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Abstract

The purpose of this paper is to investigate the convergence rates of a sequence of
empirical Bayes decision rules for the two-action decision problems where the distributions
of the observations belong to a discrete exponential family. It is found that the sequence
of the empirical Bayes decision rules under study is asymptotically optimal, and the order
of associated convergence rates is O(exp(—cn)), for some positive constant ¢, where n is
the number of accumulated past experience (observations) at hand. Two examples are
provided to illustrate the perfoi'ma,nce of the proposed empirical Bayes decision rules. A
comparison is also made between the proposed empirical Bayes rules and some earlier

existing empirical Bayes rules.
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1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate when one
is confronted repeatedly and independently with the same decision problem. In such
instances, it is reasonable to formulate the component problem in the sequence as a Bayes
decision problem with respect to an unknown prior distribution on the parameter space and
then use the accumulated observations to improve the decision rule at each stage. This
approach is due to Robbins (1956, 1964, 1983). Many such empirical Bayes rules have
been shown to be asymptotically optimal in the sense that the risk for the nth decision
problem converges to the optimal Bayes risk which would have been obtained if the prior
distribution was fully known and the Bayes rule with respect to this prior distribution was

used.

The usefulness of empirical Bayes rulés in practical applications clearly depends on
the convergence rates with which the risks for the successive decision problems approach
the optimal Bayes risk. The purpose of this paper is to investigate the convergence rates of
a sequence of empirical Bayes rules for two-action decision problems when the distributions

of the observations belong to a discrete exponential family.

Let X be a random observation with probability function of the form
(1.1) I (=|0) = h(z)0°6(0),z =0,1,2,...;0< 0 < Q,

where i(z) > Oforallz =0,1,2,..., and where Q may be finite or infinite. The observation
X may be thought of as the value of a sufficient statistic based on several iid observations.
Consider the following testing: Hy: 8 > 0, against Hy; : § < 0o, where 8, is a known
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positive constant. For each ¢ = 0,1, let ¢ denote the action deciding in favor of H;. For

the parameter § and action 7, the loss function is defined as:
(1.2) L(8,7) = (1 —¢)(60 — 0)I(0,6,)(0) + 2(6 — 00)116,,0) (),

where I4(-) denotes the indicator function of the set A. In (1.2), the first item is the loss
due to taking action 0 when < 8, and the second item is the loss of taking action 1

when 0 > 0y. It is assumed that  is the value of a random variable © having an unknown

prior distribution G(9).

For a decision rule d, let d(z) = P{accepting Ho|X = z}. That is, d(z) is the
probability of taking action 0 given X = z. Let D be the class of all decision rules. For
each decision rule d, let 7(G, d) denote the associated Bayes risk. Then, r(G) = (iinjg r(G,d)

€

is the minimum Bayes risk among the class D.

Based on the statistical model described above, the Bayes risk associated with the
decision rule d is:

oo

(1.3) r(G,d) =) [0 — p(z))d(z) f(z) + C,
where

_h(z)f(z+1)
(14) 90(18) = ms

Q
(1.5) @)= [ rainace),

00 Q
(1.6) c=y /0 (8 — 86) £ (<]0)dG (9).
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We consider only priors G such that fOQ 0dG () < oo to insure that the risk is always

finite.

Note that C' is a constant which is independent of the decision rule d. Thus, from

(1.3), a Bayes decision rule, say dg, is clearly given by

_J1 if QD(IE) > 007
(L.7) da(z) = {0 otherwise.

Since the prior distribution G is unknown, it is not possible to apply the Bayes rule
for the decision problem at hand. In this situation, we use the empirical Bayes approach.
We note that Johns and Van Ryzin (1971) have studied the above decision problem via
empirical Bayes approach. In this paper, a sequence of empirical Bayes decision rules {d},}
is proposed for the above described decision problem. The associated asymptotic optimal-
ity property is investigated. It is found that the order of the rate of convergence of {d}}
is O(exp(—cn)) for some positive constant ¢, where n is the number of accumulated past
experience (observations) at hand. Two examples are given to illustrate the performance
of the proposed empirical Bayes decision rules. A comparison is also made between the

proposed empirical Bayes rules and some earlier existing empirical Bayes rules.

2. The Proposed Empirical Bayes Rules and Its Asymptotic Optimality

For each j =1,..., let (X, ©;) be a pair of random variables, where X is observable
but ©; is not observable. Conditional on ©; = 0, X; has probability function f(z|6). It
is assumed that ©;,7 = 1,..., are independently distributed with common unknown prior
distribution G. Therefore, (X;,0;),7 = 1,2,..., are iid. Let X, = (X3,...,X,) denote
the n past observations and let X,,;.; = X denote the current random observation.
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According to (1.4) and (1.7), an empirical Bayes decision rule, say d,, is proposed as
follows. First, for each z =0,1,2,..., let
1 n
(2.1) fa(@) = =3 " Iay(X;) + 6n,
Jj=1

where 6, is a positive value such that 6, = o(1). Then, let

_ h(z)fa(z+1)
(2'2) pn(z) - h(:l: + l)fn(Z) -
We then define
(2:) 0r(5) = |max_palu)] A0,

where a A b = min{a, b}. Finally, the empirical Bayes decision rule d}, is defined as:

(24) dn(z) = {0 otherwise.

Note that the past data X, is implicitly contained in the subscript 7.

Definition 2.1. A decision rule d is said to be monotone if for z,y > 0 with z < y,

d(z) < d(y).

Note that from (2.3), ¢, (z) is nondecreasing in z. Then, by (2.4), we see that dy (z)

is a monotone decision rule.

In the following, the asymptotic optimality of the sequence of the proposed empirical
Bayes decision rules {d},} will be investigated. The monotonicity of the decision rules {d*}
will be used to obtain the related asymptotic optimality.
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Consider an empirical Bayes decision rule d,(z). Let r(G,d,) be the Bayes risk

associated with the rule d,,. Then,

(2.5) 7(G,dn) = ) [0, — (2)|E[dn(2)f (z) + C,

where the expectation E is taken with respect to X,. Since r(G) is the minimum Bayes
risk, 7(G,d,) —r(G) > 0 for all n. Thus, the nonnegative difference r(G, d,,) — r(G) is used

as a measure of the optimality of the empirical Bayes decision rule d,,.

Definition 2.2. A sequence of empirical Bayes decision rules {d,}22, is said to be
asymptotically optimal at least of order ay, relative to the (unknown) prior distribution G
if r(G,dyn) — (@) < O(ay) as n — oo, where {a,} is a sequence of positive numbers such

that lim a, =0.

n—oo
Now, straightforward computation leads to that ¢(z) is increasing in z. Thus, we let

A(80) = {z|p(x) > 60} and B(b) = {z|p(z) < 6o}. Define

_ [ min A(8o) if A(6o) # ¢,

(2.6) M = { 00 if A(8o) = &,
. ax B(6 if B(6 s

) m = {mpx Bl) 220028

where ¢ denotes the empty set.
By the increasing property of ¢(z) with respect to the variable z, m < M; also,

m < M if A(6y) # ¢. Furthermore,

(2.8) z < miff p(z) < 6o and y > M iff p(y) > bo.
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The following theorem is our main result.

Theorem 2.1. Let {d}} be the sequence of empirical Bayes decision rules defined above.

Suppose that §; < Q. Also, assume that
(a) f20dG(6) < oo and
(b) m < oo.

Then, r(G,d;) — r(G) < O(exp(—cn)) for some positive constant c.

Proof: Under Assumption (b) and by (2.8), direct computation leads to

(2.9)

r(G,d;) —r(G) = ) [0 — p(2)|P{p}(z) > b0} f(z) + Y [0(2) — 80| P{rL(z) < b0} f (),
z=0 =M

where i =0if m=-1.

The nondecreasing property of }(z) implies

P{p}(z) > 0o} < P{p}(m) > 6o} forall z<m,
(2.10) {
P{p}(z) < 6o} < P{p}(M) < 0o} forall z> M.

Combining (2.9) and (2.10), we have

(2.11) r(G,dy) —r(G) < b1P{p;(m) > 8o} + by P{p}(M) < o},

where 0 < b; = in: [6o — ©(z)]f(z) < 00,0 < by = f [o(z) — bo]f(z) < oo, and the
z=0 z=M

finiteness of both b, and b5 is guaranteed since [ 0dG(0) < co by Assumption (a).

Therefore, it suffices to consider the asymptotic behaviors of both P{p}(m) > 6o}

and P{p} (M) < 6,}.



By the definition of ¢}, (z), when o}, (M) < Q, then p},(M) > p,(M), where p,(-) is

the function defined in (2.2). In view of this fact and by (2.1) and (2.2),

P{p;(M) < 6o} < P{pn(M) < b0}

(2.12) — P{% 2:: A; (M) < —t(M, 80) + A(M, 86,m)},
where J

(2.13) A;(z) = h(@)[Ia41y (X7) ~ F(z+ 1)] — Ooh(z + 1) [I1) (X;) — £(2)],
(2.14) t(z,00) = h(z)f(z + 1) — boh(z + 1) f(z),

(2.15) A(z,80,n) = 8a[h(z + 1)80 — h(z)].

Also, by the definition of ¢} (z) and (2.1) and (2.2) again,

P{pn(m) = 6o}

= P{pn(y) > 0o for some y = 0,1,...,m}

< iP{‘Pn(y) > 00}

y=0

(2.16) = Y PSS 40 2 —tlu,00) + Al 00, m))-
y=0 j=1

Note that A;(z),§ = 1...n, are iid; E[4;(z)] = 0, and as(z, 0) < A;(z) < as(z, fo)
where a1(z,00) = —h(z)f(z + 1) — h(z + 1)8o + h(z + 1)6of(z) and a2(z,00) = h(z) —
h(z) f(z+1)+h(z+1)0 f(z). Also, since 6, = o(1) and m < co, there exists some positive
integer n, such that for all n > ng, |A(y,0o,n)] < %[t(y,00)| hold for all 0 < y < m
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and for y = M. Hence, for n being sufficiently large, —t(M, 85) + A(M, 8o,n) < O since
t(M,60) > 0; and ~t(y,00)+A(y,00,n) > 0for 0 < y < m since t(y,0p) < 0for 0 <y < m.

In view of the above facts and by Theorem 2 of Hoeffding (1963),

P{% f: A;(M) < —t(M, 6,) + A(M, b5, n)}
=1
< exp{—2n[—t(M, o) + A(M, 0o,n)]?az (M, 00)}

n -
(2.17) < exp{—-z—[—t(M, 00)]2a3 1(M, o)}
and for 0 <y <m,

PLZY" As{y) 2 ~4(4,00) + Ay, bo,m))
Jj=1
< exp{—2n[—t(y,0o) + A(y, o, n)]za:;l(y’ao)}

(2.18) < exp{—2[~¥(y,00)]%a3*(4,00)},

where az(z,00) = az(z,00) — a1(z, bo) = h(z) + h(z + 1)b,.

Let

(2.19) ¢ = = min {t*(y,00)a3 ' (¥,00)|0 <y < m or y = M}.

DN

It is clear that ¢ > 0 since m < oo from Assumption (b) and t2(y,8o)a3 " (y,80) > 0, for
all 0 <y < m and for y = M. Then from (2.11), (2.12) (2.16) to (2.19), we have

m
(2.20) r(G,d;) —r(G) < b Z exp(—en) + beexp(—cn) = O(exp(—cn)).

y=0

Hence, the proof of this theorem is completed.



3. Examples and Remark

The following two examples have been considered by Johns and Van Ryzin (1971) and
used to illustrate the performance of their proposed empirical Bayes decision rules for the
two-action problem. We cite them and use the same to illustrate the performance of the

proposed empirical Bayes decision rules {d}.}.

Example 1. (The Geometric Distribution). Suppose that

f(z]|0) =0*(1—6),2=0,1,2,...;0< 0 < 1;

and that the prior distribution has the probability density function g(#) where

g0)=(e+1)(1-0)*0<0<1,aa> —1.

— o r r h(z)f(z z .
Then, h(z) = 1 and f(z) = CHIREEE, Thus, p(z) = HAHER = —2s which
tends to 1 as £ — oo. Taking 0 < 6y < 1, then, A(6p) = {z|p(z) > 0o} # ¢. Therefore,
m < M = min A(6o) < co. Hence, by Theorem 2.1, r(G, d},) — r(G) < O(exp(—cn)) for

some positive constant c.

Example 2. (The Poisson Distribution). Let
f(z|0) = e %6 /T(z +1),2=0,1,2,...;0 > 0.

Letting the prior density function be g(6) = e=%,0 > 0, we then have f(z) = I‘_(zl_-|-17
[3° 6=~ 20dg = ()=t and h(z) = T“(ﬁ)‘ Thus, p(z) = )}:—E%fl(;;a-} = ZtL which tends
to infinity as = tends to infinity. Therefore, for any finite g > 0,m < co. Then by
Theorem 2.1, r(G, d};) — r(G) < O(exp(—cn)) for some positive constant c.
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Johns and Van Ryzin (1971) considered several situations about the behavior of the
tail probability of the prior probability density function, under which, their proposed
empirical Bayes decision rules may achieve the best possible convergence rate o, = n=!.
We also apply those conditions to the sequence of the empirical Bayes decision rules {d:}.
We state the result as a corollary without citing the statement of those conditions. The

reader is referred to Johns and Van Ryzin (1971) for detail.

Corollary 3.1. Let {d}} be the sequence of the empirical Bayes decision rules defined
in Section 2. Suppose that fOQ 0dG(6) < co. Then, either under the assumptions in
Theorem 3 or under the assumptions in Theorem 4 of Johns and Van Ryzin (1971), we

have (G, d;) — r(G) < O(exp(—cn)) for some positive constant c.

Proof: We need only to verify that A(6y) # ¢ under each assumption. This can be done

directly by noting the Lemmas 4, 5 and 6 of Johns and Van Ryzin (1971).
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