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Abstract

For the problem of selecting the best of several populations using the indifference (preference)
zone formulation, a natural rule is to select the population yielding the largest sample value of an
appropriate statistic. For this approach, it is required that the experimenter specify a number 6%,
say, which is a lower bound on the difference (separation) between the largest and the second largest
parameter. However, in many real situa.tions,,it is hard to assign the value of §* and, therefore,
in case that the assumption of indifference zone is violated, the probability of a correct selection
cannot be guaranteed to be at least P*, a prespecified value. In this paper, we are concerned
with deriving a lower confidence bound for the probability of a correct selection for the general
location model F(z — 6;),i = 1,...,k. First, we derive simultaneous lower confidence bounds on
the differences between the largest (best) and each of the other non-best population parameters.
Based on these, we obtain a lower confidence bound for the probability of a correct selection. The
general result is then applied to the selection of the best mean of & normal populations with both
the known and unknown common variances. In the first case one needs a single-stage procedure
while in the second case a two-stage procedure is required. Some simulation investigations are

described and their results are provided.
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1. Introduction

Let X;;, j =1,...,n, be n independent observations from a population r;, where 71,7, ..., Ts
are independently distributed with continuous cumulative distribution function G(z—#6;), 1 < i < k,
respectively. Let 6§ = (f1,...,0;) and let §(3) < ... < f(x) denote the ord‘ered values of 0y,...,0;.
It is assumed that the exact pairing between the ordered parameters and the unordered parameters
is unknown. The population associated with the largest location parameter () is called the best
population. Assume that the experimenter is interested in the selection of the best population. For
this purpose, we choose an appropriate statistic Y; = Y(X1,. .., Xin) with cumulative distribution
function Fj,(y—0;) and use the natural selection rulé that selects the population yielding the largest
Y; as the best population. Let CS (correct selection) denote the event that the best population is

selected. Then, the probability of a correct selection (PCS) applying the natural selection rule is:

oo k-1

PpiCS} = / I Faly + 60y — 63 dFn(y)- (1.1)

—0 =1

To guarantee the probability of a correct selection, Bechhofer (1954) introduced the indifference

zone approach in which the experimenter is asked to assign a positive value §* such that
Ok) > Ok—1) + &*. (1.2)

Thus, the subspace (6*) = {0|0(x) > 0(x—1) +6*} is called the preference zone and its complement
0°(6*) = {016(xy < B(x—1)+ 6*} is the indifference zone. We also let @ = Q(§*) J Q¢(6*). On Q(6*),

we have,

: _ ® *\1hk—1
g nt By{CS) = / [Py + 6)FAF (1), (1.3)

Suppose that the function on the right-hand-side of (1.3) is an increasing function of the common

sample size n and tends to one as n tends to infinity. Then, for a given probability P*(k~1 < P* <
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1), the minimum common sample size ng that is required to guarantee the probability of a correct

selection to be at least P* over the preference zone is determined by

no = no(6*, P*) = min{n| /;°° [Fn(y + 6%)]*1dF,(y) > P*}. (1.4)

However, in a real situation, it may be hard to assign the value of §* such that () > 0(—1)+6*
since the parameter values 6(;), (x—1) are unknown. So that if the above assumption is not
satisfied, then the probability of a correct selection cannot be guaranteed to be at least equal to
P*. Parnes and Srinivasan (1986) have also pointed out certain inconsistencies in the indifference
zone formulation of some selection problems. It should be pointed out that the work of Fabian

(1962) and Hsu (1981) is of some relevance in indicating a way out of this impasse.

Recently, retrospective analyses regarding the PCS have been studied by some authors. Olkin,
Sobel and Tong (1976, 1982) and Gibbons, Olkin and Sobel (1977) have presented estimators of
the PCS. Faltin and McCulloch (1983) have studied tile small-sample properties of the Olkin-
Sobel-Tong’s estimator of the PCS for the case when k = 2. Bofinger (1985) has discussed the
non-existence of consistent estimators of the PCS. Anderson, Bishop and Dudewicz (1977) have
given a lower confidence bound on the PCS in the case of normal populations having a common
variance which is either known or unknown. Kim (1986) has presented a lower confidence bound
on the PCS for the case where the underlying probability density function f,.(y — ) of F,,(y — 0)
has the monotone likelihood ratio property in y and # and studied its application to the case of

normal populations with common known or common unknown variances.

In this paper, we are concerned with deriving a lower confidence bound for the probability
of a correct selection for the general location model G(z — 6;), i = 1,...,k. First, we derive si-
multaneous lower confidence bounds on the differences between the largest (best) and each of the
other non-best population parameters. Based on these, we obtain a lower confidence bound for the
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probability of a correct selection. The general result is then applied to the selection of the best
mean of k normal populations with both the known and unknown common variances. In the first
case one needs a single-stage procedure while in the second case a two-stage procedure is required.

Some simulation investigations are described and their results are provided.

2. A Lower Confidence Bound on PCS

For given 6* and P*, let ng be the minimum common sample size determined by (1.4). Let
Y; =Y (X:,...,Xin,), be an appropriate statistic for inference regarding 8; and let us assume that
the distribution of ¥; — 6; is independent of 8;, 1 < i < k. Let Y1) £ ... £ Y| denote the order
statistics of ¥;, 1 < ¢ < k. Also, let fy; denote the (unknown) parameter associated with Y};. For

given o, 0 < a < 1, let ¢(k, ng, &) be the value such that

Py{ rax (Y: —6;) — min (V; —6;) < c(k,no,0)} =1 - (2.1)

= . —9,) — mi —0;) < . i .
Let E {lrél?_%ck(Y, 6;) 12}1511:(]/’ 0;) < ¢(k,no,)}. Then, we have the following lemma

Lemma 2.1. E C {(Y[5] — Y}y — ¢(k,no, @)t < 0y — 0(5), 1 < 1 < k— 1}, where (y)* =

max(0,y).
Proof: First note that foreach ¢ =1,...,k,

min(¥];) — 07) < min(Yfy — 61)
= Y — max g

< Y — 0y)- (2.2)

Thus,



E  { max (Y - 0()) — min (Y5 - 0);) < o(k, no, @)}
<AV — by) — | min (Vi) = O11) < o(k, mo, @)}
={(Yix) — 0y) — IJnSl{l(Y[J] —051) < e(k,no,@), 1<i<k-1}
c {(Yir) = 0(xy) — (Yis) — 0(5)) < c(k, o, ), 1< < k— 1}(by (2.2))

= {Y[k] - Y[.;] - c(k,no,a) < 0(],) - 0(,;), 1<i<k- 1}

= {(Y'[k] - },[.,] - C(k,no, a))+ < 0(k) - 0(,’), 1< ) < k— 1}

Note that the last equality follows from the fact that O(ry — 0(s) 2 0forall1 <7<k~ 1. Hence,

we complete the proof of this lemma.

Note that in (1.1), the probability of a correct selection Py{CS} depends on the parameters
# = (f1,...,0x) only via the differences O) — 6@), 1 < ¢ < k— 1. For convenience, we write
Py{CS} = P(64,...,6k—1) where §; = Ok) — 0y, 1 < ¢ < k— 1. We see that P(6y,...,8,_1) isa

nondecreasing function of §; for each 1 =1,2,...,k— 1.

Foreachi=1,...,k—1, let

br,i = (Yik) — Yia) — c(k, no, @) ¥, (2.3)
Pr =P 1,05 k1) (2.4)

We propose P, as an estimator of a lower bound of the PCS. We have the following theorem.
Theorem 2.2. Py{Py{CS} > Pr} > 1 - a for all feQ2.

Proof: By nondecreasing property of P(61,...,6k—1) with respect to §;, 1 < i< k—1, from (2.1)

and Lemma 2.1, we have, for 0¢(2,



l—-a= Pa{E}
< Pp{8ri < Oxy)— 05y, 1< i< k—1}
< Py{P(bp1,.--,8L,5-1) < P(b1,...,66_1)}

= PQ{PL < Py{CS}}.

This completes the proof of this theorem.

3. Selection of the Best Normal Population in Terms of Means

Let X;;, 1 < j < n be independent observations from N(4;, o%), i = 1,...,k where the
common variance o2 may be either known or unknown. The best population is the one associated
with the largest mean ;). We consider two situations according to whether the common variance

o2 is known or unknown.

3.1. Lower Confidence Bound for PCS : o2 Known Case.

When the value of the common variance 02 is known, for 0eQ1, the probability of a correct

selection applying the natural selection rule is:

Py{CS} = = kl:[l@(x+ ‘/%(0";’ — 0“’))d<1>(z), (3.1)
00 =1

where ®(-) is the standard normal distribution function, and the value of the sample size ng, for

the indifference zone formulation, is determined by

ng = min{n| /_:[@(z + —@)]k_ldé(x) > P*}. (3.2)

— ng
Let X; = -1 Y X;;. For given 0 < a < 1, choose the value ¢(k, o, @) such that
=1

no

Y. _0) _ 1 L —0.) < = - Q. 3.3
PQ{fé‘?gxk(X' 0:) 12-1&()(’ 0;) < c(k,no,0)} =1-a (3.3)



Note that here, c¢(k,ng,a) = Fas T cooWhere gf o is the 100(1 — a)%th percentile of Tukey’s
studentized range statistic with parameters (k,c0). The value of 4% o 1s available from Harter
(1969). Then, we define

br,i = (X — Xpqp — ek, no, o)) ™ (3.4)

and

A A A vn i
PL=P@r,...,00k-1) =/ H B(z+ L2 b, YO do(z). (3.5)
Then, by Theorem 2.2, Pp{Py{CS} > P} >1-aforall Qeﬂ.

3.2. Lower Confidence Bound for PCS : ¢2 Unknown Case.

When the common variance o is unknown, Bechhofer, Dunnett and Sobel (1954) presented a

two-stage selection rule, which is briefly described as follows.

Take a first sample of ng(no > 2) observations from each of the k populations. Compute
— 2;2
X; = ;—0— ; Xij, (1 <1< k),and S2 = k(no 7y - E XJ(X,J X;)?. Define N = max{no, [S 21

where the symbol [y]| denotes the smallest integer not less than y, and h is a positive value such

that
/0 ” /_ : [®(z + wh)]*~1d®(z)dFw (w) = P*, (3.6)

k~1 < P* < 1, and Fyw(-) is the distribution function of the nonnegative random variable W with

k(no — 1)W? following xZ(k(no — 1)) distribution.

Then, take additional N — ny observations from each population. Compute the overall mean
_ N
X;(N) = ﬁ Y. Xij, 1 < i < k. We then select the population yielding the largest observation

=1
_X-[k](N } as the best population.

For this two-stage selection rule, the probability of a correct selection is:



Pp{CS} = Pp{T (V) > Xy (W), i # k)

\/_(X(k)(N) O(x)) \/ﬁ(a(k) -0) _ VN(X —0) .
Pp{ - > . .8 # k}
\/_(X(k)(N) 9(k)) h(By —0(5)) S _ VN(X5) —05) .
- > i £k}
6* o o
2h2
( since N > [ 5t ) (3.7)
h(6 0
— P{Z+ L%—‘—’)W>z,, i# k)
k—1
o [ h(6 0
- / / T] @+ 200 —06) 1oy amy (w),
0 TR =1 6
where Zy, . .., Zy are iid random variables having standard normal distribution, and W = S/o with

k(no — 1)W? ~ x%(k(no — 1)) and (Zy,...,Z;) and W are independent.

Thus, to obtain a lower confidence bound for Py{CS}, it suffices to find simultaneous lower
confidence bounds for 8(x) — 0(;), 1 < ¢ < k — 1. Then, replacing the () — 0(;), 1 < i < k-1,
by the corresponding lower confidence bounds into the function on the right-hand-side of (3.7), we

obtain a lower confidence bound for Pé{C.S’ }. For convenience, we let
T o, o M0 = 0w
Q81,. .., 6k1) = / / ]‘[ Bz + ——— ) d®(2)dFw (w). (3.8)

Let ¢ = Sqg (no—1) /VN, where 0% k(no—1) 18 the 100(1 — o) %th percentile of Tukey’s studen-

tized range statistic with parameters (k, k(no — 1)). Define

b, = (X (N) — X (N) - o)t (3.9)
and
OL=Qbr1,--r00,5-1)- (3.10)

We propose QL as an estimator of a lower bound of Py{CS}.
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Lemma 3.1. Let E = {lrg?é(k(_f,-(N) - 0;) — 1I<n,i2k(Y"(N) —6;) < c}. Then, Py{E} =

1— « for all QeQ.
Proof:

Py(E) = Py e, (RAN) ~ 0 i, (%)~ 05) < )
= Pp{ max VN(Xi(N) - 0:) - min VN(X(N) - 6;) < SGFp(ng—1)}

=1-aq,
where the last equality follows from the definition of 9%, k(ro—1)"
Lemma 3.2. Py{bp: < Ox) — 0iy, 1 <§ < k—1} > 1— a for all §eQ2.

Proof: Following the same argument as in Lemma 2.1, we have E C {31,,,- SO0k —0), 1< <

k — 1}. Then using Lemma 3.1 leads to the conclusion of Lemma 3.2.

Lemma 3.2 and the increasing property of the function Q(61, ..., 8x—1) with respect to §;, 1 <

t < k — 1, lead to the following main résult.
Theorem 3.3. Pp{Pg{CS} > Qp} > 1 — a for all .

Proof: Note that Pp{CS} > Q(61,...,8k—1) for all 8eQ. Therefore, Py{Pp{CS} > Qr} >
Py{Q(61,...,0k_1) > QL} > 1 - o for all fe2.

4. Remark and Example

Anderson, Bishop and Dudewicz (1977) and Kim (1986) have also studied the problem of
finding a lower confidence bound on PCS. They considered the retrospective analysis to approach
a lower confidence bound for PCS. However, our approach is different from theirs. We use the
following example to illustrate our procedure and describe the difference between ours and the

above mentioned approaches.



Example (The data is taken from Example 3, page 506, of Gupta and Panchapakesan (1979)).

An experimenter wants to compare the glowing time of five different types of phosphorescent
coatings of airplane instrument dials. Assume that the distributions of the glowing time for each
type of phosphorescent coatings are normal with a common unknown variance o?. Based on some
past information, the experimenter assigns §* = 5. Then, using the indifference zone formulation,
a two-stage natural selection rule as described in Section 3.2 is applied. We use P* = 0.90 and
the initial sample size ng to be 5. The coated dials were then excited with an ultraviolet light.
The upper part of Table 1 shows the number of minutes each dial glows after the light source was

turned off.
Table 1. Glowing Time of Five Types of Phosphorescent Coatings

Coatings
1 2 3 4 5
45.7 51.7 45.9 54.8 65.9
observations 48.4 46.4 54.8 55.6 65.4
taken at the 51.9 49.8 62.9 63.5 60.0
first-stage 57.0 5.27 64.7 61.6 70.1
41.0 48.1 54.3 55.7 69.5
g 5 5 5 5 5
X; 48.8 49.74 56.52 58.24 66.18

k no -
§* = Fr=my X, 2 (Xij - Xi)* = 26.7305
=1 7=

observations 61.4 54.8 57.9 - 59.2 64.0
taken at the 47.0 54.0 53.9 53.2 56.0
second-stage 51.8 49.1 51.7 56.9 68.1
N 8 8 8 8 8
7,(1\7) 50.4375 50.825 55.7625 57.5625 64.875

For k = 5, ng = 5, P* = 0.90, from Gupta, Panchapakesan and Sohn (1985), h = 1.92727V2.
Therefore, N = max{no,[%z—]} = 8 and hence N — ng = 3 additional observations should be
taken from each population. The observations taken at the second-stage are given in the lower part

of Table 1.



We then have the overall sample means: X;(N) = 50.4375, X5(N) = 50.825, X3(N) =
55.7625, X4(N) = 57.5625 and X5(N) = 64.875. According to the two-stage natural selection

rule, coating number 5 which yields the largest sample mean is selected as the best. -

However we do not know whether the largest and the second largest unknown means differ at
least by 6* = 5 or not. A reasonable question is: what kind of confidence statement can be made
regarding the PCS? By the method described in Section 3.2, for & = 0.10, we see from Harter (1969)
that, ¢§ 4(no—1) = 3.736. Then, ¢ = Sqg ., /VN = 6.8290. Therefore, by,,; = 7.6135, b5 =
7.221, gL’3 = 2.2835 and 31,,4 = 0.4835. After some computation, we have QL = 0.518. Therefore,
we can state with at least 90% confidence that PCS > Q L = 0.518 for all values of true unknown

means.

For different o values, the 100(1 — )% lower confidence bounds @z of the PCS are also

computed and given as follows:

o | 01 02 03 04 05
QL | 0518 0.672 0.759 0.817 0.869

Remark: The procedure used in the above example and in our paper is designed for the data
which are collected in two stages. The procedures of Anderson, Bishop and Dudewicz (1977) and
Kim (1986) cannot be employed in this example. Thus the procedure of this paper covers the
case where neither Anderson, Bishop, and Dudewicz’s procedure nor Kim’s procedure can be used.

5. Simulation Studies

For the normal means selection problem, for various parameter configurations, the behaviors
of Pp, and Q 1 were simulated. T'wo types of parameter configurations were simulated: a slippage
configuration f(1) = ... = 0(x_1) = () — A and an equally spaced configuration §(;) — 0¢;_1) =
A, 1=2,...,k. For simulation, we suppose that the assigned value of §* is 1 and also the assigned

10



probability levels are P* = 0.90 and P* = 0.95. When the common variance ¢? is known, the
common sample size ng is determined by (3.2). When o? is unknown, the initial common sample
size is set equal to ten. The simulafion process was repeated M = 1000 times for the case where
0? is known and M = 400 times for the 6% unknown case. For each simulation, the random
observation Xj; is generated from N (;,0%) with ¢ = 1. The values of Py and QL were computed.
The averages of the 1000 P, and 400 Q L are reported in Table 2 and Table 3, respectively. In each

table, the numbers in the parentheses are the standard errors of the corresponding estimators.

For convenience, we let P, (P*, A, a,T) and Qz(P*, A, a, T) denote the corresponding Py, and
Qy for given values of P*, A, a and T, where T denotes the type of parameter configuration. The

slippage configuration is denoted by S and the equally spaced configuration is denoted by ES.
The simulation results indicate the following:

1. Note that for fixed P*, o and T, the PCS is a nondecreasing function of A. Therefore, it is
reasonable to expect that both Pr(P*,A,a,T) and Qr(P*,A,a,T) be nondecreasing in A.

The simulation results indicate that this is so.

2. For fixed P*,« and A, the PCS under equally spaced parameter configuration is larger than the
PCS under the slippage configuration. The simulation results also indicate that this behavior
holds. That is, from the simulation results, we find: P(P*,A,a, ES) > PL(P*,A,a,S) and
QrL(P*,A,a, ES) > Q1(P*, A, 0, 5).

3. For fixed values P*, A and T, the simulation results indicate that Py (P*,A,0.2,T) >
PL(P*,A,0.1,T) and Qr(P*,A,02,T) > Qr(P* A,0.1,T). These results are as expected

since gf , is nondecreasing in « for fixed k and v.

4. For fixed A, and T, Py (P*,A,o,T) is nondecreasing in P*. Note that according to the
sampling rule used in this paper, assigning large P*-value implicitly implies taking more ob-
servations. Thus the simulation results seem to indicate that Py (P*, A, o, T) is nondecreasing

11



in the sample size. For the 6% unknown case, for both k = 3 and 5, the corresponding values

of Q L(P*, A, a,T) are also nondecreasing in P*.
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Table 2. Simulated Values of Py, for k = 3; 02 Known

90% lower confidence bound 80% lower confidence bound
Slippage Equally Spaced Slippage Equally Spaced
P*=090 | P»=095 | P*=090 | P*=095 | P*=0.90 | P*=0.95 | P*=0.90 | P* =0.95
0.3497 0.3573 0.3708 0.3993 0.3648 0.3779 0.3975 0.4340
0.5
(0.0016) (0.0020) (0.0023) (0.0032) (0.0023) (0.0029) (0.0031) (0.0040)

0.8 0.3703 0.3989 0.4389 0.5037 0.3995 0.4400 0.4846 0.5553

' (0.0026) (0.0036) (0.0037) (0.0047) (0.0035) (0.0047) (0.0045) (0.0053)
1.0 0.3960 0.4485 0.5007 0.5823 0.4376 0.5057 0.5555 0.6395

) (0.0035) (0.0049) (0.0045) (0.0052) (0.0045) (0.0058) (0.0052) (0.0057)
15 0.5140 0.6463 0.6610 0.7679 0.5853 0.7229 0.7231 0.8254

) (0.0057) (0.0067) (0.0057) (0.0057) (0.0064) (0.0066) (0.0058) (0.0053)
2.0 0.6876 0.8539 0.8060 0.9151 0.7635 0.9036 0.8597 0.9458

) (0.0066) (0.0052) (0.0054) (0.0039) (0.0062) (0.0042) (0.0049) (0.0030)

Table 2 (continued) Simulated Values of Py, for k = 5; 02 Known
90% lower confidence bound 80% lower confidence bound
A Slippage Equally Spaced ~ Slippage Equally Spaced
P*=09 { P*=095 | P =090 | P*=095 | P*=0.90 | P*=0.95 | P*=0.90 | P*=0.95

0.5 0.2075 0.2103 0.3054 0.3459 0.2158 0.2204 0.3398 0.3814

’ (0.0007) (0.0011) (0.0025) (0.0030) (0.0011) (0.0016) (0.0032) (0.0036)
0.8 0.2237 0.2382 0.4371 0.4874 0.2419 0.2651 ~ 0.4786 0.5310

) (0.0016) (0.0025) (0.0038) (0.0039) (0.0023) (0.0033) (0.0045) (0.0046)
1.0 0.2460 0.2798 0.5133 0.5690 0.2774 0.3243 0.5603 0.6190

' (0.0025) (0.0037) (0.0049) (0.0047) (0.0035) (0.0048) (0.0051) (0.0053)
15 0.3813 0.5003 0.6829 0.7685 0.4536 0.5839 0.7381 0.8191

' (0.0056) (0.0069) (0.0057) (0.0057) (0.0065) (0.0072) (0.0058) (0.0055)
20 0.6231 0.7907 0.8430 0.9228 0.7076 0.8541 0.8855 0.9489

' (0.0072) (0.0061) (0.0057) (0.0038) (0.0069) (0.0051)) (0.0046) (0.0030)

13




Table 2 (continued) Simulated Values of Py, for k = 10; 62 Known

90% lower confidence bound 80% lower confidence bound
Slippage Equally Spaced Slippage Equally Spaced
P*=090 | P*=095 | P*=0.90 | P*=095 | P*=090 | P*=0.95 | P*=0.90 | P* =0.95
0.1021 0.1029 0.2906 0.3260 0.1045 0.1059 0.3146 0.3534
0.5
(0.0003) (0.0003) (0.0023) (0.0026) (0.0004) (0.0005) (0.0026) (0.0030)
0.8 0.1090 0.1144 0.4185 0.4668 0.1164 0.1251 0.4526 0.4981
’ (0.0007) (0.0010) (0.0032) (0.0036) (0.1111) (0.0016) (0.0037) (0.0041)
1.0 0.1213 0.1365 0.4984 0.5434 0.1355 0.1588 0.5345 0.5798
’ (0.0014) (0.0021) (0.0038) (0.0042) (0.0020) (0.0029) (0.0044) (0.0048)
15 0.2187 0.3118 0.6643 0.7403 0.2709 0.3843 0.7096 0.7879
| (0.0045) | (0.0061) | (0.0056) | (0.0058) | (0.0055) | (0.0069) | (0.0059) | (0.0057)
2.0 0.4773 0.6713 0.8397 0.9167 0.5647 0.7508 0.8797 0.9423
' (0.0076) (0.0073) (0.0052) (0.0039) (0.0078) (0.0067) (0.0046) (0.0032)
Table 3. Simulated Values of Q, for k = 3; 0% Unknown, ng = 10.
90% lower confidence bound 80% lower confidence bound
A Slippage Equally Spaced Slippage Equally Spaced
P*=090 | P*=095 | P*=090 | P*=0.95 | P*=0.90 | P*=0.95 | P*=0.90 | P* =0.95
0.8 0.3467 0.4007 0.4141 0.5158 0.3689 0.4757 0.4633 0.5791
' (0.0021) (0.0037) (0.0043) (0.0035) (0.0037) (0.0062) (0.0005) (0.0058)
1.0 0.3647 0.4831 0.4813 0.5933 0.4031 0.5759 0.5352 0.6641
) (0.0034) (0.0063) (0.0050) (0.0060) (0.0055) (0.0081) (0.0064) (0.0076)
2.0 0.7068 0.9466 0.8203 0.9661 0.8054 0.9737 0.8869 0.9839
) (0.0082) (0.0024) (0.0066) (0.0014) (0.0070) (0.0014) (0.0054) (0.0007)
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Table 3 (continued) Simulated Values of Q ¢ for k = 5; 02 Unknown, ng = 10.

90% lower confidence bound 80% lower confidence bound
A Slippage Equally Spaced Slippage Equally Spaced
P*=090 | PP =095 | P=090 | P =095 | P*=090 | P*=0.95 | P*=0.90 | P* =0.95
0.2066 0.2887 0.4391 0.6999 0.2306 0.3347 0.5251 0.8113
0.8
(0.0008) | (0.0014) | (0.0024) | (0.0024) | (0.0014) | (0.0020) | (0.0036) | (0.0021)
1.0 0.2331 0.3492 0.5564 0.8757 0.2790 0.3963 0.6732 0.9328
| (0.0015) | (0.0022) | (0.0034) | (0.0013) | (0.0024) | (0.0029) | (0.0042) | (0.0008)
0.7844 0.9430 0.9717 0.9994 0.8701 0.9717 0.9860 0.9998
2.0
(0.0050) | (0.0017) | (0.0015) | (0.0008) | (0.0040) | (0.0011) | (0.0013) | (0.0000)

6. A Lower Confidence Bound on PCS for Scale Parameter Model

The results in Section 2 are derived for a location parameter model. Similar results for a scale
parameter model can also be obtained. For the problem of selecting the popﬁlation with the largest

scale parameter 0y, the PCS in (1.1) is replaced by

k—1

%o ]

Py{CS} = /0 IT Fal é(’f_))y)an(y), 8:>0, V;
~ =1 :

(6.1)

where F,(y|0;) is the cumulative distribution function of an appropriate nonnegative statistic Y; =
Y(X;1,-..,Xin), and the common sample size n is determined according to some sampling rule.

Suppose that the distribution of Y;/0; is independent of 8;, ¢ =1,...,k. For given @, 0 < a < 1,

let d be the smallest value such that

.10 i 9N <dV=1— a. .
Py{(gmax, Vo/99)/(min, ¥3/05) < d} =1 (62
Note that d > 1, since (121?5xk K/0,)/(11Sn;SnkY_.,/0_.,) >1
Analogous to the result obtained in Section 2, we have
for all fe€2 where, now, the parameter space 2 = {§ = (01,...,0%)|0; >0, 1 < i < k}.
Define
bri = (Yig/(Ygd))°, i=1,...,k—1, (6.4)
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where (y)°® = max(y, 1). Replacing O(x)/8¢iy in (6.1) by 5L,i, we obtain

o k=1
Py =/0 H Fu(b1,:9)dFn(y). (6.5)

We propose Pr as an estimator of a lower bound for the PCS. We have

Pg{Pyp{CS} > P} > 1 — « for all §eQ. (6.6)
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