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1. INTRODUCTION

It is a great pleasure to write a review paper on robust Bayesian analysis for the
occasion of I. J. Good’s 70th birthday conference. Good was the first Bayesian to clearly
make uncertainty in the prior distribution an integral part of his statistical philosophy.
Indeed Good’s descriptions of the robust Bayesian viewpoint, in terms of both philosophy
and practice, have never been improved upon. For this reason, Section 2 is devoted to a

discussion of Good’s view of the subject.

A general review of all the approaches to robust Bayesian analysis was given in Berger
(1984), which also included an extensive bibliography. Thus this paper will concentrate
on reviewing recent activity in the subject, of which there has been an explosion in recent

years. The bulk of this recent work has been concerned with:

(i) Modelling uncertainty in the prior by specifying a class, T', of possible prior distribu-

tions; and
(ii) Determining the range of the posterior quantity of interest as the prior ranges over T'.

This can be thought of as an implementation of the “black box” model for Bayesian
robustness which was introduced by Good (and is discussed in Section 2.2). Section 3
presents a review of this material, comparing the strengths and weaknesses of the various
methodologies that have been proposed, and illustrating the methodologies with numerical

examples.

Section 4 discusses one of the most immediate and important applications of robust
Bayesian methodology, namely the calculation of lower bounds on Bayes factors in hypoth-

esis testing.

The notation that will be used is as follows. The unknown parameter of interest will
be denoted by 8, assumed to lie in the parameter space ©, and the experimental evidence

about @ will be given by the observed likelihood function £(). We will not be considering



frequentist measures of robustness, and hence the dependence of £(f) on the data will be

suppressed.

For a prior distribution =, the posterior distribution of 8 is then given (under mild
conditions) by
7*(d0) = =(d6)£(8)/m,

where m = [ £(0)7(d6). In most of our examples, ® will be Euclidean and 7 will be
assumed to have a density w.r.t. Lebesgue measure. For simplicity in such cases we will

let the prior density be denoted by (8).

Instead of supposing the specification of a single prior 7y, suppose we know only that

mel', a class of distributions on ©. This class could arise in at least two ways:
(i) T could be used to represent uncertainty in the prior elicitation process;

(ii) T could consist of the differing prior distributions of a group of individuals who must

arrive at a joint decision.

In either case, there will be some posterior quantity p(r) of interest (e.g. the posterior
mean, posterior variance, posterior probability of a credible region or hypothesis, or pos-
terior expected loss) and we will seek

p. = inf p(7), Pp = sup p(7).
el

- mel

The hope, of course, is that the range (p,P) (we will often suppress I') is small enough that
the indeterminacy in the prior is deemed to be essentially irrelevant, allowing a claim of

robustness with respect to the prior.

Our discussion will focus on the case (i) scenario above, though many of the method-
ologies presented would also apply to the group problem. The following example is typical,

and will be among those analyzed later.



Example 1. Suppose it is specified that 7 has median 0, quartiles 4 0.675, and is symmetric
and unimodal. These are among the types of judgements that an elicitor can be expected

to make. Formally we thus have
I' = {symmetric, unimodal = with quartiles — 0.675,0.0, and 0.675}.

Note that specification of a specific functional form for  is likely to be very difficult; overall
shape features, such as above, are all that might typically be possible. (Exact specification
of the quartiles might similarly be criticized, but this is easily corrected by allowing the

quartiles to vary within intervals.)

Results will be presented only for real parameters §. Many of the results are valid
in higher dimensions, but notation and comparisons are facilitated by considering only
the real case. Also, we will not explicitly consider uncertainty in the likelihood function
£(0). At an abstract level this is not a limitation, in that # could be understood to
represent gll unknown aspects of the model. In practice, however, techniques for dealing
with uncertain models (in a Bayesian framework) will usually differ substantially from
methods of dealing with uncertain priors. Techniques which can be adapted to deal with

both will be mentioned as we proceed.

Another possible source of uncertainty arises in decision problems, namely uncertainty
in the loss or utility function. This issue will not be addressed here. See Kadane and

Chuang (1978) and Berger (1984) for discussion and references.



2. GOOD’S CONTRIBUTION TO BAYESTIAN ROBUSTNESS

Quite simply, Good was the originator of the modern robust Bayesian viewpoint.
We briefly review this viewpoint here, calling it the “Doogian” philosophy for historical
reasons. Section 2.1 reviews the principles upon which Doogianism is based. Section 2.2
discusses the Doogian “black box” implementation of these principles. Section 2.3 briefly
reviews other contributions of Good to robustness. Section 2.4 provides some historical

context.

2.1 Doogian Robust Bayesian Principles

In Good (1973) are listed twenty seven Priggish Principles of the Doogian philosophy.
If all statisticians were to read and understand these principles, our profession would be
immeasurably improved. Priggish Principles 3, 4, 5, 6, 9, 21, and 24 directly bear on the
issue of Bayesian robustness. For convenience of exposition we will distill these principles

into three general principles.

Principle 1. “The principle of rationality is the principle to mazimize expected utility”

(Priggish Principle 4).

Loosely stated, this urges one to think like a Bayesian decision-theorist. But Good
does not necessarily mean this to be a dogmatic requirement to write down a prior and
utility function and optimize. Instead, this is more a proscription of behavior not consistent
with rationality.

“ The freedom to be irrational, is a freedom that some of us can do

without.” (Good, 1982b).

Principle 1 is to be a filter eliminating our illogical excesses.

Principle 2. Subjective judgements are imprecise, and can typically be quantified only

as intervals of possible probabilities, utilities, etc.
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“ For it would only be a joke if you were to say that the probability of

rain tomorrow ... is 0.3057876289.” (Good, 1979).

Good observes that the intervals could result either from the imprecision of a single indi-
vidual, or from the necessity of reaching a conclusion in the face of differing judgements
of a group of people;
“ though the widths of the intervals ... might be much larger for groups
than for individuals” (Good, 1975). |

The emphasis that Good places on the necessity of acknowledging imprecision in judgement

is evidenced by imprecision being mentioned in Priggish Principles 3, 5, 9, 21, and 24.

Principle 3 (Type II Rationality). When practical considerations of time and cost are

taken into account, many compromises with the other principles may be necessary.

In particular it may, quite frequently, be necessary to ignore Principle 2:
“It is not obvious whether it is ever reasonable to judge that a probability
is precisely equal to a definite number such as -;— But it may often be
judged that such an equality is a sufficiently good approximation for

some particular purpose.” (Good, 1950).

Even non-Bayesian methods might be used because of Type II rationality:

“ It often justifies adhoc and non-Bayesian procedures such as confidence

methods ...” (Priggish Principle 6).

A sample of Good’s writings on these issues is Good (1950, 1952, 1956b, 1957b, 1959, 1961,

1962(a,b,c), 1965, 1969, 1973, 1974b, 1975, 1976, 1979, 1980, 1982(a,b), 1983(a,b)).



2.2 Good’s Black Box Model

Principles 1 and 2 do not actually determine a unique statistical mode of operation.
Good, however, suggests an approach to implement these axioms, which he calls the black
boz model. The idea is to imagine a black box, which essentially contains the rules of
probability, Bayes theorem, the algorithm of maximizing expected utility, etc. In other

words, this box contains all the usual Bayesian methods associated with precise judgements.

This box is to be thought of as a processor, which takes, as input, the intervals result-
ing from actual imprecise judgements and produces, as output, other intervals reflecting
the possible range of derived quantities of interest. For instance, the input might be an
“interval” of prior distributions and an “interval” of likelihoods for a parameter, with the
output being the interval of posterior means that are possible. This output interval will
be formed by taking all possible prior-likelihood pairs, processing each pair by the black

box, and reporting all possible results.

The black box model does not directly provide guidance as to what to do with the
output intervals. Implicit in the model is that, if the output intervals are small enough,
then the conclusion or decision will be clear. And if the output intervals are too large, the

only solution is to attempt refinement of the input intervals.

All of this may seem natural and obvious, but the fact is that many investigators have
tried something very different and much more complicated, creating a completely new black
box designed to directly combine the interval inputs in some fashion, e.g. developing a
probability-type calculus for “upper and lower” probabilities. This has provided interesting
challenges and led to entirely new paradigms for dealing with uncertainty, but a basic
question is: Why go to all the trouble? Good’s black box model provides a straightforward
way of simultaneously satisfying Principles 1 and 2, and no example has yet been given

which clearly demonstrates the need for a different approach.



“ The main merit that I claim for the Doogian philosophy is that it codifies
and exemplifies an adequately complete and simple theory of rationality,
complete in the sense that it is I believe not subject to the criticisms
that are usually directed at other forms of Bayesianism, and simple in

the sense that it attains realism with a minimum of machinery.” (Good,

1976).

As further support for the black box model, consider the situation “in reverse.” Sup-
pose the output intervals are too large for conclusiveness, and that no further reduction
of the input intervals is deemed to be possible. (This could certainly happen when the
input is from a group of individuals, but even a single individual might be unable to decide
between the probability of rain being 0.305 and 0.306, and it could cc;nceivably matter.)
Then there are legitimate differences or uncertainties in opinion which lead to different
conclusions, and it seems wisest to just conclude that there is no answer; more evidence
is needed to resolve the ambiguity. Any “alternative” black box which claims to do more,
would simply be masking legitimate uncertainty by “sweeping it under the carpet” (Good,

1976).

A further advantage of Good’s black box is that it can be automated. For instance,
an interactive computer package can be imagined which elicits intervals of probabilities (or
whatever) from users, and processes these into the output intervals. Or, alternatively, single
prior inputs could automatically be embedded in intervals of priors, with the corresponding
output intervals being calculated. More discussion of this will be presented as we proceed,
but automation is surely desirable to remove the subject from the domain of the expert to

that of the practitioner.

The writings of Good which explicitly discuss the black box model include Good
(1959, 1961, 1962a, 1975, 1976, 1982(a,b)). The model is implicit in many other writings,

however. For instance, he writes concerning probability axioms:
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“... the product axiom ... is P(E and F|H) = P(E|H)-P(F|E and H)
and its meaning is that if it is a.ssuméd that any two of the probabilities
belong to certain intervals, then the third probability can be inferred to

belong to some interval using the equation.” (Good, 1981).

2.3 Good’s Other Works on Robustness

Much work on robustness has been directed towards clarifying situations in which
robustness is, and is not, present. Identification of robustness eliminates the necessity of

trying to implement Good’s black box, and is a prime example of Type II rationality.

Good frequently discusses the robustness of Bayesian procedures he develops. For
instance, he observed very early that hierarchical priors have the property of being robust

at the higher levels:

“ It might be objected that the higher the type the woollier (fuzzier) the
probabilities. It will be found, however, that the higher the type, the

less the woolliness matters ...” (Good, 1952).

Among the many works of Good discussing robustness of hierarchical models are Good
(1952, 1956a, 1965, 1979, 1983b), Good and Crook (1974, 1987), and Crook and Good
(1980). Good (1983b) and Good and Crook (1987) are specifically devoted to the discussion

of robustness for hierarchical models in multinomial problems.

Another major body of work by Good concerns robustness in testing. The Bayes/non-
Bayes compromise of using a Bayes factor as a test statistic and looking at its tail areas
often has considerable robustness with respect to the prior. His writings on this subject

are mentioned in Section 4.

Of course, as important (and perhaps more important) than identification of robuust-
ness, is identification of situations in which robustness is lacking. Interesting examples of

nonrobustness can be found in Good (1967, 1983b).
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2.4 Historical Context

Keynes (1921) considered interval valued probabilities, but dealt only with “logical”
probabilities. Koopman (1940a,b) discussed a rather involved set of axioms for interval
valued probabilities. Good (1950, 1962a) developed quite simple axioms, similar to those
given extensive justification in Smith (1961). A sample of subsequent axiomatic devel-
opments includes Fine (1973), Levi (1980), Rios and Girén (1980), Wolfenson and Fine
(1982), and Walley (1987).

There have been relatively feW works directed towards implementation of Good’s
black box approach. The recent papers in this direction are explicitly discussed in the
following sections. Earlier related papers include Isaacs (1963), Fishburn (1965), Dempster
(1975,1976), Suppes (1975), Rubin (1977), West (1979), and Hill (1980a,b). Again, an
extensive set of references concerning robust Bayesian analysis can be found in Berger

(1984).



3. RANGES OF BAYESIAN QUANTITIES

3.1 Quantities of Interest

There are three categories of Bayesian quantities that are typically of interest. These
categories are determined by the type of dependence on the prior m; this dependence

strongly affects the ease of analysis.

1. Linear Functionals

The easiest quantities to handle, from a robust Bayesian perspective, are linear func-

tionals of 7, such as

plr) = [ (@) (an) (3.1)

where h is a given function. Perhaps the most important linear functional is

‘m(r) = / £(8)(do), (3.2)

(]
i.e., the marginal density of the data which yields the likelihood function £. Maximization

(over 7) of this quantity is often done to select a prior for use in empirical Bayes and other

problems; Good calls this Type II maximum likelihood (Good, 1965).

Another important linear functional is frequentist Bayes risk. If a procedure §(z) (here
z denotes the data) is to be used in conjunction with some criterion L(0,6) (which could
be a loss, an indicator function, etc.), the frequentist risk is R(0,6) = EyL(6,6(X)) (the

expectation being over the random outcome X), and the Bayes risk is the linear functional

p(r) = /R(0,5)7r(d0).

©

Such measures are basic to problems such as the design of experiments.
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II. Ratio-Linear Posterior Quantities

Many posterior quantities of interest can be written as

plr) = [ h(O)(O)n(d0) (), (3.3)

(]
for some function k. The choice h(f) = @ yields the posterior mean. The choice h(f) =
Ic(0) (the indicator function on the set C) yields the posterior probability of C. The
choice h(#) = L(0, a), where a is an action and L is the corresponding loss when obtains,
yields the posterior expected loss of a. We will call such posterior quantities ratio-linear,

because they can be written as a ratio of linear functionals of .

ITI. Ratio Non-Linear Posterior Quantities

Some posterior quantities are of the form

plr) = [ 10, o(m))e(O)m(d8) /mi(r). (3.4

©

The most common example arises from

h(8,p(m)) = (0 — u(m))*,

where p(7) is the posterior mean; p(m) is then the posterior variance. More generally,
if L(0,a) is a loss function and a(r) is the Bayes action (i.e., that which minimizes the
posterior expected loss), then setting k(6,¢(r)) = L(0, a(r)) results in the posterior Bayes

risk.

It is sometimes of interest to convert non-linear quantities into conditional linear
quantities, when determining ranges. The idea is to replace the constraint 7el' by the

constraint

mely, = {meT : o(7) = o}, (3.5)
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Figure 1. Range of Posterior Variance for given u(7) when x = 4.0, as u(x) varies from
1.96 to 3.34: Normal Example.
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®o being a specific value; p(n) is ratio-linear for mel'p,. This can be useful as a techni-
cal device; for each po one finds the range of p(7) over mel',,, and then maximizes and

minimizes over pg.

This can also be useful from a methodological perspective. For instance, it can be
argued that the range of the posterior variance is not of inherent interest; variances are
only of interest in association with means, so one should determine the range of posterior
means corresponding to mel’ and find, for each such posterior mean, the possible range
of posterior variances. Figure 1 presents the results of such an analysis for an example
to be discussed in Section 3.4.2. The posterior mean, p(r), here ranges between 1.96 and
3.34, and the upper and lower curves exhibit the possible range of variances for each mean.

Thus when p(7) = 2.4, the posterior variance can vary between 0.55 and 1.19.

3.2 Classes of Priors

In selecting a class, T, of priors to model prior uncertainty, there are four possibly

competing goals. These are:
(i) -Calculation of p and p should be as easy as possible;
(ii) T should contain as many “reasonable” priors as possible to ensure robustness;

(iii) T should not contain unreasonable priors, or robustness may be erroneously judged

to be absent;
(iv) T should correspond to easily elicitable prior information.

Formal approaches to robustness have generally involved compromises among these goals.
The most common I' that have been considered are discussed below, and used to illustrate

these concepts.
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I. Conjugate Classes

Let m) be a natural conjugate prior (see Berger, 1985, for definition) corresponding

to the likelihood £(8), and define
Fc ={m : AeA}, (3.6)

where A allows for a range of possible values for the hyperparameter ).

Example 1 (continued). Suppose £() is a normal likelihood. The natural conjugate prior
which matches the specified quartiles is the N(0, 1) prior. Allowing for a degree of uncer-

tainty in the prior specification, one might consider

T'c = {N(u,7?) distributions: — 0.2 < x < 0.2 and 0.7 <r?< 1.3}. (3.7

The great advantage of conjugate classes is that posterior quantities can often be
calculated in closed form for natural conjugate priors; minimizing and maximizing over
AeA is then straightforward. Recent references include Leamer (1978, 1982) and Polasek

(1985), to which we refer the reader for discussion and examples.

When the Bayesian analysis is robust with respect to the exact functional form of
7, use of conjugate classes is desirable because of the ensuing calculational simplicity.
Unfortunately, conjugate classes are very small and omit many reasonable priors. Thus, in
Example 1 (continued) one could have matched the specified prior information equally well
with a Cauchy (0,.675) prior. It is easy to construct situations where one is robust with
respect to I'c, yet not robust with respect to such “similar” priors (cf. Berger (1985)).
Thus, in general, we prefer classes I' which are large enough to include all reasonable priors,

or at least priors with a variety of functional forms.

II. Classes With Approximately Specified Moments

Consider
Tv={r:0; <E"[0"]< Bi,i=1,...,k}.

14



Most common is to consider specification of the first two moments (cf. Stone (1963),
Hartigan (1969) and Goldstein (1980)). Such classes are typically employed in conjunction
with a restriction on the set of procedures being considered. For instance, if one considers
only linear estimators of 4, then behavior (e.g. posterior variance) is frequently determined

by only the first two moments of 7, and classes such as I'js are easy to work with.

The main problem with I' s is similar to that with I'c; both place strong restrictions on
the tails of 7, typically prohibiting reasonable priors such as the Cauchy prior. Inded, when
T'ar is used in conjunction with, say, linear estimation, there is typically a 1-1 relationship
between robustness under T'c and robustness under I'ps. Thus we will not consider T'ps
further. (Note that we are not impuning the use of '5s in all situations; in many physical
situations, in particular, knowledge of moments of the system - e.g. temperature - may be

available.)

ITI. Neighborhood Classes

Suppose, following the usual Bayesian paradigm, that 7o is a single elicited prior.

Prior uncertainty can be modelled by considering
I'ny = {7 which are in a neighborhood of 7o}.

A variety of neighborhoods could be considered, based (say) on various notions of distance
between priors, but the most extensively studied neighborhood is the e-contamination

neighborhood. This yields the e-contamination class of priors, namely
Te={mr=(1-¢€)mo +eq:qeQ}. (3.8)

Here € reflects the amount of uncertainty in mp, and Q determines the allowed contamina-

tions which are mixed with mg.

The choice of Q can have a great effect, and is often chosen with an eye towards

the four goals mentioned at the beginning of this subsection. Possibilities that have been
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considered include (where 8, is the mode of o)

Q 4 = {all distributions ¢}, (3.9)

Qus = {all distributions ¢ : # = (1 — &)m + £ is unimodal}, (3.10)
Qu = {all unimodal distributions ¢, with mode 6o}, (3.11)

Q sy = {all symmetric unimodal distributions ¢, with mode 60}. (3.12)

The last three classes are designed for situations where 7o is unimodal, and in which one is
confident in the assessment of overall unimodality of the prior. This type of overall shape

specification is frequently feasible.

Working with Q 4 is typically easiest, but I'; then contains many unreasonable distri-
butions. (Q 4 allows, for instance, point masses at very extreme values of 6.) Thus (E’ )

will often be an excessively large interval.

When unimodality of the prior is believed, T'. with Qy, is very sensible; it will in-
clude virtually all reasonable priors (those which are unimodal and close to 7o), and no

unreasonable priors. Unfortunately, computation with this class is quite difficult.

Use of Qy or Qgy results in still smaller T',, raising the possibility that certain rea-
sonable priors will have been omitted. N ote, however, that I'. will still contain a very wide
range of priors; in particular, much thicker tails than that of 7 are allowed. The gain in

utilizing Qy or Qsy is that calculation is comparatively simple.

Section 3.4.4 contains further discussion of the choice of Q. References discussing
e-contamination classes, from our Bayesian perspective, include Huber (1973), Berger and
Berliner (1984, 1986), Berger (1985), Sivaganesan (1986), and Sivaganesan and Berger
(1987). Berger and Berliner (1986) also discuss a number of more involved e-contamination

classes which are suitable for hierarchical models.
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IV. Sub-Sigma Field Classes

Prior elicitation typically involves the actual specification of only a finite number of
features of the prior. Often, this can be viewed as actually defining the prior on a sub-
sigma field of sets. Such ideas were theoretically explored by Kudo (1967), Fine (1973),
Manski (1981), Lambert and Duncan (1981) and Cano, Hernindez, and Moreno (1985),

among others.

The actual examples of developed methodology in this direction have involved specifi-
cation of quantiles. Thus suppose © is an interval (ag,ay,) (where ao and a,, could be -co
and oo respectively), which is partitioned into the intervals I; = (ai—1,40;),4 = 1,...,m,
where ap < a; < ... < am. The prior probability assigned to I; will be denoted by p;.

Suppose that elicitation yields the bounds
L<pi<u;, 1=1,...,m.
This defines the quantile class
T'g ={7r:£i§/7r(d0) <wu; t=1,...,m}. (3.13)
I;

The great appeal of this class is that specification of probabilities is the most natural

elicitation mechanism.

m
DeRobertis (1978) considered I'q with u; = £; + £y (here all £; > 0 and >4 =1),
t=0
while Berliner and Goel (1986) considered £; = u;. Versions of I'q for finite ©® were

considered in Fishburn (1965).

The class T'¢ unfortunately contains unreasonable distributions, e.g. discrete dis-
tributions assigning masses p; to individual points in I;. This again can lead to overly
wide ranges, (e, p), of posterior measures. One attractive solution is to also impose shape

constraints on 7. One example, considered in Berger and O’Hagan (1987), is

I'qu = {nel'q : 7 is unimodal}. (3.14)
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O’Hagan and Berger (1987) consider a related, but somewhat easier to analyze, class.

V. Density Ratio Classes

DeRobertis and Hartigan (1981) introduced a very interesting class of priors which can
be considered to be a type of limit of the quantile class of DeRobertis (1978). Assuming
(without loss of generality, as it turns out) the existence of a dominating measure v for all
priors in the class, the class can be given in terms of generalized prior densities (w.r.t. v)

as

Ipr = {n:L(#) < an(f) < U(H) for some a > 0}. ' (3.15)

Here L and U are specified nonnegative functions, and 7 is not required to have mass
one, or even to be proper. (Normalization of 7 is not important for ratio linear or ratio

nonlinear posterior quantities.) An alternative definition of this class is

L) _ =6 _ U
v@) = n@) = (o)

PDR = {71- . for all 0, 0,},

from which it is clear that I'pr specifies ranges for the ratios of the prior density between

any two points.

Example 2. Suppose L(f) =1 and U(6) = K. Then T'pp consists of all prior densities for
which the density ratio between any two points lies between K—! and K. This class is a

reasonable representation of prior vagueness, from a robust Bayesian perspective.

Example 3. Let mo be a single elicited prior density arising from the usual Bayesian
paradigm. To express uncertainty in o, it is natural to consider L(6) = o (),U(0) =
(1+ €)mo(8). This can be shown to define a type of neighborhood of 7o (see DeRobertis
(1978)). Unfortunately, all priors in T'pr will have essentially the same tail behavior as
mo; this neighborhood is thus perhaps not very satisfactory as a representation of prior
uncertainty. Instead, U(6) should perhaps be chosen to be mo(8) + £g(d), where g(f) is

some larger tailed density.
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Determining a sensible I'pg, in a given problem, is clearly not always easy. Thinking
in terms of comparative density ratios is certainly possible, however; indeed, with practice
it can become a valuable elicitation tool. The big advantage of density ratio classes will be

seen to be calculational; ranges of posterior quantities are comparatively easy to determine.

Density ratio classes are related to implicit classes studied in the “precise measure-
ment” Bayesian robustness literature. Typical theorems in that literature place bounds
on the allowed variation in the prior density, and then show that for very concentrated
likelihoods (usually arising from large sample sizes) the variation in the Bayes answer over
the class of priors is negligible. A few references to such work are Edwards, Lindman, and

Savage (1963), DeGroot (1970), Dickey (1976), and Davis (1979).

3.3 Methods for Calculation of 1) and p

‘Methods of minimization and maximization of p(7) over 7el' are often specific to the
criterion p and the class ' being considered. Frequently, the idea is to identify a low
dimensional subclass of T' in which the overall minimizing or maximizing prior must lie;

the optimization need then be carried out numerically only over this low dimensional class.

Although any given problem or formulation may require a specialized argument, there
are a few broadly applicable methods of optimization. Several will be discussed here,

organized according to the criterion classification scheme in Section 3.1.

I. Linear Functionals

Maximization and minimization of linear functionals of 7 is typically quite easy. Often
I’ is convex, with identifiable extreme points in I'g. Then
sup p(7) = sup/ h(8)m(df) = sup p(x), and inf p(x) = inf p(w).
mel el welp mel' welo

Furthermore, I'g is often a low dimensional set, so that the final optimization can often be

easily done numerically.
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Example 4. Consider I'; in (3.8) with Qgy as in (3.12). Suppose the criterion of interest

is the marginal density m(w) defined in (3.2). Clearly

mir) = [ £0)((1 = Imo(®) + cale)}ar

= (1 — e)m(mo) + em(q). (3.16)

Note next that any unimodal symmetric (about 8o) distribution g can be represented
as a mixture of symmetric uniforms. Thus the extreme points of Qgy are simply the
Uniform (6o — 2,00 + 2) densities, and

I'o = {extreme points of T'}

= {(1 — €)mo + €l (b0 — 2,00 + 2),z > 0}.

Thus
00 +=z 1

frlelgm(w) = (1 — g)m(mo) + sup /oo_z El(ﬂ)dﬂ (3.17)

II. Ratio-Linear Posterior Quantities

Consider a quantity of the form

_ J (8)n(do)

p(r) = To@yn(d)’ (3.18)
where g(-) > 0. Then
o . £(0)
sup p(m) = sup (0)’ lIﬂl_f p(m) = 1nf (0) (3.19)

This is a standard result (c.f. Sivaganesan and Berger, 1987), yet is extremely powerful

for finding ranges of many posterior measures.

ITI. Ratio-Nonlinear Posterior Measures

In Section 3.1, it was observed that interesting ratio-nonlinear measures can often be
handled by working with constrained classes T'y,. Specifically, suppose one has a class T

specified by

T={r: / bi(6)n(d6) =0, i=1,...,k}. (3.20)
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Example 5. Suppose uo is a possible value of the posterior mean, and that it is desired
to find the range of possible posterior variances among all priors with posterior mean o,

i.e., for which
] 0¢(0) 7r(d0

~ om()

0,

where, as usual, m(r) = [ £(6)n(df). To reduce this to a class of the form (3.20), we

further constrain 7 so that m(x) is fixed at a value mo. Thus we define

= {r: / [£(6) — mo](df) = o, / [0£(6) — mopo]r(d8) = O}

If we can find

Prmo = sup p(r), and p_ = inf p(r)

1|'€I‘m0 Pmo

for each mo, then simple optimization over mq will yield the overall p and p.

The constraints in (3.20) are quite flexible, allowing not only moment type constraints
on 7, but also probabilistic constraints. For instance, setting b;(8) = Ic(0) — p, one has

the constraint that 7 gives probability p to the set C.

Maximization or minimization of a linear functional, over a class I' as in (3.20), is
called a generalized moment problem (cf. Kemperman (1968)). Specifically, if one wants

to maximize
p(r) = /h(0)7r(0)d0
over I in (3.20), there will typically exist a maximizing 7 satisfying

support (mo) = {0 : h(0) = ao + Za,b (6)}, (3.21)

where {ag,a1,...,ar} is some set of constants satisfying
k
h(6) < ao+ Y a:b(8) for all 4. (3.22)

Such a result is typically utilized by showing that support (7o) contains, say, at most n

points, so that maximization of p(r) over I' can be done by maximizing over all » point
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distributions in T'. For precise theorems and arguments along these lines in robust Bayesian

settings, see Sivaganesan and Berger (1987).

-Analysis is also possible when the constraints in (3.20) are replaced by the constraints

J b;(6)7(d8) > 0. See DeRobertis (1978) for discussion.

Analysis for Unimodal T

When dealing with classes of unimodal priors, the problem can usually be recast so
as to apply the above methods of optimization. This is done by representing the unimodal
prior as a mixture of uniforms, and applying the methods to the mixing distribution.

Example 4 and Section 3.4.2 illustrate the idea.

3.4 Results for e-Contamination Classes

3.4.1 When Q = All distributions

For any wel'., one can write a ratio-linear posterior quantity as

p(m) = E™*[h(0)]
_ (1—¢) [ h(8)£(6)mo(dO) + & [ h(8)£(6)q(d0)
(1—¢) [ £(0)mo(d8) + ¢ [ £(6)q(db)
_ J f(8)q(do)
S a(6)a(dt)’

where

160) = (1= &) [ hOUEImo(de) +<h(0)2(0),
90) = (1- &) [ Uemolde) +1(0).

From (3.18) and (3.19) it follows that 7 and p can be determined by simply maximizing

and minimizing, respectively, the ratio f(6)/g(6) over 8, a simple numerical problem.

Huber (1973) developed this result for ~(8) = 1c(6) (so that p(7) is then the posterior

probability of C), while Sivaganesan (1986) considered other posterior quantities such as

22



the mean and variance. Further simplification of the numerical problem to solution of

iterative equations, and even closed form solution, is often possible.

Sivaganesan (1986) also considered the problem of finding the range of the posterior
variance over I'. for each fixed possible value of the posterior mean. The approach outlined

in part III of Section 3.3 was used.

3.4.2 When Q@ = Q¢y

The opposite extreme to Q 4 that has been considered in Q gy, the class of all sym-
metric (about 0p) and unimodal densities. This class may be appropriate when one is quite
confident that the prior is symmetric about 8o and unimodal (and, of course, chooses 7 to
be s0). This can be considered to be a “minimal” robustness check, mainly investigating
sensitivity to the exact functional form and tail of the prior. (In contrast, Q4 yields a

“maximal” robustness check.)

In Sivaganesan and Berger (1987) this problem is solved, using the idea of representing

q as a mixture of uniforms, namely

>
00) = [ 5Tt (06,
0

where G is an arbitrary distribution on (0,00). Any ratio-linear posterior quantity can
then be written as
p(r) = E™[h(6)]

_ (1—¢) [ h(6)¢(6)mo(d0) + & I3 Hi(2)G(dz)
(1—¢) [ LO)mo(dO) + ¢ [;° Ha(2)G(d2) ’

where

2z Jo,—2
1 Go+=2
i) =5 [ 40



Defining

1) = (- ) [ B UOmo(de) + s (2)
02) = (1= ) [ €Omo(de) +5Ha(a)
it is clear that

or) = [ 12162/ [ a(z)aea),

and (3.18) and (3.19) can again be applied to yield 7 and p as the maximum and minimum

over z of f(2)/g(2).

To determine the range of the posterior yariance for a fixed posterior mean, Siva-
ganesan and Berger (1987) used the generalized moment approach outlined in part III of
Section 3.3. Under certain conditions on £(8), they were able to show that the extremes
would occur among all two point mixing distributions G yielding the given posterior mean.

The numerical problem thus was only two-dimensional.

Example 6. Suppose that X ~ N(0,1), 7o is N(0,1),e = 0.1, and T is used with Qgy.
When z = 4 is observed, the range of the posterior mean is 1.96 to 3.34 and, for each
possible value of the mean, the associated range of variances was given in Figure 1 (Section

3.1). This figure is from Sivaganesan and Berger (1987).

3.4.3 Other O

The analysis for Qy is similar to that for Q gy, and can also be found in Sivagenesan
and Berger (1987). The analysis for Qy. is much more difficult, since Qy. is only defined
implicitly by the constraint that the overall prior be unimodal. Indeed it is somewhat

surprising that the class is amenable to analysis.

The determination of p and p for Q. has only been carried out when p is the marginal
m (done in Berger and Berliner (1986)) or the posterior mean (done in Sivaganesan (1987)).

The details are too complicated to present here, though the basic shape of the optimizing
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mel' can be described: it will be continuous, uniform within some interval, and equal to

(1 — €)mo(0) outside the interval.

3.4.4 Considerations in Choosing Q

As indicated previously, choice of T' (here Q) involves several trade-offs. Use of Q4
typically leads to easy calculations, and assures that no reasonable priors are missed; thus

if robustness is found to be present when Q 4 is used, one can unarguably claim robustness.

The negative side of Q 4 is that it contains many distributions which are undoubtedly
unreasonable apriori, and this can lead to intervals (B’ p) which are much wider than
necessary. As an indication of this, it is interesting to observe (cf. Sivaganesan (1986) or
Berger and Berliner (1986)) that asymptotics are “wrong” when Q 4 is used. For instance,
the range of the posterior mean goes to zero at a rate 0(y/Zn(n)/n), instead of the rate
0(1/4/n) that one would expect.

Restricting @ in some way is thus very desirable. Any of Qy., Qu, and Qgy are
reasonable, and can be shown to yield sensible asymptotics. To indicate the comparative

sizes of the intervals (p, ) they yield, consider the following example.

Example 6 (continued). Suppose that X ~ N(6,1), 7o is N(0,1), and € = 0.1. For each of
the four Q considered and varioué values of z, the range (B’ p) of the posterior mean for §
is given in Table 1. Note that, as discussed above, the bounds for Q sy are substantially
smaller than those for @ 4. Note also that larger z correspond to a “clash” between the

data and mp, and hence result in greater uncertainty.

Table 1. Ranges of the Posterior Mean for I'.

<
0 1.0 2.0 3.0 4.0 6.0
Q04 |(-0.10,0.10) (0.45, 0.69) (0.93, 1.45) (1.42, 2.67) (1.85, 4.48) (2.61, 8.48)
Qu. [(-0.08, 0.08) (0.46, 0.66) (0.95, 1.42) (1.44, 2.44) (1.87, 3.83) (2.67, 5.93)
Quy |(-0.06,0.06) (0.47,0.60) (0.96, 1.20) (1.45, 2.09) (1.92, 3.50) (2.78, 5.90)
QOsu [(-0.03,0.03) (0.48, 0.53) ( (1.96, 3.34) (2.87, 5.87)

0.97, 1.12) (1.46, 1.89)
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From a calculational perspective, a.nalyseé with Qy and Q sy are both quite easy; Qy.
is substantially more difficult to deal with. All things considered, we recommend working
with the smallest Q that can be used in good conscience, Q sy if symmetry and unimodality
are plausible. For situations in which symmetry is inappropriate, additional constraints
should perhaps be applied to Qy to prevent all the mass of ¢ from concentrating on one

side of 6o.

Another issue, in the use of T, is the choice of mo. I'; is actually somewhat limited,
in that priors in ' have tails which are at least as large as (1 — €)mo. Thus, if one chooses
7o to be a Cauchy or ¢ distribution, no prior in I'. will have exponentially decreasing
tails. I'c will, however, contain all priors with larger tails than mo, which is generally more

important.

The choice of mo can have a substantial effect, especially when £ and 7o clash (i.e.,
are concentrated in different regions). This is because the tails of 7y can then drastically
affect the answer, with the results for exponential tails and polynomial tails often being
markedly different. Thus if one chooses 7y to be, say, normal and 7 clashes with £, then
the range of posterior means over I'; will typically be very large. If, on the other hand, one
chooses 7o to be Cauchy, only Cauchy-like tails will occur in I'; and the range of posterior

means will be much smaller.

Which mo to choose is, of course, a subjective decision. If one feels essentially certain
that sharp tails are inappropriate, then choosing a flat-tailed 7o will certainly aid in veri-
fying robustness. The subjective decision as to whether or not sharp tails are appropriate
can perhaps be answered by determining one’s likely reaction to a hypothetical clash be-
tween £ and mo; if one would react to such a clash by essentially ignoring 7o and trusting

£, then considering only fatter-tailed priors is reasonable.
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3.5 Results for Quantile Classes

DeRobertis (1978) considered T'g in (3.13) with u; = £; + £y, and determined ranges
of posterior probabilities of sets and posterior means. The priors at which minimums
and maximums obtain are, not surprisingly, discrete measures. Various computational

simplifications were developed in DeRobertis (1978).

This work did not cover the special case in which £; = u; = p;. This case is of
substantial interest in that even unsophisticated practitioners might be able to specify a
few prior quantiles; more elaborate interval specification is a higher order activity. The
solution to this problem, when the range of the posterior probability of a set is of interest,
was given in Berliner and Goel (1987). Again the optimizing priors are discrete, and here

the optimizing prior can be given explicitly.

As discussed earlier, a class which contains unreasonable priors (such as discrete priors)
will result in overly wide ranges (E’ p). The above quantile classes clearly suffer from this
potential problem. Indeed, in DeRobertis (1978), it is demonstrated that the asymptotics

for this class are again “wrong”.

Thus a further refinement of I'g, such as the addition of the unimodality condition
leading to T'qu, is desirable. This class (together with further specializations and general-
izations) is considered in Berger and O’Hagan (1987) and O’Hagan and Berger (1987). The
posterior criterion considered is posterior probability of a set. For unimodal likelihoods,
it is shown that p and p are attained at priors which are step functions having at most
one step per interval I;. Finding the optimizing priors can, indeed, be reduced to a simple

convex programming problem, for which numerical solution is straightforward.

Example 7. An engineer specifies his prior probabilities of six intervals, I;, for the mean
life, 8, of a certain type of machine. These are given in Table 2. The engineer also states

that the overall shape of his prior is unimodal. Thus I'gy in (3.14) is the implied class of
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priors with £; = u; = prior probability of I;.

Data about 6 is obtained in the form of two independent exponential observations
of actual lifetimes, resulting in the likelihood function £(f) = 6~ Zexp(—4500/0). The last
column in Table 2 gives the ranges of the posterior probabilities of the I; over 7 inT'gy. For
comparison purposes, the corresponding ranges for I'g (the class without the unimodality
contraint) are given. (These results are from Berger and O’Hagan (1987) and Berliner and
Goel (1987), respectively.) Note that the unimodality constraint can significantly reduce
the ranges.

Table 2. Prior Probabilities and Posterior Ranges: Exponential Example

I; Prior Probability = Posterior Range: I'g  Posterior Range: T'gy
[0,1000) 0.01 (0, 0.006) (0.001, 0.004)
[1000,2000) 0.04 (0.019, 0.057) (0.037, 0.049)
[2000,3000) 0.20 (0.214, 0.291) (0.225, 0.260)
[3000,4000) 0.50 (0.476, 0.613) (0.517, 0.584)
[4000,5000) 0.15 (0.106, 0.164) (0.121, 0.147)
[5000,00) 0.10 (0, 0.083) (0, 0.071)

3.6 Results for Density Ratio Classes

When p(r) = E™[h(8)], DeRobertis and Hartigan (1981) establish that p and 7 for

I'pr are the unique solutions, respectively, of

((8) — P)L(6)U (6)v(d8) + / (h(6) — DLO)L(O)v(d8) =0,  (3.23)
{6:h(8)<p} {6:h(6)>p}

(h(6) — B)L(6)L(8)w(d0) + / (h(6) — P)LOYU(O)(dd) = 0.  (3.24)
{6:h(6)<p} {6:r(8)>7}

These can sometimes be solved in closed form and are, in any case, quite easy to solve

numerically.

Example 8. (DeRobertis and Hartigan, 1981): Suppose £(0) arises from X ~ N (8,02 /n),
o? known. Let L(8) = 1 and U() = K, as discussed in Example 2. Set h(f) = 0, so that
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p(7) is the posterior mean. Then the interval (p,p) can be shown to be

(z—;;%K)m+v4ﬂKD (3-25)

where v(K) is a function tabulated in Table 3 for various K.

Table 3. Half Width of (p,p) for the Posterior Mean
1.25 1.50 2 2.5 3 4 6 8 10

~
e

~v(K) 0 .089 162 276 .364 436 .549 707 817 901

Thus, if one feels sure that the prior density ratio between 2 points is always between

% and 2, then the posterior mean is guaranteed to be within 0.276 standard errors of Z.

Example 9. Suppose h(f) = Ic(8), so that p(7) is the posterior probability of the set C.
Then the solutions to (3.23) and (3.24) are (letting C' denote the complement of C)

[ fsU0)8)v(de) ]
=1+ oo
_ ,g (6)£(60)v(df)
=M Iy dm]

DeRobertis and Hartigan (1981) were also able to partially solve the difficult problem
of finding p and p for ratio-nonlinear quantities. Indeed for decision problems, in which
(8.4) is of interest with h(, (7)) = L(8, a(r)), they determine p, and an upper bound on

p which is frequently sharp.

It is also shown in DeRobertis and Hartigan (1981) that the asymptotics for pp is
“right”. This in indicated by the range in (3.25) for the posterior mean; as n — oo the

width decreases by the “right” order of (1/4/n).
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3.7 Comparing Classes of Priors

In this section we summarize and augment the arguments for and against the various
classes of priors. Although often easy to work with, the conjugate and moment classes are
typically too narrow to provide reliable indicators of robustness; hence we will concentrate

on the other classes.

The e-contamination class, With Q@ chosen in a constrained fashion, is usually quite
easy to work with, gives sensible robustness ranges, and has a simple interpretation..
Furthermore, it can be used easily in “automatic” robustness checks. Thus, if a Bayesian
specifies a single prior 7o, one could have a computer program which printed out (_p_, p) for

“default” € (¢ = 0.1 or € = 0.2 are reasonable) and Q equal to, say, Qy or Qsy.

On the negative side, Q4 allows in too many silly priors, Qy and Qgy might be
deemed to be too small for some applications, and the appealing Qy. is very hard to work

with. Also, the choice of 7, in particular its tail behavior, can have a pronounced effect.

The chief advantage of the quantile classes, I'g and I'gy, is that they relate naturally
to the most basic of elicitation mechanisms, specification of probabilities of sets. While
I'g again contains many silly priors, I'qu does not and will tend to give reasonably tight
posterior ranges. The disadvantage of I'gy is that it is the most difficult class to work
with; indeed the determination of (p,p) has been done only for p = posterior probability
of a set, and only when £(0) is itself unimodal. In O’Hagan and Berger (1987), however, a
related “quasi-unimodal” class is considered which gives very similar answers to I'qy and
is much easier to analyze. Indeed the analysis with this class could easily be extended to

handle other posterior quantities.

The density ratio class I'pp is the nicest to work with mathematically. The range of
virtually any posterior quantity of interest can be found using the results of DeRobertis

and Hartigan (1981).
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There are two disadvantages with I'pr. The first is that it is more difficult to elicit
than the other classes. “Natural” methods of elicitation are not necessarily successful, as
Example 3 demonstrated. However, we feel that effort directed at the elicitation problem
has a good chance of success, and is well worthwhile given the calculational simplicity of

the class.

The second disadvantage of T pg is that one cannot control the overall shape of priors
in the class. For instance, one cannot impose a constraint such as unimodality on T pg, and
preserve the calculational simplicity. While not always reasonable, such shape constraints
arise frequently and are desirable in terms of their effect on (p, p). Of course, one can
choose both L(#) and U(0) in I'pr to follow the desired shape; the extent of the allowed

deviation from this shape might then be minimal for many applications.

In conclusion, neither the e-contamination, quantile, or density ratio classes can be
said to be clearly superior to the others. They all correspond to legitimate and accessible

ways of modelling prior uncertainty, and all should be available for use and studied.
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4. LOWER BOUNDS ON BAYES FACTORS IN TESTING SCENARIOS

Testing precise hypotheses has been extensively studied from the robust Bayesian
perspective because of the large discrepancy observed between P-values and Bayes factors
(or posterior probabilities). Suppose it is desired to test Ho : § = 0o versus H; : § # ;.
The Bayes factor against Hop is

B = £(60)/ / £(6)71(d0),

{6#60}

where 7 is the conditional prior distribution given H; is true.
Of interest, when 7 is known to belong to a class T, is

e £(8)
B=1i 8= T t0)m(@)

m1eT {6720}

Typically 71 (df) has a continuous density which, if defined at § = 6y by continuity, gives

no mass to fp. Then the denominator above is simply

m = sup m(my),
w1 el

calculation of which was discussed previously.

The startling conflict with P-values can be illustrated by taking I" to be a large class,
such as

IF'sy = {m; : 71 is unimodal and symmetric about 6o}.

This can be thought of as the e-contamination class discussed earlier with € = 1. The
analysis in Example 4 then applies (with € = 1) yielding

£(80) _ £(0o)
m sup [51; 0?;": E(0)d0]

B=

Example 10. Suppose we will be observing X ~ N (0,02 /n),0? known. The usual P-value

of observed data T against Hp: 0 = o is

o= Py,(|Z] > Valz - bol/0),
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where Z is N(0,1). For this situation, Berger and Sellke (1987) provide an explicit formula
for B. (It can be given as a function of \/n|T — 6p|/0.) Values of B for various a are

reproduced in Table 4.

Table 4. Values of B and Corresponding P-values

P-value(¢) | 010 | o005 | o001 | 0001
B | 1/156 | 1/245 | 1/817 | 1/54.56

The surprisingly large discrepancy between B and P-values is clear. When the P-
value is 0.05 for instance, which is typically vieﬁed as significant evidence against Hy, B is
1/2.45. Thus there is no symmetric, unimodal prior which, when combined with the data,
would indicate more than 2% times as much support for H; as for Hy. A P-value of 0.05

would appear to be at best very weak evidence against Hop.

A variety of results in this direction hav_e been obtained. Edwards, Lindman, and
Savage (1963) were the first to formally pursue such problems, and considered conjugate
classes of priors and I' = {all priors}. (Very surprisingly, B is typically bigger than the
P-value even if 7; is allowed to be any prior.) Berger and Sellke (1987) gave a variety
of one-dimensional results for symmetric and unimodal-symmetric classes of 7;. Delam-
pady (1986b) considered invariant testing problems, where I was (essentially) the class of
invariant priors. Delampady and Berger (1987) considered multinomial testing problems
and chi-squared tests of fit, with I being a broad class of priors symmetric in a reparam-
eterization. Berger and Delampady (1987) considered, for the binomial testing problem,

not only the above classes but also classes such as all unimodal priors with median (or

mode) equal to §o. In all cases large discrepancies between P-values and B were observed.

One-sided testing problems were considered in Casella and Berger (1987); here B was
often found to equal the P-value. Delampady (1986a) considered the general case of an
interval null hypothesis, when T’ is the class of all unimodal, symmetric about 6, priors.

A continuum of behavior between the point null and one-sided cases was observed, as
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would be expected. A related analysis was carried out in Berger and Delampady (1987),
establishing conditions under which testing an interval null could be closely approximated
by testing a point null. Dickey (1977) considered the relationship between bounds on

P-values and error probabilities.

Of course, all of this was qualitatively well understood by Good. In Good (1957) it
was explicitly observed that Bayes factors against a point null tend to be between 13—°a and
30«, the larger factors corresponding to smaller P-values. Good’s views on the subject,
including discussion of the Bayes/Non-Bayes compromise, are reviewed in Good (1981).

(See also Good, 1950, 1958, 1965, 1967, 1983a, 1984, 1985, and 1986, Good and Crook,
1974 and 1987, and Crook and Good, 1980).
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