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ASYMPTOTIC ESTIMATION OF VARIANCE

This paper considers the asymptotic estimation problem of unknown variance from
a location-scale parameter family under quadratic loss. The inadmissibility of the tradi-
tional unbiased estimator is demonstrated and a necessary and sufficient condition for the
asymptotic admissibility of the corrected version of this estimator is obtained. It turns out
that the latter is inadmissible if the kurtosis of the underlying distribution exceeds two.
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1. INTRODUCTION AND SUMMARY

Let £ = (z1,...,Zy) be a random sample from a location-scale parameter family with
a distribution function of the form F((z — u)/o) where both p and o are unknown. It is
convenient (after an appropriate linear transformation) to have

/ 2dF(z) = 0, / 22dF(z) = 1,

so that u is the mean, and 02 is the variance of each observation.

We study here the problem of variance estimation. For practical motivation of this
problem and the use of various variance estimators in large sample surveys see the mono-
graph of Wolter (1985).

The traditional estimator

n

Sy(z) =) (2 -2)*/(n—1) = 8%/(n—1)
1

motivated by normal distribution, is known to be unbiased (cf. Lehmann (1983) p. 102).
However this estimator is always inadmissible under quadratic loss. Indeed let us consider
estimators of the form ¢S? with a real constant ¢. The rescaled quadratic risk of these
estimators Eo (¢S? — 02)20~* does not depend on unknown parameters, so that there is
an optimal choice of ¢

c=c¢cp= E01.S'2/E01.S'4 = n(n2 —2n+3+(n— l)fc)_1

where £ = E, (X1 — u)*o~* is the kurtosis of the underlying distribution. See Moors
(1986) and references there for the discussion of the meaning of this characteristic as a
measure of peakedness or bimodality.

It is easy to see that for n > 2
co<nn?—n+2)"t<(n-1)"L

In the case of the normal distribution function F, x = 3 and ¢o = (n +1)71.

In this paper we give a necessary and sufficient condition for asymptotic admissibility
in the class of scale equivariant rules of the estimator

60(.’}}) = 6032

(which can be quite different from 6y if « is large). For this purpose in Section 2 we
perform asymptotic study of the quadratic risk of properly normalized scale equivariant
estimators which have been used for improved estimation of normal variance for a fixed
sample size by Stein (1964), Brown (1968), Brewster and Zidek (1974) and Strawderman
(1974). All known improvements over traditional estimators belong to this class, and it has
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been conjectured that admissibility in it implies admissibility within all statistical rules.
The limiting behavior of Brewster-Zidek estimator studied by Rukhin (1987) suggests the
correct normalization for the considered estimators. It turns out that the rescaled risk
converges to the risk of an estimator of a random quadratic polynomial of the normal
mean with known variance. This reduced problem is investigated in Section 3 where we
show that the limiting version of ép is admissible if and only if k < 2. In the “normal” case,
i.e. when k = 3, we exhibit an improvement over 8§y which is analogous to Brewster-Zidek
variance estimator. This improvement is an admissible generalized Bayes procedure.

Notice that similar asymptotic admissibility problems have been considered in one-
parameter case by Levit (1980), Ghosh and Sinha (1981) and in some multiparameter
situations by Levit (1982), (1985).

2. ASYMPTOTIC ANALYSIS OF RISK OF SCALE EQUIVARIANT ESTIMATORS
We consider here scale equivariant estimators of 02 of the form
6(z) = coS%(1 — n~1g(2) (2.1)

n n
wheret =) z; (3 a:?)_l/ 2 and ¢ is a continuously differentiable function with bounded
1 1

derivative. We also suppose that for some positive €
t1+g(t) = 0, t] - oo. (2:2)

Let X be a random variable with distribution function F. Other assumptions concern
moment condition on X and Cramer’s condition for (X, X?2). Assume that

EX =0,
EX* =1,
EX3 =0, (2.3)
EX% < oo (2.4)
and
lim sup |Eexp(s s1X + 1 s2X?)| < 1 (2.5)

l18]|—o00

The following notation will be needed:

mi =EX' 1<:{<6,
a=my—1=k—1 (ask=my),

Zy = nl/z(E_ I-"),
Zp=n"%) [(z; — w)? - 1],
1
Qn(z1, 22) = P(Z1 < 21,22 < 23)
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and ®(z1,22) denotes the distribution function of the bivariate normal distribution with
zero means and diagonal covariance matrix with diagonal elements 1 and a.

Note that if 0 = 1 then under (2.3) and (2.4) ®(z1,22) is the limiting distribution
function of the random vector (Z;, Z3) i.e. Q, = &.

The scaled quadratic risk of estimators (2.1), E, »(6(z) — 0%)20~*, depends only on
¢, = n/2uo—1, so that we assume henceforth that o = 1. It can be proven that if |uo™1!|
is bounded away from zero, then

An(&n) = n*E,[(bo(z) — 1)* ~ (8(z) — 1)?]

tends to zero as n increases. Therefore we assume that &, — £ i.e. po~! ~ &n~1/2 as
7 — 00. '

Theorem 1. Under assumption (2.2)—(2.5) one has
An(€) = — Elg°(Z + &) + (a —2)(2” - 1)g(Z + ¢)
+a(Z +€)g'(Z + )]

where Z is a standard normal random variable.

Proof: One has
co=n"14(2—mgn"?+o(n"%),

Therefore
Ap(€) = E5{2nc052(c052 —1)g(t) — c354gz(t)}

= E¢{2n'/2Z59(t) + 2(2 + 22 — ma4 — Z2)g(t)
— g*(t)} + o(1).

Notice that the largest order term in A,(€) is nY/2E¢Z2g(t). To study its asymptotic

structure we use the Edgeworth expansion, for the distribution of (Z1, Z3), up to order
-1/2
n .

Theorem 20.1 of Bhattacharya and Rao (1975 p. 56) guarantees that
// f(z1,22)dQn(21,22) = // f(21,22)d® (21, 22)

+ n—1/2// f(21,22) P(21,22)d® (21, 22) + o(n~'/?) (2.6)

for a large class of functions f. Here P(z1,22) is a polynomial in z; and z9; it follows from
(7.19) of Bhattacharya and Rao (1975 p. 56) that P(21,22), in our situation, has the form

P(z1,22) = (me — 3myg +2)(25a72 — 32007 %) /6

+ (2¥20 — 22)/2 + ms(z125a=2% — zia” 1) /2.
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Let A= A, = {(Z1,22): |Zi] <logn, ¢=1,2}. On A we have

t = (Z1+ &)L+ Zon % + £(€ + 22y )02
= (Z1+ &)1~ Z2/(2n"%) + 0p(n™/?)]

and hence
g(t) = g(z1 + €) — (21 + &) 229" (21 + E)n V2 /2

+ o(n=Y/%)
= hyn(21,22) + o(n"1/?) (say).
It can be proved that

An(€) = n1/2/ z2hn(21,22)dQn (21, 22)
A
+ 2/ [(2+ 23 — m4 — 2§)ha(21,22) — 9° (21 + £€)]dQn (21, 22).
A

Using (2.6) for the first term one obtains

An(€) = 20172 / 229(21 + £)dB (21, 22)
P / 220(z1 + £)P (21, 22)d9 (21, 2)
- / (21 + €)23g' (21 + €)d®(21, 22)
2 /(2 1 22— ma— 2)g(z1 + )dB (21, 22)

— / g*(z1 + €)d®(21,22) + o(1)

=—E{a(Z + €)¢'(Z + €) + (a — 2)(Z* - 1)g(Z + ¢)
+¢*(Z + €)} + o(2)

and Theorem 1 is proved.

3. ADMISSIBILITY AND INADMISSIBILITY RESULTS
Theorem 1 shows that estimator (2.1) is asymptotically better than &, if
Ag(€) = E[¢*(Z + &) + (a —2)(Z2* - 1)9(Z + &) + a(Z + &)d'(Z + ¢))] (3.1)
=E[g*(Z + &) + (e —2)(Z2° — 1)g(Z + &) + a(Z* + Z¢ - 1)9(Z + €)] <0,

The alternative form for A4(€) in (3.1) is obtained by integration by parts. Inequality
(3.1) means that

El(a—1)(¥? ~ 1) +¢(¥) - 0] < B{(a - 1)(¥? - 1) - 6]
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where Y = Z + £ is a normal random variable with mean ¢ and unit variance, and

0= 0(¢,y) = [(3a — 4)éy — (a — 2)¢?]/2. (3.2)

Thus the existence of an improvement on & in the original problem of asymptotic variance
estimation is equivalent to inadmissibility of

dofy) = (a—1)(v* ~ 1) (3.3)

as an estimator of a random quadratic polynomial § of normal mean £ on the basis of
normal observation y with this mean and unit variance for quadratic loss (d — 9)2.

In the case of inadmissibility of dg in the latter problem to obtain an asymptotically
better estimator in the original situation one has to replace in (2.1), g(¢) by g(y). Indeed
t =y +0p(1).

Notice that do(y) is an “unbiased” estimator of 8 in the sense that

Bedo(Y) = (a — 1)€? = Bed(£,Y).

We look first at the form of Bayes estimators in this reduced problem. If A denotes
prior distribution of £ then the Bayes estimator of 5 of # has the form

6a(v) = 05((3a — )y [ €exp{—(y — ?/2}aA(¢)
~(a~2) [ € exp{~(y— &)"/20r(O)/ [ exp{~(u - &)*/23a(2).
Assume that A possesses a twice differentiable density A and put
8s(y) = (e — 1)(¥* — 1) + ga ().
Then integration by parts shows that
a0(s) = 05 [ [~2(a — )N"(€) + a€N'(¢) + aA(&)] ex{~(y — §/2}de
/ [ ewt-u—62/21an(e). (5.4

In particular if A(§) = 1, then g5(y) = 0.5a. It is easy to see that the latter estimator is
inadmissible. In fact do is always better.

It follows from (3.4) that gs(y) = 0 if and only if
DAX=X'(¢) —~beN(¢) —bA =0 (3.5)

where b = 0.5a/(a — 1).



Differential equation (3.5) has a solution

Xo(€) = exp{b¢®/2}

(In fact this is the only symmetric solution, A(—¢) = A(&).) Therefore if b < 0, i.e.if a < 1,
Ao is a proper density and do is a proper Bayes estimator which is trivially admissible.

Also if @ > 1, then b > 0 and Ao cannot be approximated (in terms of posterior risk)
by proper densities. This fact suggests the inadmissibility of do for @ > 1, which we prove
later.

In the case a =1, (3.5) takes the form

EX'(&) +A(6) =o.

We take a sequence of approximate solutions for € > 0

Ae(&) = €17 el <=1¢7=, gl > 1.

The Bayes estimator g, for such a prior is

ge(y) = 0.5¢ [/ |€1°7" exp{~(y — €)*/2}d¢ —/ €17 exp{—(y - 6)2/2}d£}
l¢f<1 1§1>1

/ / |£|E_1exp{—(y—6)2/2}d§+/ |§I'E‘1exp{—(y—€)2/2}d§]
|¢l<1 [€]>1

An easy calculation shows that as ¢ tends to 0

/ [18:6) ~ 00(6))? expi~w ~ €)% /232c(€)dtay — o,

and this fact is known to imply the admissibility of g, (or do).

Now we consider the case 1 < a. One has for a symmetric function g
85(8) = Eeo(¥)o(¥) + 2(a— (V> ~ 1) — £¥ (30 - ) + (a— 2)¢’
= (2m) 7Y% exp(—£2/2)
> e /ian) [ (5?12
[I;Tyo) +2(a—1)(y* — 1) — (3a — 4)2k + (a — 2)2k(2k — 1)y~ ?]dy
Therefore Ay(£) < 0 for all £ if for k = 0,1,... |
Le(g) = /0 N exp(~y*/2)y**g(y)
[9(y) +2(a — 1) (% — 1) — (30 — 4)2k + (a — 2)2k(2k — 1)y~ 2]dy < 0. (3.6)
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To find solutions to (3.6) we put
(y) = rexp(—az?/2)
so that -
Lk(g) = r/ exp(—y*/2)y**dy(1 + o) 7*71/?
0
{rl(1 + a)/(1 + 20)]*+Y/% — 2(a — 1)/ (1 + @)
+2k[2(a—1)/(1+ ) —8a+ 4+ (a—2)(1 + )]}
Inequalities (3.6) hold for ¢ > 0, if
r= 2(0, — l)a(l —+ 2a)1/2(1 + a)—3/2

and
2(e—1)/1+a)—3a+4+(a—2)(1+a) <O. (3.7)

Clearly one can find positive e such that (3.7) is met. Indeed if @ < 2, any sufficiently
large o satisfies (3.7). If @ > 2, it suffices to put

(1+e)®=2(a—1)/(a—2)
in which case (3.7) also holds.

We summarize our results.

Theorem 2. The asymptotic admissibility of estimator (2.1) of o2 is equivalent to the
admissibility of estimator (3.3) of random quadratic polynomial (3.2) of normal mean ¢
on the basis of a normal random variable Y with mean ¢ and unit variance. Estimator
do(Y) is admissible in this problem if and only if ¥ < 2.

Now we consider the case m4 = 3, i.e. @ = 2 in more detail. In this case do(Y) = Y2-1
is an inadmissible estimator of § = £Y and we obtain an admissible improvement over dj.

Let
A1(6) =/0 exp(—t£2/2)t Y2 (1 4+ ) 1dt (3.8)

be generalized prior density which is analogous to the one introduced by Brewster and
Zidek (1974).

Direct calculation shows that for the corresponding Bayes estimator d,
(o2 Y 2 d Y 2
91(y) = yexp(—y /2)// exp(—t*/2)dt = y@log/ exp(—t*/2)dt. (3.9)
0 0

We show that d; improves on do by verifying (3.6). Notice first that
g3 (y) = 91(¥) (1 — ¥*) — ygi (v)- (3.10)
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It follows from (3.10) that
o0

/O ” exp(—v?/2)y* 2 (4)dy = 2 / exp(~/2)y% (k + 1 — v)gx (v)dy.

Therefore -
Li(g1) = —Zk/ exp(—y*/2)y**g1(y)dy < 0
0

and d; is indeed better than do. Standard admissibility argument, as before, in which A;
is approximated by proper densities

oo
/ exp(—t£2/2)t"V2(1 +¢)"tdt, €>0
0

proves admissibility of d;.

Thus we have proved

Theorem 3. In the case k = 3, generalized Bayes estimator (3.9) against prior density (3.8)
improves on dg. This estimator is admissible.

The second statement of Theorem 3 also can be obtained from an extension of admis-
sibility criterion for estimators of normal mean due to Brown (1971) Theorems 5.5.1 and
6.2.1. This extension shows that in our case any admissible estimator d has the form

d(y) = v + yh'(v)/h(y) (3.11)

where h(y) = [ exp(—(y — ¢)%/2)dA(¢) with a nonnegative measure A. Estimator (3.11)
is admissible if and only if

/looy_zh—l(y)dy = /__1 ¥y 2 (y)dy = oo. (3.12)

Notice that for dy(y)

1
h(y) = / exp(—t2y?/2)dt < (0.57)/%/|y|
0
so that (3.12) is satisfied.
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