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Abstract

For simultaneous estimation of p Poisson means under the normalized squared-error
loss ZP: %, it is shown that the I'-minimax rule under an e-contamination class of
priorzs= :oincides with the restricted-risk Bayes rule under a subjectively elicited prior under
very general conditions. The restricted-risk Bayes rules are explicitly derived for a wide
class of priors, including conjugate priors and their mixtures, and point priors. It is shown
that these restricted-risk Bayes rules frequently minimize the Posterior Bayes risk itself

and they enjoy desirable frequentist as well as Bayesian properties.

The class of priors considered allows subjective specification of such intuitive features
as the mean and the standard deviation (or any two percentiles) of the unknown parameters
and subsequent use of the rule which is restricted-risk Bayes with respect to a prior which
is consistent with these subjective inputs. A characterization result on the form of the

prior given the form of the Bayes estimates is also derived.
1. Introduction

Let Xy,Xs,...,Xp, be p independently distributed Poisson random variables with

means 61,02,...,0, respectively, where p > 2; consider the problem of estimating § =
(61,02,...,0,)" under the normalized quadratic loss
P 2
_ (0i — a,;)
Lg.g =3 G (1)
1=
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Clevenson and Zidek (1975) proved that X, the UMVUE of 0, is inadmissible for p > 2,

and an improved estimator is

boz(X) = (1 - ;22

m) - X, (1.2)

p N

where Z = ) X;. Since X is minimax for all p > 2, so is 6cz(X). Larger classes of
1=1

minimax estimators have since been obtained; for example, it was proved in Tsui and

Press (1982) that every estimator §(X) belonging to the class

D={6: 6(X)=(1- %) - X, where

0 < ¢(Z) <2(p—1), and ¢(Z) is monotone non-decreasing}, (1.3)

is minimax. See also Hwang (1982) and Ghosh and Parsian (1981). In view of the fact
that one can explicitly write down such a large class of minimax estimators, one needs
to build up a well-formulat_ed and systematic theory for selecting an estimator for actual
use. The goal of this paper is to address this issue using two well known frequentist Bayes
critéria,, namely, the I'-minimax and the restricted-risk Bayes criteria; we formally prove
a mathematical equivalence between the two approaches in our context and give a closed
form analytical solution under appropriate conditions. Note that the class D is certainly
not the class of all minimax estimators in the Poisson problem. However, a closed form
analytical solution to the restricted-risk Bayes problem is often not possible for larger
classes of minimax estimators (see Theorem 2 in Berger (1982)). Restriction to D seems

justifiable on this ground.

In the restricted-risk Bayes approach, one elicits a prior distribution 7o(6) and mini-
mizes over 6D the Bayes risk r(mo, §), which is the average of the risk function of § (X) with
respect to the prior mo(f). More generally, one may consider the problem of minimizing the
posterior expected loss with respect to mo for estimators 6eD. The restricted-risk Bayes
approach has been considered by several authors; see Berger (1982), Bickel (1980), Efron
and Morris (1971), DasGupta and Berger (1986), DasGupta and Rubin (1986), Hodges
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and Lehmann (1952), Marazzi (1985), etc. L. Brown writes in the discussion of Berger
(1983): “In brief, there are many possible minimax rules. The only sensible way to choose
among them seems to be to construct some crude prior distribution and then minimize the
Posterior risk among the minimax rules ....” The resultant estimator will be attractive if
it performs reasonably well with respect to the subjectively elicited prior mo(6), because
in this case the estimator has good risk properties by virtue of its minimaxity and yet the
possible subjective gains in the overall Bayes risk are not substantially sacrificed to earn
the minimax status. That this is indeed the case has been observed by several authors in
continuous cases, notably the Normal and the Gamma cases; see Berger (1982), DasGupta

and Berger (1986), and DasGupta and Rubin (1986).

The I'-minimax approach stems from a desire for an added degree of conservativeness;
unlike in the restricted-risk Bayes case, we now allow for the prior to belong to a family of
probability distributions I'. We then minimize over ¢D, the quantity rp(6) = su? r(m,é).
If T is very large so that sup r(x, §) = sup R(6, ) for every 6, then the I‘-minimz;.r): problem
would not have a unique Z)rl‘ution, becazse each 6D is minimax and hence sup R(0,6) = p
for every 6cD. The problem of selecting one estimator out of D then remz,ins unsolved
and we are back to square one. The idea, thus, is to allow a reasonably large class I' and
yet make sure that there is a unique solution to the I'-minimax problem. We show in the

subsequent sections that this can be done.

Again, several authors have considered the I'-minimax approach; most results, thus
far, on the I'-minimax approach have been obtained when T conéists of priors of a specific
functional form (like, for example, a sub-class of the conjugate priors) or priors with a few
specified moments. Most of these classes of priors are unappealing because the functional
form or the moments of a prior are very difficult to specify. On the other hand, the I'-
minimax problem typically becomes untractable unless I' is one of the classes described

above. In this paper, we show that it is possible to work with a much more realistic class of



priors, and yet give a unique closed form solution to the I'-minimax problem. We consider

the family of priors

T={n(g) : 7(g) = (1 c)ro(6) +eq(6), gcL},

where 70(§) is a fixed (perhaps subjectively elicited) prior, 0 < £ < 1 is a fixed number,
and g belongs to a suitable class L of probability distributions on the parameter space (H).
I is known as the e-contamination family of priors and has recently received considerable
attention from many authors; see Berger (1986), Berger and Berliner (1986), Berger and
Sivaganesan (1986), Huber (1973, 1981) among others. The motivation of the class I' is
that | Pr(0eA) — Pr,(9cA)| < € for every meT, and every (measurable) subset A of (H). The
e-contamination class thus allows a maximum error of amount ¢ in subjectively specifying
the probability of a set. Various choices of £ have been proposed in one dimension: for
example, the class of all possible distributions, the class of all unimodal distributions, or
the class of all symmetric unimodal distributions, etc. For a general treatment of the
I'-minimax problem in various cases, see Berger (1979), Gupta and Hsiao (1981), Jackson

et al. (1970), Kudo (1967), and Robbins (1951, 1964).

In Section 2, we show that the I'-minimax problem under very general choices for
L is formally equivalent to the restricted-risk Bayes problem under the subjective prior
7o. We then derive in sections 2 and 3 the explicit form of the restricted-risk Bayes rule
under suitable conditions on 7. In particular, conjugate, conjugate mixtures, and point
priors have been considered. In the process, an interesting result on characterization of
priors from the form of the Bayes estimates emerges. In contrast with earlier works on
restricted-risk Bayesian estimation (e.g., Berger (1982), Chen (1983), Marazzi (1985)), we
can actually minimize the posterior expected loss for a large class of priors. In Section 4, we
investigate the extent to which the restricted-risk Bayes rule fails of being unconstrained
Bayes. In particular, upper bounds on the RSL’s (see Efron and Morris (1971)) of the

restricted Bayes rule are derived for quite general priors 7o and exact expressions for the
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RSL’s in a conjugate example are worked out. The results show that for p > 3, the I'-
minimax and the restricted-risk Bayes rules perform virtually as well as the unrestricted

Bayes rule and even for p = 2, the performance is very respectable.

2. Derivation of the I'minimax and the

restricted-risk Bayes rules

We first show the formal equivalence of the I'-minimax problem for the
e-contamination class of priors and the restricted-risk Bayes problem for the initial prior

7o, under very general choices of L.

Lemma 1. Let §(X) be as in (1.3). Then z},.i;nooR(Q"s) =p

Proof. It suffices to show that |E E Qﬂ%‘;’iﬁ - EZ fif%ﬁl — 0 as X6; — oo.
Observe that |E Z L Z (X 6:)° —_—

|EZ 5(X) X;) +2EZ(6 ( 0i)|

_ $*(2) X? ¢(Z) Xi(X; - 6;)
‘IE(z+p—1)2' 0; 2Ez+p—1'Z a—

1 X2 1
—-N2.p—_ - . e 28 - - - .
4p—1) vy Z,- 5, TP VNE

. —Xi(){;i_ ) (2.1)

£

The result now follows from (2.1) on using the facts that conditional on Z = 2,%;

is Bin (2, E%)’ and that if Z has a Poisson distribution with mean ), then E'Z'—}? <e A +%
for ¢ > 1. We will now prove that the I'-minimax and the restricted-risk Bayes approaches
are equivalent if the class £ contains all uniform distributions on compact sets as (weak)

limit points.

Theorem 1. For K,M > 0, let Qx,n(0) denote the uniform distribution on the set

C={0:K< X0; <K+ M}. Suppose for every K, M, there exist Q,eL such that
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Qrn > Qk . Then
inf sup r(,6) = sup r(r,4,)

6eD per mel

if f inf (7o, 6) = (o, o).
6eD
Proof: First note that for every §eD,

supr(m,6) = (1 — €)r(mo, 8) + esup r(g, 6)
wel qel
< (1 - €)r(mo, 6) + esup R(0, 6)
[

= (1 — €)r(no,6) + ep. (2.2)

Next, note that for any 6D, and any 4 > 0, Lemma 1 implies that 3K > 0 such that
P
R(0,6) > p—~if E 0; > K. Let M > 0 and let Q,&L converge weakly to Qx as-

=1

Hence ,sup r(m,6) > (1 — &)r(mo, 6) + e/R(Q,b')dQn(Q)

wel

>(1-rlmd)+elp-n) [ Q@ (23
K<20;<K+M

Since Q, > Qx,M, and Qg a(dc) = 0, it follows that Q,(C) — Qi a(c) = 1; it then

follows from (2.3) that sup r(w,6) > (1 — €)r(m0,6) + €(p — ). Since 4 > 0 is arbitrary,
wel’
supr(m,6) > (1 — €)r(mo,6) + ep. (2.4)
wel’
The assertion of the Theorem now follows from (2.2) and (2.4).

Remark. Actually, Theorem 1 remains valid if for large K, one can find a sequence of
distributions from £ converging weakly to some measure Q whose support is contdmed in
{6 : X6; > K}. The uniform distributions on compact sets {0 =K <X0; <K+ M} are
just convenient distributions of such type. For most choices of L, one will be able to find
a sequence @,eL having such a measure Q as its weak limit, and the uniform measures
described above will work in most cases. Theorem 1 thus asserts that the ['-minimax and

the restricted-risk Bayes approaches are equivalent for very general choices of £, so long
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as one restricts attention to estimators in the class D). Note that an arbitrary minimax

estimator may not necessarily satisfy the limiting risk property stated in Lemma 1.

In view of Theorem 1, in order to find a I'-minimax rule with respect to the e-
contamination class of priors, it is enough to find the restricted Bayes rule with respect
to m, in D. The following analysis dwells on deriving the form and the properties of the
restricted-risk Bayes rule under various types of prior 7,(#). The analysis is easier if To(8)
is such that the resulting unrestricted Bayes rule is of the form

P
br,(2) = (1= £(2)) - X, where Z = ) _X; (2.5)

i=1
We now prove a result which states that subject to smoothness and regularity conditions,

p
the Bayes rule is of the form (2.5) if and only if the prior density is a function of  0;
i=1
alone.

Theorem 2. Let z; merp Poi(0;),1 < i < p. Consider the problem of estimating § under

the loss

14 2
I e ()
L(Q’ g’) - Z 01: .
=1
Suppose 7,(f) is a prior density on (0, 00)? such that 3—%7#0 (0) exists and is continuous on

(0, 00)? for every ¢. Also assume

5,
(a) For1<i<p, lim Hﬂ’e =1 7r0(0)—0wheneverz,>0

,—PO C)OJ 1
f];lﬂ;’ e Z J'7r0(Q) df and fl;Iof’ e~ T 616';“0 (0)df are finite for each ¢ and all
T1,...,ZpeZy ={0,1,2,...}.

(c) [o; .]‘;é[.ﬂ;"e’"mfwo(g)@ = oo for all z1,Z2,...,TpeZ4.
371
(d) For some t1,ts,...,t, >0

f-- -feztieﬂ'e_mﬂaiﬂwo(g)[dﬂ <oofori=1,2,...,p.

Then 6,,(X) is of the form (2.5) iff 7o is a function of ¥; alone.
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p  — . 2
Proof: We first prove the sufficient part. Since the loss function is > go’—ef")—, for X; >
i=1 '

Bbr,i(X) = (E(6;77 /X))

f H O;fe"mi wo(X6;)dd
J

= - . 2.6
JOr T 1L 07 e Sorna(50,)d0 (2:9)
J#£E

The denominator of (2.6), on integration by parts, and by virtue of assumption (a), equals
1 . ]
po / [167 {e™%m,(28;) — ™% n’,(20;)} db (2.7)
J

One now has from (2.6),

z; _ -1
J11;67e E"ﬂfé(ﬂoj)‘é"] (2.9)

Oryyt(z) =25 [1— .
aiz) ==z [ ijo;_vJe__zo,- o(20;)do

Transforming (64,02,...,0,) to (w1,ug,...,u,) where u; = Ej-=1 0;, one has, for any

function h(%4,),
/ [165 e =% n(s0;)ds
i

o0 Ug Ug
= / e_“"h(up)dup.../ (us — ug)”aduz-/ ul (w2 — u1)*2du,
0 0 0
= B(zy + 1,22+ 1)B(z1 + z2 + 2,23 + 1)... B(z; t+.oitzp1+p—1,z,+1)

oo
X /0 e Uy S FEetetZote=1p (g Yy, (2.9)

One now has from (2.8) and (2.9),

(2.10)

I3 emvuztr—ly,(u)du

-1
B fooo e"“uz+p_17ré(u)du:| X.
0

67"0,.' (}.() = [1

This is clearly of the form (2.5). In order to prove the necessary part, we will have to
show that mo(8) is a function of £6; alone if ér,(X) is of the form (2.5). Note that by the

Mean-value theorem, for any 4,7,

mo(g) — mo(n) = (8 — )" - Vmo(67), (2.11)
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where 0* lies on the line segment joining 6 and 7). If now 3‘90—‘ I1,(9) is independent of ¢ (i.e.,

for each i, the sth partial derivative is the same function), then Vno(8*) is proportional

to the vector 1 = (1,1,...,1)" and (2.11) implies that mo(4) = mo(n) if £8; = Xn;. It will

thus suffice to show that 3%7(’0(?) is independent of ¢ if 6;,(X) is of the form (2.5). We
will prove this for the case p = 2. The proof for a general p is exactly similar. Towards

this end, first note that the argument leading to (2.7) and (2.8) give that

[ T1;0 =% B mo(0)d0

6r, i(z) = z; (1 ==
0si (Z) “’t[ fﬂjﬂj’e_zejﬂo(e)@

1 (2.12)

Observe that (2.12) holds even when z; = 0, if one assumes that [ I1 0;" e E0 -3‘97'_ mo(0)do
and [T];0;7 e~=%mo(8)df are finite for all zy,...,z, and [ ;! l_fj# 077 e~ %% 10(0)df =
oo for each 7. In this case, it can be directly checked that the Bayes action is 6, ;(X) =0
and the right side of (2.12) is #lso 0. This, together with the fact that &, (z) is of the form

(2.5), implies that [ I1; 0;" e T %—;wo(g)dﬁ is independent of ¢. Hence,
. 3 2
Zj,—ud; [ Y _ = —
/ 1;10] =50 (301“0(’3) 77 wo(g)) do =0 (2.13)
V z1,z96Z4. Let :TIWO(Q) - ‘33727"0@) = h(01,02). Then, one has from (2.13),

/ 022 ¢~ % dg, / e 107 h(0,,0,)d0, = OVzy, zoe 7.

= / 0;26—02[);1 (02)do; =0 VzoeZ,,

where p,, (62) = /e"olﬂflh(ﬂl,ﬂz)dOI. (2.14)

By virtue of assumption (d), (2.14) implies that VzieZy,p,, (82) = O for almost all 45.
The null set outside of which p;, (62) = 0 can be assumed to be the same for all values of
z1 because of the countability of Z,. Now note that assumption (d) also implies that for
almost all 03, [ e®%1e=%|h(0,,62)|d8; < oo; in view of this and the fact that p,, (f2) = 0
for almost all 82, one has h(f;,02) = 0 a.e. (6;) for almost all §;. Fubini’s theorem now

implies that the product measure of the set {(6;,0;) : h(8;,02) # 0} must be zero. The
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continuity of h(f1,02) now gives -5‘3—17ro(g) = 3—302—71'0(42) and hence that () must be a

function of X.0; alone.

In view of Theorem 2, we will for the present consider only those priors mo which are
functions of ¥6; alone. We next derive a sufficient condition for an estimator in D to be

Bayes with respect to mo(6) = mo(X4;).

Lemma 2. Assume 7o is a function of 6, alone and conditions (a), (b), and (c) of

Theorem 2 hold. Let the unrestricted Bayes rule é,,(X) be of the form (2.5). Then, in

) __#(=) 2
order to find the restricted Bayes rule within D it is sufficient to minimize = (f(i) f‘(j;;’ p—1)

for every fixed z; here ¢(z) is as defined in (1.3).

Proof: First note that minimizing r(o, 6) is equivalent to minimizing (7o, 6) —7(7o, 6, ).
Now
r(mo,6) — r(7ro, 1)
(9 —5 (-’B))2 (9: — vro. ()

(2.15)

[ (6r, . (z ;6¢x 2 b, (z (2))(0; — br, . (z
— FroEyp Z( ,(~)0i (z)) Z( (z) - 21)( :+(2))

Since 6;(z) = 6r,,i(z) = 0 if z; = 0, (2.15) gives, on interchanging the order of the

expectations,

r(mo,6) — r(mo, éx,)
=Emz) (6”0" —i(z))” (2.16)

2 ;>0 ”0’1' (z)

where m(z) stands for the marginal distribution of X. Since it is enough to minimize
the inside sum for each fixed z in order to minimize the expectation, the lemma now

follows on using §(X) = (1 — 7%%) X and 6, (X) = (1 - f(Z)) - X, and observing that

P
Y. Xi= ) X;=Z for every X.
1:X;>0 =1

10



Interestingly, it turns out that in a large number of cases, it is actually possible to

2f () - L , : :
=7 () pointwise for every z; thus the restricted-risk Bayes rules also

minimize

have the attractive property that they actually minimize the Posterior Bayes risk for every
fixed z. We are now in a position to derive explicitly the form of the I'-minimax rule
(or equivalently, the restricted-risk Bayes rule) for various different priors To(X0;). An
important special prior which is a function of 20; alone is the prior 7,(26;) = e B0,
this corresponds to the case when 0; are iid exponential with mean % (note that the prior
7o here is unnormalized). We first derive the restricted-risk Bayes rule with respect to
this prior. This derivation will motivate the form of the restricted Bayes rule for a more

general 7y and also illustrate the key ideas involved in the proof.

Theorem 3. Let 6{s have a joint prior m,(§) = 7,(Z8;) = ¢ >Z% A > 0. Then the

estimator 6; (X) defined as

. X . A+2
51ro(‘¥)=m1fzﬁ—j‘—(l’—1)
2(p — 1) . A+2
=(1— ———2). —(p— 2.17
(1 Z+p—1) Xi#Z>——(p-1) (2.17)

minimizes the Posterior Bayes risk with respect to 7, in the class of estimators D.

Proof: The proof involves two steps:

(i) Proving that 6} D,
2[f ()~ 2,

z+p—1 T

(ii) Proving that 6, minimizes = where 6., (z) = (1 - f(2)) -z = XT1

is the unrestricted Bayes rule and 4(2) is as in (1.3). First note that 6% (X) =

(1- %) - X, where

A

#() = 1os

A+2
(z+p-1) ifzS%(p—l)

=2p-1)ifz> —’\——;—z(p - 1) (2.18)
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Hence it is clear that 6; €D. To prove (ii), note that 6; coincides with 6, for

z < #(p — 1); hence,

2[f(2) - kP 2[f(2) — S22, )2

24p-—-1 z+p—1
=0< : 2.19
T [ B 7 (219
for z < —:{'—(p — 1), and for every ¢.
To prove (ii) for 2 > 242(p — 1), note that for each ¢ as in (1.3),
$(2) 2(p—1) A A+2
< < = —(p—1);
z+p—1~"2z+p—1~" A+1 f(2), for 2> A (p—1);
this implies that
2 2
A+1 z+p-1 A+1 z4+p-—-1

Vz > 2+2(p — 1), This in turn implies (ii). The Theorem now follows.

The targeted result for more general priors m,(X6;) will be to show that the restricted

Bayes rule in D is of the form

55,(@) = (1= F(2)) -z if (e +p— 1)f(2) <2(p— 1)

—(1- ;ELP—”) zif (2 +p—1)f(2) > 2(p - 1). (2.21)

In general, proving (ii) is easier than proving (i); in fact, 6, again coincides with 6, for

(z+p—1)f(2) <2(p—1) and for (2 +p — 1)f(2) > 2(p — 1), one still has the inequality

¢(2) 2(p—1)
P e T A (2.22)

for each ¢ as in (1.3). Thus (ii) is always proved using the same argument as in Theorem

3. To prove (i), note that §; has the representation 6} (X) = (1 - éﬂ_:_p%) - X, where

¢*(z) = (z+p—-1)f(2) if (z+p—-1)f(2) <2(p - 1)
=2(p-1)if(z+p-1)f(z) > 2(p—1). (2.23)
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It is then clear that in order to prove that 67 €D, it will be necessary and sufficient to show
that (z+p—1) f(z) is monotone increasing in z. This fact is not true for arbitrary mo(8) =
7o(Z6;). The bulk of the subsequent analysis deals with finding sufficient conditions on

mo for this property to hold.

Lemma 3 Let [[,(X6;) be log concave and decreasing as a function of $6;. Then

(2 +p—1)f(2) is monotone increasing in z.

Proof: First note that (2.9) implies that

—Il (z)

””=b@—h@’

(2.24)

where

L(z) = / e—tuTtP=1n! (1) dy,
/

and I;(2) = [ e “u*tP " 1r5(u)du (2.25)

Hence,

—11(2)/1x(2)

&) = = 7L

E[—mg(w)/mo(v)]
= . 2.26

T+ B () mo(w] (229

where u has the density e~*u®+P~1xg(u). Since this is MLR in z, it will follow that

E[—mp (u)]
Tolu

'
. . . . . . . . . - lU . . . .
is increasing in z and hence f(2) is increasing in 2 if o) g increasing in u,

TolU
i.e., if my is log-concave. Also note that f(z) > 0 if o is decreasing. Since f(z) > 0 and
increasing, it follows that (2 + p — 1) f(2) must be increasing too. This establishes the

Lemma. We have the following Theorem.

Theorem 4. Let mo(X8;) be log-concave and decreasing. Then 6} (z) defined in (2.21)

minimizes the Posterior Bayes risk with respect to 7o in D.

13



Example: A simple example of a log-concave and decreasing prior is 7o (u) = e°%" ¢ >
0,a > 1. Note that fe_"(zof)ac{ﬂ < oo for each ¢ > 0, > 0. In particular, a = 2 gives

the normal type prior.

Next we give sufficient conditions on suitable log-convex priors 7o so that (2 + p — 1) f(2)
is increasing. Establishing such sufficient conditions for a general log-convex 7o seems

extremely difficult. An interesting subclass of log-convex priors is the family of conjugate

mixtures
7o (Z0;) = / e=X0; p(3) ) (2.27)
0
The following Lemma gives a sufficient condition on the mixing distribution p(}) for

(2 +p— 1) f(2) to be increasing.

Lemma 4. Let mo(X0;) = [ e *%%p(A)d\. Let g(z) denote the density of z = - Then

zgl(z

(2+p—1)f(2) is increasing in z if e

is decreasing in z.

Proof: Note that for each u,n{(u) = — [ Ae=**p(A)dA. Hence, one has from (2.10 ,
0

[ [ e Nuyete=1ap(n)dudr |
[ [ e~ +Nuyz4r—15())dud

1-f(2) = (1+

( [ (1+,{\5z+pp(>‘)d}‘) -
=1+ T
f 31+Aiz.\'+pp(A)dA

f liA : (1+A).1z+p—1p(A)dA

= f(2) = (2.28)
| wrxyer=ap () dA
Changing the variable of integration to z = 1—_|’\_—x, one has,
1 — p)zt+r-1 d
f(z) = Jo 1= 2) g(z)dz (2.29)

 Jot-2)=*rig(z)da
Thus, in order to show that (2 + p — 1) f(2) is increasing in z, we will need to show that
for z9 > z; > 0,
Jo 2(1 — 2)*g(z)de S 2 Jo y(1 - y)*g(y)dy
U Ja-g)re@ds T (- n)=elu)dy

14



& /: /01(222: —219)(1 — )*2 (1 — y)* g(z)g(y)dzdy > 0

@Lhéﬂwwm—gwu—%wazm )dzdy > 0 (2.30)

Observe that for z > y, the integrand in (2.30) is positive; hence, it will suffice to show
that

/ / (z9)(1 ~ - )”2(1— Z)7g(— )g(z_yl)dzdyzo, (2.31)

21

where h(z,y) =z —

Since h(z,y) = —h(y,z), and h(z,y) > 0 for z > y, it will suffice to show that for z > v,

the averaging measure gives bigger mass at (z,y) than at (y,z), i.e., for z > y,

o(2)1-2)= _ g(2)1- =)=

> (2.32)
9(Z)1-L)= ~ g(L)1- L)=
Inequality (2.32) will follow if we can show that for = > y,
1 - az)zg(az
v(a) = ( )lg( ) (2.33)
(1 - ay)<g(ay)
is decreasing in a.
Now, log v(a) = log g(az) — log g(ay) + — log (1- a,z) - = log (1 —ay)
I{ax) _ yg!(ay) _log(1 — az)
= (log y(a)) = X
(log 7(a)) 9(az) g(ay) a2
T log(1 — ay) Y
a(1 — axz) T a? + a(1 — ay)
_1 {aa:gl(a,a:) a,ygl(ay)} { W tiog (1 —ay) — (1 —axz)}.
a = g(az) 9(ay) 1—ay
=T+ T, (sa.y). (2.34)
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We first prove that T < 0. Observe that to do this, it will be enough to prove =+

log(1 — 2) is increasing for 0 < z < 1. This follows immediately on differentiation.

Since Ty < 0, clearly, for v(a) to be decreasing it will suffice if

az gl{azx) < g/(ay)

g(az) ay

whenever z > y

!
& M is decreasing in .
g9(z

This proves the Lemma.

Theorem 5. Let m(d) = [e *Z%p(A)dA and suppose p()\) satisfies the condition of

Lemma 4. Then 6, defined in (2.21) minimizes the Posterior Bayes risk in 0.

We now give examples of mixing distributions p()) which satisfy this condition.
Example 1. Let p(A) = A™~1(1 4 A)~(m+n) m > 0,n > 1.
Then g(z) =z™ '(1-z)" L,0<z <1

. %g'%”—l = (m —1) — &=L which is decreasing in z if n > 1.

*tog(z 1—z ?

Note that these are precisely the mixing distributions which result in Proper Bayes

minimax estimators in the Poisson problem for p > 3. See Ghosh and Parsian (1981).
Example 2. Let p(A) = e~ *A™,m>p—1, ¢>m+2.

First note that / mo(20;)df = / e~ MetE0) xm xdg

c+)30,-)m+1 ~
(o) up—l
= constant - /0 W(iu

<ocoifm>p-—1.

16



Next, note that the density of z = l-i%\ is

cx

g(z) =e 1-=. zm(l - z)—m—z

zgl(z) ez m (m+2)z
g(z) (1—:c)2+ T2
cx (m+2)

Tt 1o 2 (2.35)

. . - ! . .
Differentiating once more, %:Tg—) is decreasing

c —2czx (m+2)
1-2z)2 1-2)®  (1-12)?
ifffc—(m+2)}(1—2) > —2czfor0<z<1,

iff — <0forO0<z<1

which holds if ¢ > m + 2.

Finally, we now give examples of a few prior which are not covered by either Theorem

4 or Theorem 5.

Example 3. Let mo(u) = e *u",0 < n < p— 1. Note that mo(u) is log-concave, although
not decreasing. The proof of Lemma 3 shows that for (2 + p — 1) f(2) to be increasing, we
merely need to show that f(2) > 0 in this case, since f(2) is increasing by virtue of the

log-concavity of mo. Also, (2.24) implies that f(z) > 0 provided
L(z) = / e tu+P=1x! () du < 0 ‘ (2.36)

By direct computation,

n-I(z+n+p—1) T(z+n+p).
2z+n+p—1 - 2z+n+p ’

Il(z) =

hence, (2.36) holds iff n < ﬁ;—p—_l Vz>0,ie. iff n <p-—1.

Example 4. Let mo(u) = e™¥u~",0 < n < p. In this case, mo(u) is decreasing so that

f(2) > 0; however, o (u) is log-convex, but cannot be written in the form [ e=2*p(X)dA for

17



any mixing distribution p()) (see Berger (1975)). It remains to show that (z+ p — 1) f(2)

is increasing in 2.

By direct computation,

_ T(z4+p—n) I'(z4+p—n-—1)
I (z) - [_—z'z-l-pT_ n: 2z+p—n—1 ]’
I'(z+p—n
and I(z) = %_) (2.37)
Hence, (2.24) gives,
_ I(z+p—n) + n-I'(z4+p—n—1)
f(Z) - 2%Tp—n 2z+p—n—1
2-I'(z+p—n) + n-I'(z+p—n—1)
2z+p—n 2z+p—n—1
z+p—n—1 +n
=2 (2.38)
z+p—1

which immediately implies that (2 + p — 1) f(2) is increasing in 2.  Finally note that

S 70(8)d6 = [ e *uP " ldu < 0o if p—n > 0, ie., if n < p.
3. General conjugate and Point priors

In this section, we address the problem of minimizing the Bayes risk in D when the
prior 7o not a function of ¥6; alone. Important examples of such priors are point priors
and the general conjugate priors with density e~ %% 7r0;-"_1, where A,a > 0. If mp is a
point mass at §,, the problem is one of minimizing R(f,,6) for 6eD. This problem arises
naturally and becomes interesting if one has strong prior belief that @ is near 6,, but at the
same time wants full protection against misspecification of prior information. The analysis
is easier if we assume 0, = 0, - 1, where §, > 0, and 1 = (1,1,...,1)’. In an empirical
Bayes scenario when the s are thought to be similar or exchangeable, this might be an
interesting problem. The general conjugate priors with parameters A and o allow one to
subjectively specify such intuitive features as the mean and the standard deviation of the -

6;’s; one can then use a conjugate prior consistent with these inputs and use the resulting

18



restricted-risk Bayes rule. It is for this reason that the special exponential priors (and
their mixtures) treated in section 2 are not adequate for our purpose because they do not

permit subjective specification of a mean and a standard deviation.

Theorem 6. Let mo(f) be the point mass at 09 = 0o - 1. Then the following estimator 6,

minimizes the Bayes risk with respect to 7o in D:

6 :
br0(@) = (3, —p) 2 i 2 < p =14l

=(1_ 2(p_1)

z+p_1)-:§ifz>p—1+p00. (3.1)

Proof: First note that the unrestricted Bayes rule 6,(X) = 6, a.s. (Py) for every 6.
Mimicking the argument of Lemma 2, one has that for minimizing the Bayes risk r (7o, 6),

it suffices to minimize

m(:z:) Z a:) — 8,)*

4 (1 _ z¢(2_2 )-’Bi _ 00)2
= Em(z)Bz)z-2 Y 2 010 : (3.2)

1=1

where m(X) and m(Z) denote the marginal distributions of X and Z respectively. Clearly,
to minimize (3.2), it is enough to minimize the inside conditional expectation for every z.
The conditional expectation is a constant independent of ¢(z) if z = 0. We will therefore
consider the minimization problem only for z > 0.

Now note that, marginally, X’ Po,(0o) hence;

llfl(z) = E(X,;IZ = z) ==

and pa(e) = B(XH|Z = 2) = 2+ (1= )+ (5)?

_ z(p—1) + 22

2 (3.3)
p
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Also, minimizing the conditional expectation in (3.2) is equivalent to minimizing

(1 _ ¢(z) )N2(z) 9 (1 _ _&) . ll'l(z)

z+p—1 0o z+p-—1
_pa(z) o e(z) ) wa(2)ye  Gord(2)
=% Tzip-1 Ha(2) 2 ua(z) &9

_ bop (2)(2+p—1)
k2 (2)

It thus suffices to minimize (over ¢) (z+p—1 — ¢(2))%. The expressions

for p1(2) and pa(2) in (3.3) give that %o (:)2((‘:')"” —1) — pfy; one thus has to minimize (for

2>0) (24 p =1 - pllo — $(2))2.

Now note that the estimator in (3.1) is of the form

62,0 = (1= 725y %, where

() =z+p—1—plhoif z<p—1+ pby

=2(p—-1)ifz2>p—1+pby (3.5)

Clearly, ¢* satisfies the properties described in (1.3); also, the argument provided in The-

orem 3 gives that ¢* indeed minimizes (2+ p—1— pfy — ¢(2))2. This proves the Theorem.

Remark. One major difference between Theorem 6 and the preceding Theorems is that

the restricted-risk Bayes rule never coincides with the unrestricted Bayes rule 6y, (X)

when 7o is a point mass. The reason for this is apparent; when o is a point mass, oo ()~( )

is not an estimator of the form (2.5). We now derive the restricted-risk Bayes rules under

general conjugate priors 7o with shape parameter « and scale parameter A\. An important

difference between the exponential priors and the general conjugate priors is that the
zit+a—1

unrestricted Bayes rule é,,(X) for a general conjugate prior is &y, :(z) = Firr—=, and is

thus not of the form (2.5).

—4\20_,'
Theorem 7. Let 7o(8) =e 7 Hﬂ;?‘_l, A,a > 0. Then the following estimator 65,
J
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minimizes the Bayes risk with respect to 7o in D :

6 (X)=X if }\(Z+p--1)+p(1—oz)<0
o\2) = 2 A1

p(1 - o) X . AMZ+p-1)+p(1-a)
_ X < <2(p—1
(1 Z+p—1> A1 b 0s A+1 <2p-1)

Proof: As in (3.2), in order to minimize the Bayes risk, it suffices to minimize for every

z
L Xita—1
E EP: (O z+pz—)1) " X — A+1 FA+1) (3.6)
X|7=2 2 X;+ta—1 - '

If we let p1(2) = E(X;|Z = 2) and p2(2) = E(%_—IIZ = z), then an argument similar

to the one leading to (3.4) shows that minimizing (3.6) is equivalent to minimizing

(z+p—Dm() 2
(“”‘“‘u+nmm “0
_ . 2=z+p-1) ; 2
= (-1 Ry ) &

since p1(2) =

3N

We need to explicitly calculate u5(z) in order to minimize (3.7) for every z.

Towards this end, first note that, marginally, X;’s are iid Negative Binomial with

a+z—1 A%
a—1 )W,z=0,1,2,... (3.8)

P(X,; = :z:) = <
. P(X; =z|Z = 2)

PXi=z) X;=2z—1)
J#t
EDEER
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where b = pa — 1. Next, note that

pa(z) = E <_X2_1z = z)

X;t+oa-—1

=E<i{‘(i—)|z— )—i—E('—Xi——|Z=z)

Xi+a-—-1

Now,

_ 1 Zz:n:(x—l) at+z—-1\[(b—a+z—=z
<b+z) ~rzta-1 z z—zx
b

a* +z—1)! (b* — a* + 2* — z)!

<b—l|,—z)zz((a*—1)'z' (" — o)(z" —2)!

(where a* = a+1,0* =b+1,2* = z — 2)

Also, by a similar argument,

Xi oz
E(Xi+a—1lz_z> btz

)

(3.10)

(3.11)

(3.12)



Using (3.11) and (3.12), one now has from (3.10) that

az(z—1)+zpa _ 2(z+p—1)
ra(z+pa—1) p(z+pa—1)

p2(2) = (3.13)

Hence, (3.7) now implies that the restricted-risk Bayes rule will be obtained on minimizing

(z+p—1—2£22=L _4(2))?; since this is equivalent to minimizing (ME'FP_,\I}_TP(I_“) —¢(2))?,
the theorem now follows on using the familiar argument used previously in Theorems 3

and 6.
4. RSL’s and Bayesian Performances

In this section, we investigate the amount of possible subjective Bayesian gains one
has to sacrifice by using the restricted Bayes rule 6, instead of the unrestricted Bayes
rule 6r,. Traditionally, this is done by calculating the Efron-Morris RSL’s (see Efron and
Morris (1971)), defined as

r(7o0s 62, ) — 7 (70, 6xy)
r(mo,x) — r(70, bx,)

RSL (6%,,m0) = (4.1)

Since low values of the RSL would indicate marginal sacrifices in subjective Bayesian gains,
we derive upper bounds on the RSL’s for a general prior 7o (X8;); we also exactly calculate
the RSL’s in the conjugate case, i.e., when mo(£0;) = e~*%% X > 0. First we need a few

Lemmas.

Lemma 5. Let mo(26;) be such that é,, ,(X) = 0 if X; = 0; let also &, (X) = (1— f(2))-
X; then for any estimator 6eD, '

Z-1f(2)- 222

1-f(2)

7(7"0, 6) - 1’(7['0, 61ro) = Em(Z)

Proof: Apply the argument leading to (2.16) in Lemma 2.

Lemma 6. Let K(p) = [ mo(X6;)df. Then the marginal probability mass function of X

is given as
Js e urtP g (u)du

(2 +p—1)!K(p)

23

m(z) =



Proof: By definition,
[ €78 T, 03w (£0;)d8

T, 5K (0) (42)

m(z) =

Transforming from (8y,02,...,0,) to (k1,p2,. .., kp), where uj = EZ:=1 0;, and using the

steps leading to (2.9) in Theorem 2, one has,

m(X) =B(zy + 1,22 + 1)B(z1 + 22 + 2,23 + 1)...B(z1+...4+ zp—1+p—1,zp, + 1)

e Yur P 1x,(u)du
< HJ--'BJ'!K(P§) (*3)

The result now follows from (4.3).

Lemma 7. The marginal probability mass function of Z = P . X; is given as

[ e uF P Lo (u)du

P(e) = P(Z =2) = &)

Proof: Since m(z) depends on only z, clearly, P(z) = m(z){#(21,T2,...,2p) 1 D b Ti =

z} = m(z) - Np(2) (say). For p = 2,N,(2) = z + 1. We claim that in general Ny(2) =

<z+p—1
p—1

0 < 5 < z. We have to now find out the number of ways in which z3,...,z, can add up

) . Suppose the result is true for p; we will prove it for p+1. Fix ; = j, where

to z — 7; but, by the induction hypothesis, this is ( = ;) i_ 11) -1 ) . Hence,

me =2 (73157 = (757)

(see Feller (1957), page 61). The Lemma now follows immediately.

- - o0
2 P(z
Lemma 8. r(mg, X) — r(m0,6r,) = zz=:o %)(—1

Proof. Follows from Lemma 5 and Lemma 7 on setting ¢(z) = 0.
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Lemma 9. Assume 7o(Z0;) is such that (z+ p— 1) f(2) is monotone increasing in z. Let

Zo+t1l=inf{z>0:(z2+p—1)f(2) > 2(p—1)}. Then,

[£(2) - Z=212P(2)

z+p—1

1— f(2).

(70, 65,) — (70, 6) = Z z-

Z2>2

Proof: Apply the definition of §; , Lemma 5, and Lemma 7.

Lemma 10,

(o o]

(7m0, X) — (70, 6xp) = Z(z +p—1)P(

z=1

zP(z)
bl oy gy

_1]2

Proof: From (2.24), one has f(z) = mg{-‘_il.—z}(;y, where I;, I3 are defined in (2.25). Since

I .
P(z) = Zﬁ)zl(zjﬁ}{'ﬁ’ Lemma 8 gives

Ii(2)

1 o0
"m0, X) = r(70,600) = G RG) 2 G DB HE)

(4.4)

Now , I (2) =/e_”uz+p—17r6(u)du

= /e“”’uz"""'lwo(u)du —(z+p—-1) / e “uf TP 255 (u)du, (4.5)
if for every z, e “u*+Pro(u) — 0 as u — 0,00 (integrate by parts).

Hence, I1(2) = I,(2) —v(z +p—1)Iz(z—1)

= (p— D)IK(p)(z ~ D![=P(2) - (2 +p— ) P(z— 1)),

. I2 F-4
on using P(z) = = l)gK)(p)z! (4.6)

Also, from (4.6), I2(z) — I1(2) = (p — 1)!K(p)(z — )} (z+ p — 1) P(z — 1). (4.7)

Using (4.6) and (4.7) in (4.4), one has the Lemma.
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Lemma 11. r(mo,6;,) — r(mo,6x,)

= zP(z2) B 2 o
g;ﬂ(z+p—1 (z—1) Grp—DPG=1) 1| —4(p—1)
2 P(zllj(_zl_ ) —4(p — 1)P(20)

2>29

Proof: From Lemma 9,

* Y —r(w = zfz(z) — /(2) z
r(7r0’61ro) (70, 6r,) zgo 1— f(z ) 4(p—1) z; (1_ (z ))P( )

¥4

-0 ) e Tras )t ®

Z2>29

= A+ B+ C (say). (4.8)

Using exactly the same arguments as in Lemma 10,

[ zP(z)
(z+p—-1)P(z—1)

A=) (z+p—1)P(z—1)

2>2

—1)? (4.9)

z-I(2)

Also, B =4(p—1) Z z+p—1)(p—1)K(p)=!

z2>29

(using (2.24) and (4.6)).

=4(p—1) Z P(z - 1)[(z r zl;gjz(z T~ 1] (using (4.6) again)

Z>20

=4lp-1) Y I e 1)

Zz2>20

_ _ _ 2 P(z)

=4(p—1) z;,[P (2 — 1)] ~1) Z: CETIy]

= —4(p—1)P(z0) —4(p—1)® ) _ % (4.10)
Z2>20
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-1 Y L) -h() _ B()

Finally, C Gip L)  (p— 1)K ()

2>20

(using (2.24) and (4.6))

—4p-12 Y &l (using (4.7)) (4.11)

2>20 z+ p—
Combining (4.9), (4.10), and (4.11), one has the Lemma.

We now need to index the marginal pmf of Z with p. Henceforth, for each p, P(z, p)

will denote
[ e *utP—1n4(u)du
(p— 1)12!K(p)

With this notation, we have the following Lemma.

P(z,p) =P(Z =2) =

Lemma 12. For every p and z,(z —1)P(z—1,p) =p- KKpil P(z—2,p+1).

Proof: Follows from definition of P(z — 1,p) and noting that [ e *u®tP~2ny(u)du =
pl(z—2)!K(p+1)P(z —2,p+1).
This Lemma enables us to write down a convenient upper bound for r(7ro,5,"r‘o) —

(70, 6y )-

Lemma 13.

Z {P(z—-1,p) + %HP(E: —-2,p+ 1)}

2> 20

< (el -1 |

+ 4(17— 1)2P(Zo,p) _
zo+p—1

T(7l'0, 6;0) - r(7r0361r0) <p

4(p — 1) P(20,p)-
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Proof: In the expression for r(mo, 85 )—7(70, 6x,) in Lemma 11, apply the result of Lemma

12 in the first term by writing (2 +p—1)P(2~1,p) as p- P(z — 1,p) + (2 — 1) P(z — 1, p).

Next, on the second term use the bound

sp-? Y T = He)

Z> 2

—apo12| ¥ P v P(z,p)}

2> 25—1 z+p 2>29 z+p— 1

P

_z>zo—lz+p—1 z>203+p—1

P(Zo, p)

=4(p—1)2z0+p—1'

The Lemma now follows.

We now specialize to the special conjugate case when mo(8) = e~2T%  Note that in

this case, K(p) = [ mo(8)df = ,\Lp First we give a formula for the marginal pmf of Z.

Lemma 14. Let mo(0) = e~*%% X > 0.

+p—1 AN/ 1 N
ThenP(z,p):(zpf1 )'(Aﬁ-l) (A—i—l) ,2=0,1,2,....

Proof: Apply Lemma 7.

Lemma 15. If mp(8) = e~*%% then

.2P(z,p) o A
(z +p— l)P(Z - 131’)

Proof: Apply Lemma 14.

Lemma 16. Let mo(f) = e~*¥%. Then r(mg, X) — r{70,6r,) = -5\3_,’_\—1
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Proof: From Lemma 10 and Lemma 15,

r (70, X) — 170, 6ry) = (/\—_/i\_—l)2 Z{pP(z -1,p)+(2—1)P(z—1,p)}

(5 ZP(, s ZP(zp+1)

(using Lemma 12)

= pA (since M = 1
A+1

(o o]
K@) —Xa.nd ZP(z,p)=1for any p).
p z2=0

Theorem 8. Let mo(f) = e~*¥% X > 0. Then

RSL(8?, 7o) < (pe) " {p[P[NB(p,¢) > 20| + -;:P[NB(p +1,6) > 2o — 1]] 2

4(p—1)*
+ '—_P[NB(p, E) = Zo] - 4(p - l)P[NB(p, E) = ZO]}a
Zo+p-—1
where € = r’}_—l, and NB(p,¢) denotes a Negative Binomial random variable Z with pmf
P(Z=2)= z:f; 1> e?(1 —€)?,2=0,1,2,....
Proof: Apply Lemma 13 and Lemma 16.

The following Table gives values of the RSL in the case mo(f) = e~*%% for various
values of A. In computing these RSL’s the exact formula of Lemma 11 for r(mo, é;,) —
(7o, 6x,) rather than the bound of Lemma 13 was used. Theorem 7 above gives an upper
bound on the RSL’s (and not the exact RSL’s as such) because Lemma 13 is used in the
proof of Theorem 7. We have found that the convenient upper bound of Theorem 7 agrees

very well with the exact values of the RSL’s for most of the cases tabulated below.
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Table 1: Table for RSL(5; ) when § ~ e~*2%

A 2 3 4 5 6 8 10

0 .1353 .0430 .0170 .0090 .0040 .0011 .0004
0.25 .119681 .035904 .013982 .006223 .003007 .000817 .000250
0.50 .103314 .028328 .010256 .004276 .001944 .000470 .000129
1.00 .082297 .019120 .005992 .002187 .000876 .000167 .000036
2.00 .060441 .011022 .002766 .000817 .000267 .000034 .000005
3.00 .048814 .007541 .001594 .000400 .000112 .000010 .000001
4.00 .042273 .005395 .001020 .000220 .000055 .000004 .000000
5.00 .037563 .004114 .000703 .000137 .000029 .000002 .000000

The values are indeed encouraging. They show that for p > 3, one loses at most 4.3%
of the possible subjective gain in return for I'-minimaxity of 65, under a wide class of
priors; moreover, 6y, is also actually minimax. The subjective Bayesian thus has no real
reason to worry because he does practically as good using 6 as he had done using 6, , and
yet he is assured of a good amount of protection against misspecification of the subjective
prior. Especially encouraging is the fact that from 3 dimension itself, the RSL’s start to
get nominal. In contrast, in the normal problems one needs 5 or 6 dimensions before the
RSL’s get very close to zero (see Berger (1982) and DasGupta and Rubin (1986)). Table
1 shows that the RSL’s tend to increase as A gets closer to zero. At first sight, it seems
possible that the RSL’s may be quite big as A goes to zero. The following Theorem shows

that this fear is unfounded.

Theorem 9. Let mo(f) = e %% A > 0. Then }in}) RSL(65,, 7o) exists for every p and is
given as

}in% RSL(6;,,m0) = P[X <p—1] - P[X = p,

where X has a Poisson distribution with mean 2(p — 1).
Remark: The values corresponding to A = 0 in Table 1 are actually these limiting RSL’s.

Proof of Theorem 9: We will use the upper bound of Theorem 8 on RSL (65 ,70),
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although one can show that the same limit is obtained by using the exact expression
obtained from Lemma 11. First note that the Negative Binomial and Binomial probabilities
are related by the identity P[NB(p,e) > K| = P[Bin(K +p—1,e) <p-—1]

. g{ (z;fz 1) eP(1—€)® = 2':, (K““f‘ 1) e(L—e)Kte-l=r (419)
The first term in the upper bound of Theorem 8 on RSL equals R; = e[P[NB(p, g) >
20l + =5 - P[NB(p + 1,€) > 2o — 1]]. Note that in the conjugate case, zo = 2Z(p — 1)

(see (2.17)). Now using (4.12),

= zo+p—1 N +p—1
— . 0 - r(1 _ ~\2o+p—1—r _ 0 - r(1 _ ~Y2o+p—1—1r
R, sz( ! )ﬂ1ﬂ° quz( ! )ﬂ1q0
r=0 r=0
(4.13)
Using Stirling’s approximation on the factorials (m! = 27re_mm”‘+%), it follows after
some algebra that

- 2o - r zo+p—1—r —2(p—1 P 2p — 1)
Z( +,p 1)5(1_5) + =0[e ( )'Z((pr! ))],

r=0 r=0

and pi <Zo +:) — 1) Er(l _ E)Zo+P—1—r =0 |:e—‘2(P"‘1) . pil M] (4°14)

r=0 r=0 r
Here, a, = 0(by,) means $= — 1 as n — oco. Using (4.14), one has from (4.13) and the fact
that e = 0as A — 0,

R, =0[P(X < p)), (4.15)
where X is as in the statement of the Theorem.

The second term in the upper bound of Theorem 8 equals

—1)2 —-
,= A1) .(%+P])aa_q%
pe(zo+p—1) p—1

which on applying Stirling’s approximation, is found to be
Pply

4p—1)?° (2p-1)P2- 2071
0[ P (p—1)! ] ’ (416)
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which converges to zero as A — 0.

Finally, the third term in the upper bound equals

—4(p—1) (20+p—1
Ry= —P—7) P(1—€)*
3 pe ( p__l E( 6)

— 0[—2 -(2(p - 1))pe—-2(p—l)]
p! :
= —2P[X = p|. (4.17)

Combining (4.15), (4.16), and (4.17), one has the Theorem.
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