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1. Introduction

Let my,...,7 denote k(k > 2) independent exponential populations with density
functions h(z|6;) = ol'_e_{T,z > 0, where the values of the scale parameters 6;,1 < i < k,
are positive but unknown. Let 6];) < ... < ;) denote the ordered values of the parameters
01,...,0:. It is assumed that the exact pairing between the ordered and the unordered
parameters is unknown. The population associated with the largest value [ is considered
as the best population. The problem of selecting the exponential population having the
largest scale parameter ) has been studied by Sobel (1956) using sequential approach.
Gupta (1963) studied some selection rules for gamma populations via subset selection
approach. His selection rules can be applied for the exponential populations case. Recently,
Huang and Huang (1980), and Berger and Kim (1985) also studied this selection problem
using either subset selection approach or indifference zone approach with type-II censored
data. The purpose of this paper is to derive Bayes rules to select the best exponential

population based on type-I censored data.

Type-I censored data arise in many situations such as industrial life-testing, clinical
trials and biological experiments. To motivate this study, consider a life-testing experiment,
where m items from each of the k independent exponential populations are independently
put on test at the outset and are not replaced on failure. Due to the time restriction, the
experiment terminates at a prespecified time T. The failure time of an item is observable
if it fails before time T'. If an item still functions at the close of the experiment, its failure
time is not observable. The item then is said to be censored at time T. This type of

time censoring is known as type-I censoring. Type-I censoring scheme has received much
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attention in the statistical literature. See Bartholomew (1963), Yang and Sirvanci (1977),

Spurrier and Wei (1980), and Mann, Schafer and Han (1982), among others.

Let X;;,1 < 7 < m, denote the failure times of fhe m items taken from population ;
based on a life-test experiment. According to the time censoring scheme, we only observe
min(X;;,T). Let C;; = 1if X;; < T a.nd‘ Cij = 0 otherwise. Then, N; = f:IC,-J- is the

j=
number of uncensored observations of the m items up to time T'. Let Y;; < Y2 <... <Yin;
denote the ordered values of the N; observable failure times and let Y; = gil Yij+(m—N;)T.
j=

That is, ¥; is the total life time of the m items upto the time T. Then, (¥i1,...,Yin,, Ni)

has a joint probability density function of the form:

m!

fi(yil, cee )yinanlei) = moi—nexp{_ai—l [Z Yij + (m - n)T]}

= (m#!n)!ei_"ezp{—ﬂ,-_lyi} (1.1)

where 0 S n<m,0<yin SYir L ... <¥Yin <Tyyi= Y yij+(m—n)T and ), =0if
=1 =1

n = 0. Note that (m —n)T < y; < m T. For convenience, we denote the expression at the

right-hand-side of (1.1) by fi(yi, n[6:).

In this paper, we investigate the problem of selecting the best exponential popula-
tion from a.mbng several exponential populations. A Bayes selection rule based on type-1
censored data is derived in Section 2. A monotone property of the Bayes selection rule
is discussed in Section 3. We also prove that the posterior density functions given the
observed type-I censored data have the monotone likelihood ratio (MLR) property. Based
on the MLR property, an early selection rule is proposed in Section 4. Finally, an example
is presented to illustrate the implementation of the two selection rules.
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2. A Bayes Selection Rule

Let Y = (Y3,...,Y;) and let N = (NVy,...,Ni) where (Y;,Ni),1 < i < k, are de-
fined in Section 1. Let N be the sample space generated by N and conditional on
N =n-= (n1,...,n%), let Yn be the sample space generated by Y. Thus, for y =

(yl"ayk)eyn’(m_nt)TSyl SmT,l stk-

Let 8 = (61,...,0;) and let Q = {6]6; > 0,1 < ¢ < k} be the parameter space. Let
A = {1,...,k} be the action space. Action i corresponds to the selection of population
m; as the best population. For a given fe(}, and an action 3, the associated loss function
L*(6,1) is defined by

L*(8,i) = L6y — 6:) (2.1)
where L(z) is a nonnegative, nondecreasing function of z, x > 0, such that L(0) = 0.

k
Let g(8) = I gi(6:) be the prior density function over the parameter space . 1t is
i=1

assumed that [ L(0j))g(6)df < oo.

A selection rule § = (61,...,6;) is defined to be a measurable mapping from the
sample space (N, (Vn)nen) to [0, 1]* such that 0 < §i(n,y) <1 and '162:16,-(@,3!) =1 for all
yeVn, neN. The value of 6;(n,y) is the probability of selecting popuIa,tion 7; as the best
population given the observation (n,y).

Let R($,g) denote the Bayes risk associated with the selection rule §. Then,
k

R(8,9) = /n 3 /y (B — 6:)6:(n, y) f(y,n16)g(6)dyd8 (22)
NneN '{} 1

k
where f(y,n|0) = ] fi(yi,nil6;). Now, let
i=1

() k
filyi,n) = /0 Fi(io il8:)95(0:)d85, £(y,m) = [ filwirme),

i=1
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. o)) « . « k
gi(eilyi, ni) = fz(y;i(;lo;lg),(ol) and g(QIy,g) = Hg,'(o,'ly,',n,').

=1

Using Fubini’s theorem, it is easily seen that

k
R0 =Y /y Ya(y) /n LB — 0)g(6ly, )d0f (g, m)dy.  (23)

NeN

For each (n,y), let

B, = [ Lo — 8)a(6lymas, i=1,....k, (2.4)
and let
A(z,y) = {ilAi(n,y) = min, A;(n,y)}- (2.5)

Then, a uniformly randomized Bayes rule is ég = (61, . . , 6 ), where

—1 s
5Gi(7}, y) = { LA(?’ ?,l)l ifie A(@’Q)’ (2.6)

otherwise.

3. A Monotonicity Property of g

In this section, we claim that the Bayes selection rule 0 has the following monotone

property.

Theorem 3.1. For each i = 1,...,k, égi(n,y) is nondecreasing in y; and also in
nj,j # ¢ when all other variables are kept fixed, and nonincreasing in n; and also in

Yj,J 7 ¢ when all other variables are kept fixed.

To prove this theorem, we need the following two lemmas.
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Lemma 3.1. Let 0 < n}f <n; <m, 0<y; <y’ <mT. Consider the likelihood
ratio r;(8lyi, ni, yf,n’) defined by

gilim) 5t 04(Blyi, ni) # 0

i(0lyi, ni, vl '* = { 9i(6]yi,ni) 3.1
riBlir i, 7 ) {0 if both ¢;(8lyi,n:) = 0 and g;(0|y¥,n¥) = 0. (31)

Then,
a) Asn; =n} and y; < y}, then ri(0lyi,ni, y},n}) is nondecreasing in 6.

b) As y; = y¥ and n; < n}, then r;(0ly;, ni, y}, n}) is nonincreasing in 6.
Proof: Note that as ¢i(8|yi,ni) # 0, after simplification, we have

ri(Qlyi, ni, yi , ny) = 9i(0ly], n)/9i(8lyi, ni)

= c(yi, ni, yf, 0™ " exp {67 (yi — 91)} (3.2)
where
oo oo .
clyismi i) = [ 0 exp{-0"ydgi(@)d8] [ 67" exp{~67147)0:(6)db > 0.
0 0
Thus, the proof of this lemma is completed by following a straightforward argument.

Lemma 3.2. Let Aj(n,y) be that defined in (2.4), for each ¢ = 1,...,k. Then,
A;(n,y) is nonincreasing in y; and also in nj, j # ¢, when all the other variables are kept
fixed, and nondecreasing in n; and also in y;, § # ¢, when all the other variables are kept

fixed.

Proof: We prove that A;(n,y) is nonincreasing in y; when all the other variables are kept

fixed only. The others can be proved in a similar way.
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Let 8° = (01,...,0i-1,0:41,---,0k), % = {676; > Oforj = 1,....k, j # i}y =

(y1,---,yk) and y* = (y71,...,yx) where y} = y; for j # i and y} > y;. Then,

Ai(n,y) = /n" [/0 . L(6ps) — 6:)gi(6ilys, n:)d6i] [ ] 9i(651y;,n;)d8".
i= j=1

i
Since for each fixed Qi, L(O[k] —6;) is nonincreasing in 6; and g;(8;|y;, n;) has monotone

likelihood ratio in y; and 6; (see Lemma 3.1.a), for y! > y;, we have

oo

D6~ 0906l mi)s > D6y~ 00l i)

and hence A;(n,y) > Ai(n,y*).

Now, we see that Theorem 3.1 is a direct result of Lemma 3.2, (2.5) and (2.6).

4. An Early Selection Rule

In this section, we consider the following linear loss function: L*(6,3) = O(x) — 6;, the
difference between the parameters of the best and the selected populations. Thus, the set

A(n,y) given in (2.5) turns out to be:

Aln,y) = {il ElBlyi, n] = max Blblyj,n;l}, (4.1)

where E[6lyi,ni] = [ 0gi(8|yi,n:)dd, the posterior mean of 6; given (Y3, Ni) = (yi, ni). By

Lemma 3.2, we have the following result.

Lemma 4.1. For each i = 1,...,k, E[f|y;,n;] is increasing in y; and decreasing in

;.



We will use this monotonicity property of E[60|y;, n;] to derive a modified selection rule.
This modified selection rule is designed to make a selection earlier than the termination

time T of the life-testing experiment.

At time ¢, 0 < ¢t < T, let N;(t) denote the number of failures from population =;
up to time t. That is, Ni(tf) = number of {X;;|1 < j < m, X;; < t}. Also, we let
Yia < ... < Yin;(¢) denote the Ni(t) failure times up to the time ¢. At time ¢, exclude

population 7; as a nonbest population if there exists some population 7 such that either

Ni() < m and / 891 (Bly (2), m)d8 > / 6gi(6lyi(t, T), Ni(£))db (4.2.0)
or
Na(t) = m and / 891 (Blya (t), m)dd > / 6g:(6lyi(t, T), Ni(t))d6  (4.2.5)
where
Na(?)
yu(t) = El yrj + (m — Na(2))2,
J=
Ni(t) (43)
vi(t,T) = Zl yij + (m — Ni(t))T.
]=
We also let S(t) denote the set of indices of the contending populations at time t.
That is,

S() = {iNa(t) < (SIm and [ gi(6lui(t, ), Ni($)do

> () / 60n(6lyn(t), m)db, b # . (4.4)

The life-testing experiment terminates as soon as there is a time ¢, 0 < t < T, such that

|S(#)] = 1 and in this situation, we select the population with the index in the set S(t) as
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the best population. Otherwise, the experiment goes on until the time T'. At the time T,
let

S(T) = 40 [ Ga:(6lus, N6 = s [ bi(0lus, Ny)a), (45)

where S(T~) denotes the set of the indices of those populations having not been eliminated

before the time T'. Then, a uniformly randomized selection is made over the set (7).

From the above description, we see that this modified selection rule can make selection
earlier than the termination time T. We denote this modified early selection rule by 6e
and let ég,; be the probability of selecting population 7; as the best population by applying
the selection rule 6. Note that the probability §%;, 1 < i < k, are functions of the data

observed during the time interval (0, 7.

In the following, we will show

Theorem 4.1. Under the loss function L*(8,4) = 6jx) — 6, 6&; = bgi(n,y) for all
1 <i <k, yeYn and neN, where égi(n,y) is defined by (4.1) and (2.6).

Note that égi(n,y) is the probability of selecting population ; as the best population

based on the type-I censored data (n,y) obtained at the end of the time T
Let B= {0 <t <T||S(¢)| =1} and let

i if
w={7? 1524 (49)

where ¢ denotes an empty set. Note that if B # ¢, then B = [t1,T).

By a uniformly randomized selection over the set S(T') when ¢; = T, Theorem 4.1 is

equivalent to the following.



Theorem 4.2. S(t1) = A(n,y) for all (n,y) where A(n,y) is defined in (4.1).

Proof: Case 1. As t; < T, then |S(t1)| = 1. Without loss of generality, we let m; be
the population with index in the set S(¢1). Since A(n,y) contains at least one element, it
suffices to show that i ¢ A(n,y) for all i # k. Since ¢ € S(t1), it means that population =;
is eliminated at some time, say ¢¢, not later than ¢,, by some population, say 7. That is,

at time ¢y either

Nip(to) < m and /Ogh(ﬂlyh(tg),m)dO > /0g,-(0|y,-(to,T),N,-(to))d0 (4.7.0)

or

Na(to) = m and / 891 (Blyn (to), m)d8 > / 8:(lyi (o, T), Ni(to))db. (4.7.5)

Now, note that N;(t) is an nondecreasing function of t¢(0,T] and N;(t) < m. Also, by

(4.3), yx(?) is nondecreasing in ¢ and y;(¢,T) is nonincreasing in ¢. In fact, we have

Np = Niu(T) £m, Ni(t) < Ni(T)= N, yi(t0,T) 2 (T, T) = yi

yo = yu(T) > (=)yn(to) if Ni(to) < (=)m.

Thus, when Np(to) = m, then Nj, = Nj(T) = m. Then by Lemma 4.1, and (4.7.b),

/ 891 (Blyn, Ni)do = / 81 (Blyn (to), m)d8
> / 69:(6yi (to, T), Ni(to))do
> [ 6g:(6lus, V). (48)
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When, Np(t9) < m, then yp = yr(T) > ya(to) and N = Np(T) < m. Therefore, by

Lemma 4.1 and (4.7.a),

/ 091 (8lyn, N1)d6 > / 0g91(8|yn(to), m)dé
> / 89:(Blyi (to, T), Ni(to))d8

> [ 6g:(6lus, )b (4.9)

In either situations, we see that i € A(n,y).

Case 2. As ty = T, we need to prove that
(a) i ¢ S(T) =i & A(n,y) and

(b) ieS(T) = ieA(n,y).

We prove part (a) first. Suppose i € S(T'). Then, 7; is eliminated at a time tp < T

by some other 7y,
If ty < T, this reduces to the situation discussed in Case 1.

If to = T, then by (4.5), [ 09x(8lyn, Nv)d0 > [ 0g:(ly:, N;)df. Therefore, by the

definition of A(n,y), ¢ € A(n,y).
Note that the statement in part (a) is equivalent to that
A(n,y) C S(T). (4.10)

Now, part (b) is a direct consequence of (4.5) and (4.10). Therefore, we complete the proof
of this theorem.
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5. An Illustrative Example

We use the insulating fluid example (taken from Table 4.1, page 462 of Nelson (1982))
to illustrate the way to implement the selection rules § and 6g. There are six groups of
insulating fluid. The purpose is to identify which group of insulating fluid has the largest
life-time when subjected to high voltage stress. Ten items from each group are put on a
life-test experiment which is subjected to high voltage stress. The record of the times to
breakdown in minutes is shown in Table 1. The result of Nelson (1982) indicates that the

data in each group follows an exponential distribution.

Table 1: Times to Insulating Fluid Breakdown

Group 1 2 3 4 5 6
1.89 1.30 1.99 1.17 8.11 2.12
4.03 2.75 0.64 3.87 3.17 3.97
1.54 0.00 2.15 2.80 5.55 1.56
0.31 2.17 1.08 0.70 0.80 1.34
0.66 0.66 2.57 3.82 0.20 1.49
1.70 0.55 0.93 0.02 1.13 8.71
2.17 0.18 4.75 0.50 6.63 2.10
1.82 10.60* 0.82 3.72 1.08 7.21
9.99* 1.63 2.06 0.06 2.44 3.83
2.24 0.71 0.49 3.57 0.78 5.13

Suppose that time censoring scheme is adopted before the life-testing and the censoring
time T is set to be 9 minutes. Therefore, in Table 1, the two failure times 9.99 and 10.60

marked with “*’ should be censored data according to this censoring scheme. Then, we

have
Y1 =25.36, y2=18.95, y3=1748, y4=20.23, y5;=29.89, ys=37.46,
n; =9, ng =9, ng = 10, ng = 10, ns = 10, neg = 10.

We also assume that the six scale random parameters 61, ..., 8¢ are iid with a common
prior density function g;(8) = §~3e~%. Therefore, E(0;lyi,n:) = fooo 09:(0yi,ni)d0 = (y; +

11



1)/(ni +1), 1 <i < k. Hence, E(81|y1,n1) = 2.636, E(82lyz,n2) = 1.995, E(f3|ys,n3) =
1.68, E(04|ys,ns) = 1.93, E(05]ys,ns) = 2.808, E(0s|ys,n6) = 3.496. According to the

selection rule 6, we select Group 6 as the best group.

However, if the modified selection rule § is applied, for the same data set in Table
1, the selection can be made before the termination time T'. According to the selection
rule 6g, with the same prior distribution given above, at time ¢, 0 < ¢ < T = 9, remove

m; from further consideration if there exists some h such that either

a) Np(t) < 10 and

Ny (?) N;(t)
(D yni+ (10 = Ni(®))t +1)/11 > ( Z yij + (10 — Ni())T + 1)(Ni(t) + 1), or

b) Nh(t) = 10 and

10 N:i(t)
QO wmi + /11> () wij + (m — Ni($))T + 1)(Ni(t) + 1)
=1 Jj=1
Table 2 indicates the times (in minutes) at each of which some group is removed from the
set of contending groups; and the life-testing experiment can be ended at time ¢; = 6.63.

We then select Group 6 as the best group.

Table 2: Times to Reduce the Size of the Set of Contending Groups

Group 1 2 3 4 ) 6
time 4.03 2.75 3.079 3.87 6.63

Note that the modified experiment and the procedure lead to early selection and a
saving of time T — ¢; = 2.37(minutes). Also, in Table 2, Group 3 is excluded as a non-best
group at time ¢ = 3.079 which is not a failure time for any item in Group 3. While for
Group 1, 2, 4 and 5, the time at which the associated group is excluded as a non-best

group is also a failure time of some item in that group.
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