox2 <c] /0 (@27 [/(; Fw] u

c (c_—t)n/2—1 e—1/2(c—t)/co t d
_ % dFy | dt
/0 ¢ T(Z)2/2 Uo W]

where t = ¢ — cou is the change of variable.

Differentiating this last expression and using I for the indicator function implies

e=t)3—2p—(c—t)/2¢co
fanld) = @eo) {1(n29) [ (&) / iFw)d

0 COF(n— on/2—1

P n/2—-1 —(c t)/2co
= 2) [‘/(; dFW] + (_1)/ ( )COF(Z)Zn/2 [/ dFW]dt}

= (2¢0) " {I(n > 3)P[W + cox%_, < ¢] + I(n = 2)P|W < ¢] — P[W + cox2 < ¢]}.
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The following theorem gives the density of Q in terms of a confluent hypergeometric

function.

Theorem 2.4. Let m and n be positive integers and let ¢y, ¢; be positive. Then the density
of

Q = e1x2, + cax2
is

(m+n)/2—1_—y/2¢;
__ e nmin oy
fQ(y) - I‘(m;_n)(zcl)m/z(zcz)n/z 1F1(23 9 y\Cy Cy )2)

for y > 0 where x2, and x2 are independent chi-squared random variables and ; F} is the

confluent hypergeometric function.

Proof. Let W; and W3 be independent random variables such that W, /¢1 has a chi-squared

(m) distribution and W2 /e, has a chi-squared (n) distribution. Then the density of W, is

zm/2—le—z/2c1

hi(z) = F(%)(2c1)m/2

for z > 0.

The density of W, is
Zn/2—1,—z/2¢2

I'(3)(2¢2)"/2

ha(z) =
for z > 0.

Then the density of @ = W, + W, is
y
falv) = [ ha(y - a)ha(a)ds
0

e—Y/2c1 U‘c-;l(y _ z)m/Z—Izn/2-—le—:c/2(c2—1_c;'l‘)]
N (2¢1)™/2(2¢5)"/2T(3)T (%)

The integral in parentheses can be written as

DIt o on o min,
r(m;_n) 141 2! 2




Thus, for y > 0,

foly) = TR (5, B e - DY)
¢ T( %) (261) /2 (2¢7) /2 '

The following is a direct result of Corollary 2.3 and Theorem 2.4.

Corollary 2.5. Let ¢o,¢; and ¢ be positive and assume that chi-squared variables are

independent in the following expressions. Then if m > 2,

Pleox2, + c1x2 > ¢] = P [eox2,_5 +e1x2 > ¢] +

colg e R, P St — )
1tilg, =i\ —¢ )
T(mim) 2 Ny Ty g T
For m = 2,
c
Pleox; +e1xh >¢| =P [Xﬁ > z;] +
(_2_;:_1)71./2

_ nn c, _ -
TErne gy gl -
2

Remark: Repeated applications of Corollary 2.5 enable one to evaluate the distribution of

@ when m and n are odd since

m m+1 Y, (m=1) Yy
1F1(5,m,y)=I‘(T)e§(Z) T Iy (3),

where I (m=iy is the modified Bessel function. (See Equation 13.6.3 of Abramowitz and

Stegun (1964).)

Examples:

(a) For ¢a < ¢y and y = £(c3! — ¢7'!), we have

’ c
Pleix3 +e2x3>¢c]=P [X% > a}
—c 2¢c 1 1
=2 L 1
+eF (=) oy



and c
P[cle + czxi > ¢ = P[x% > c—]+
1
2¢c 1 1
z z){1
24 b+ =

(b) For d; = c/4¢;y1 = 1,2,

c [

e%(

1+y7 1) —
[ +y ]) dcoyt

Pleyx3 + e2x? > ¢ = PlesWx? + e, Dx2 > o]+

Vdidy e~ G+ [[o(dy — dy) + Iy (ds — dy)} .

and
PlesWx +ea®x3 > o] = PlesWx? + e2Dx? > o]+

" ' d+d
o~ sy { ol )+ (G- )}
— G2

For instance with ¢; = .25,¢2 = .75 and ¢ = 1.8, we get after substitution,
P[.25x2% + .75x% > 1.8] = .292.

Furthermore with ¢; = %, co = % and ¢ = 8, we get after substitution

2
P [%mxg + §(2)x§ > 8] — .018318.

Section 3. Example: the average Kendall tau statistic

For the rankings of r objects by n judges, the average Kendall tau statistic, 7, is
the average of Kendall’s rank correlation between each of the (;) pairs of judges. The
null hypothesis is that the r rankings of the jﬁdges are picked at random from a uniform
distribution on the r! possible rankings. As n — oo, the null distribution of

3r(r—1)

is that of
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Q = (T + 1)X3—1 + Xf*,

where 7* is ("') the binomial coefficient. (See Alvo, Cabilio and Fiegin (1982) for this
result and discussion.) The results in this section are derived from the results of Section 2

using algebra.

For r =3,

2 3t
P[4X§+X?>t]=P[x¥>t]+7§esp[x§<z].

For r =14,
P [sWxd + Oxd > ¢| = P [50)xd + @x3 > 4]

a3t t ¢ t

where Iy and I; are modified. Bessel functions tabled in Abramowitz and Stegun (1964),
Tables of P [cl(l) X3+ ea@Py2 > c| are given in Solomon (1960). If tables of non-central
chi-squared distribution functions are available, we may use the exact expression that

follows where A and B are non-centrally parameters:
P[5y} + @y > ]
= P[x3,4 < B] - P[x3 5 < 4]

where

Now for r = 5,

_ 5
+ €77 (.6912 + .1441) P [xg < —] :
11



The asymptotic distribution of 7 is summarized in the table below for small values of

r:
r = number of items @ = asymptotic P[Q >t
ranked distribution of
(n7, +1)3r(=1)
as n — 0o
3 ax3 + X3 P[x} > t]+ Zse 5P [x} < ¥]
4 5 (1)x§ + (2)x§ P[5 (l)xf + (2)x% > t]+ e“'st#{Io(.Zt)
+1.51;(.2t)}
5 6x32 + x2 P[x% > t]+ .1(%)36'?4-
eTT (6912 + .144t) P[x2 < &
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