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ABSTRACT

I consider problems of Bayesian information processing in which data consist of fore-
casts from individuals, “experts” or models. The basic concepts have been developed
and extensively used by Lindley in his works on reconciliation of probabilities. Here a
new class of models is introduced to deal with expert distributions of essentially arbitrary
form, although the focus is on continuous distributions. The models provide methods for
processing forecast information in terms of full, continuous distributions or densities, and
partial information in terms of collections of quartiles. The latter use of such models is
‘appropriate in contexts where forecasts are given in terms of simple point forecasts, with
or without uncertainty measures, or histograms. The models are illustrated in special,

practically useful cases.



1. INTRODUCTION

In a series of papers, most recently Lindley (1987) and references therein, Lindley has
identified and developed the basic ingredients of the Bayesian approach to information
processing when the information obtained consists of the statements of individuals. As a
simple example, suppose I am cohsidering the purchase of pesetas for a trip to Spain and
my decision to buy or not today depends primarily on what the exchange rate is likely
to be at some future time, say the day before I leave. Denote this uncertain quantity by
Y. I have a view about Y and also consult a colleague who provides me with his forecast
distribution for Y. This provides me with additional information that I should treat as
data, processing it in more or less standard ways, to obtain my revised beliefs about the
exchange rate. In order to do this I require a probability model for the stated distribution
of my colleague, the “expert” providing his opinion in this example, conditional on each
possible future value of Y. This probability model provides the likelihood for ¥ used in
updating my prior opinion, via Bayes’ Theorem, to process the expert information. The
development of appropriate models is the central, technical problem in this area, and the
focus of this paper. Note that the same principles apply to a variety of problems involving
the assessment and use of information from forecasting models and bureaux, and other

sources.

Lindley’s models provide for cases in which the random quantity of interest, Y, is
discrete. In this paper, the focus is on the wider class of problems in which expert, or

other, opinion may be obtained about continuous random quantities in terms of:
(a) fully specified distribution or density functions;

(b) point estimates, such as medians, alone;

(c) collections of percentiles, such as median and quartiles, or deciles;

(d) histograms as discrete approximations to continuous distributions.

Relative to full information on the expert distribution, cases (b), (c) and (d) represent

partial knowledge. It is clearly vital in practice that such cases be considered. It is



common practice in some areas of forecasting, for example, for simple point forecasts,
with or without uncertainty measures, to be quoted with no reference to a global forecast
distribution. In addition, it is often (or rather, always) difficult to elicit a full distribution
with which an expert is totally comfortable, whereas a small collection of quantiles may

be perfectly acceptable as a partial description.

In Section 2, the case of an event indicator Y is considered, and concepts under-
lying the basic approach developed by Lindley outlined. Even in that case, there is a
need for partial information processing, such as with upper and lower bounds on expert
probabilities. Section 3 develops the fundamental model for predictive distributions. A
key ingredient is the focus on the quantile function of the expert as data, rather than on
the distribution function directly. This model is shown to provide simple, interpretable
likelihobds for the quantity Y based on expert information provided in any of the forms
above. Cases (b), (c) and (d) are considered together in Section 4, that of full information

(a) in Section 5. Some final discussion and examples are given in Section 6.

2. BASIC CONCEPTS IN THE EVENT CASE

To fix ideas suppose Y is binary and that my prior probability that Y = 1 is p. My
consulted expert provides the probability f which comprises my only additional piece of
information, H = {f}. My problem is to construct the model defining the density or mass
function p(H|Y'), for each possible value Y = 0 or 1. Lindley’s models (Lindley, 1987)
suppose that p(H|Y) = p(f]Y’) is the density of the random quantity f following a logistic

normal distribution. Another possibility is Beta, such as
(fY) ~ Bléay,6(1 — ay)], (Y =0,1),

where § > 0 is a precision parameter and, for each Y, ay = E[f|Y] is my expectation of
the expert’s forecast. Clearly I view the expert to positively accord with reality if a; > ao,
and that expertise increases with a; — ag. This model provides densities

I'(5)
I‘(5ay)I‘(6[1 — ay])

p(fIY) = foor =11 - f)flmend—,
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for 0 < f < 1, that form the likelihood function for updating to my posterior probability
p* = P(Y =1|H) = P(Y = 1|f). On the log-odds scale, routine calculations lead to

log (lﬁp;") = log (I{;p) +k+6(a1 — o) log (T{_f) ,

where k involves §, a; and eg via gamma functions.

This result is analogous to those in Lindley’s normal models; my posterior log-odds
are obtained by adding a linear function of the expert’s log-odds to my prior log-odds. If
the expert is vague in the sense that f = 0.5, there will still typically be a correction due
to the constant k. Only in very special cases is k zero, namely those in which o + ag = 1.
Specializing even further, the multiplier 6(ay — ap) being unity leads to p* a pf and
1—p* a (1—-p)(1— f), so that the expert’s forecast is itself the likelihood. An example,
discussed below, is the case a; = 2/3, ap = 1/3 and § = 3. In such cases, if I am vague

initially with p = 0.5, then p* = f and I adopt the expert’s opinion.

Such models allow the processing of expert opinion in terms of bounds on f. This
can be viewed as partial information, or censoring of the data f, and is particularly ap-
propriate if the expert feels unhappy with further refinement of his statement beyond
H = {fi < f < fu}, for lower and upper bounds f; and f,, respectively. The connections
with the “robust Bayesian” viewpoint (Berger, 1984) are evident. Based on the Beta, or
any other, model for f, the relevant likelihood components are now given by

Sfu
wEw) = [Ty, (v =01,

Ji

providing a general solution to the censoring problem. In the very special case above, with
a1 =2/3, ap = 1/3 and § = 3, this leads to posterior p* a p f and 1—p* a (1 —p)(1-7)
where f = (fi + fu)/2, although such simplis_ticcases are likely to be rare in practice. It
should be stressed that this form of p(H|Y) is only appropriate when it is not known in
advance that f is to be censored in this way, and when the censoring mechanisms (ie. the
reasons why the expert provides only bounds) provide no information about Y. Otherwise,
alternative models would consider the bivariate distribution of (fi, fu|Y), for each Y, if it
were known in advance that the expert were to provide only bounds, or if the expert took

an upper and lower probabilistic view of ¥, such as Walley (1987).
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3. MODELLING EXPERT DISTRIBUTIONS

The ideas above extend to cases in which Y takes values in a discrete set. Lind-
ley (1985) proposes what are essentially multivariate logistic normal models for discrete
probabilities within a general framework. The case of continuous ¥ has also been con-
sidered by Lindley (1983, 1987) when it is assumed that the expert distribution lies in a -
parametrised family. In the former reference, for example, it is assumed that the expert
states ¥ ~ N[u,02] and then the model defines a joint distribution for the parameters
p and o2, conditional on possible outcomes Y. Similar ideas are discussed by Harrison
(1985), in the context of time series forecasting. The assumption of a particular, paramet-

ric form is, however, very restrictive; here models are developed for essentially arbitrary

forms.

Suppose Y to be real-valued and that the expert is to provide information about his
distribution function F(Y'). Assume that F(Y) is monotonically increasing over the real
line and differentiable with density f(Y'). The first step in constructing a model is to specify
the anticipated form of the expert distribution, conditional on all possible values of Y.
With hypothesised value Y, suppose the anticipated form to be described by a distribution
function My (X), for all real X, referred to as the target distribution function conditional
on true value Y. These target distributions play essentially the roles of the means ay
in the event case of Section 2, catering for anticipated biases and lack of calibration in
the expert’s statements. Generally, all the dependence on Y is modelled via the targets.
Given Y, the value of the expert distribution F(X) at any point X is a random quantity
distributed about the target value My (X).

Example 3.1 If the target distribution is that of (X|Y) ~ N[c+Y,1], then the expert
is expected to state a normal forecast distribution with unit variance and a location bias,
or anticipated point forecast error, of ¢ units. The expert is viewed as unbiased if ¢ = 0

since then the anticipated location of F(X) is the true value Y.

Rather than considering F(X) directly, the focus in modelling is on the inverse func-



tion, namely the quantile function
Q(U) = F~1(U), (o<U<L1).

From the assumptions about F(X) it follows that Q(U) is monotonically increasing on
[0,1], tending to doo at the end-points, and also differentiable. Now Q(U) maps the unit

interval onto the real line so that, for each Y, the compound function
MY[Q(U)], (O <U< 1)’

is a distribution function over the unit interval; since, for me, the expert quantile function
is random, then so is the compound distribution above. If the target distribution suit-
ably models the dependence on Y and has a form as anticipated of F(X), then, for each
U, My[Q(U)] will have a distribution with location near U. The model for the quantile
function can now be specified indirectly by modelling the compound distribution over the
unit interval and then transforming. For fixed U, eliciting the quantile Q(U) from the
expert leads to the quantity My [Q(U)] being a random probability, and the Beta model of
Section 2 may be applied. Considering U to vary over the unit interval suggests a Dirichet

model as the natural extension.
Definition 1.

(a) For integer n > 1,let U, = (Uy,...,Up—1) be any fixed values defining the partition
of the unit interval

0=Ug<U;<...<U,_1 <U,=1.

(b) Define the corresponding quantiles of the expert distribution by ¢ = Q(Uy), t =
0,...,n, so that

—00=0<q1 <...<pn-1< gy = 00.
Let ¢ = (q1,.--s9qn—1)

(c) Let A(U) be a known, continuous distribution function over the unit interval, having

a density a(U), and set
ai =A(Ut) —A(Ut_l), (t=0,...,n).
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Thus a; is the probability assigned to the interval (U;_;,U;) by A(U). Let a, =

(@1,...,an—1) and & be a known, positive number.

(d) For any fixed Y, define the probabilities x,, = (T1yeesTp_y) via

= My (q:) — My (g:-1), t=1,...,n—1,

and let 7, = 1 — (7 + ...+ m,—1). Note that 7, depends on Y although this is
not made explicit in the notation. These probabilities are random, giving the masses
allocated to the intervals (Ui—1,U;) by the random distribution My[Q(U)] over the

unit interval.

Assumption 1. x, follows a Dirichlet distribution with mean g, and precision parameter

6, having density

n 6(19—

PlaalY) =plza) =10 [ T
over the (n — 1)-dimensional simplex. Note again that @,, depends on Y; this Dirichlet
model is defined conditional on Y. However, since neither § nor A depends on Y, the
distribution is independent of Y. Transforming from the quantile function to that com-
pounded with the target distribution is a pivotal device to obtain a distribution that does
not involve Y. Since the assumption holds for all n and any partition U, , Of the unit inter-
val, then My [Q(U)] is a Dirichlet process. Some comments on this are in order. Firstly,
the fact that a Dirichlet process is discrete with probability one implies that the model
involves a discrete approximation, of essentially indeterminable accuracy, to a continuous
problem. In the model analysis below, this feature is of little consequence due essentially
to the use of a discretisation of the quantile function Q from the outset. The likelihood
for Y given Q is constructed as the limiting form of a sequence of likelihoods from discrete
approximations to @, ie. histograms. A second, related feature is the implied negative
correlation between probabilities 7, that precludes the incorporation of smoothness as-
sumptions. The implied distribution for @ has, however, qualitatively the right form of
dependence structure between quantiles. This is illustrated further in the next section.

Here simply note that any two quantiles ¢; = Q(U:) and ¢, = Q(U,) are positively corre-



lated, the correlation decreases as |Uy — U,| increases and tends to unity as |U; — U,| tends

to zero.

A key feature of the model is the mean distribution function A(U) for My [Q(U)]. The
choice of target My is assumed to provide for the general form of F anticipated, and cater
for all dependence on Y. Stochastic variation away from target is modelled and controlled
by the precision parameter §, whilst A(U) may be used to cater for minor systematic
departures from anticipated form. A uniform mean A(U) = U will often be appropriate,
implying satisfaction with the target as capturing the relevant features anticipated. An
example serves to illustrate the use of alternative forms. Suppose, as in Example 3.1, that
the target distribution is unit variance normal with mean ¥, but that it is recognised that .
the expert may state a heavier tailed distribution, such as Cauchy. If that happens then
the compound distribution My [Q(U)] will be lighter tailed than uniform. Use of a mean
function A(U) that is essentially uniform across the central part of the unit interval but
that has lighter tails will lead to a discounting of the contribution made to the likelihood
by quantiles in the tails of F. This feature stems directly from the focus on the quantile
function of the expert rather than the distribution directly; the positioning of the tails of

F is unknown whilst those of Q lie near 0 and 1.

4. EXPERT OPINION: COLLECTIONS OF QUANTILES

Forecast statements are often given in terms of summaries of distributions, such as
point forecasts with simple uncertainty measures. As in Section 2, this can be viewed
as a form of censoring, providing only a partial specification of F(Y). The model de-
veloped above provides a relatively easily calculated likelihood in cases when this partial
information consists of selected percentage points, or quantiles, of F(Y). Suppose the
expert provides quantiles g, as in Definition 1. Let my (X) be the density of the target
distribution My (X), for each X. The following result now holds.

Theorem 1. Under Assumption 1, the density function for the random quantiles
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q, = (g15-..39n-1), conditional on Y, is given by
n—1
p(g,|Y) = e[l — My (gn-1)1°*""" [] My (g:) — My (g:-1)]°® ~my ()

t=1

for —0o < g1 <... < gn-1 < 00, where ¢ is the constant ¢ = I'(§)/ [T, T'(6a).

Proof. Directly by transformation from &, to (g_n]Y) using the defining relationships in

Assumption 1. Note that the Jacobian is simply given by

dm,
dq’

= ]_:I my (gt).

Theorem 1 provides the joint density of any collection of expert quantiles. Some
insight into the form of this density and the implied relationships amongst quantiles can

be obtained in the context of Example 3.1.

Example 4.1 Take target distributions (X|Y) ~ N[Y,1] corresponding to unbiased,
unit variance normal expert, and suppose we consider the particular case of Y = 0, so that
the target is standard normal. Suppose 6 = 5 and A(U) = U, a uniform mean distribution.
Consider two expert quantiles, u = ¢; = Q(0.5), the median, and ¢ = ¢; = Q(0.75), the
upper quartile. The marginal distributions of each and their bivariate distribution follow
from Theorem 1. The marginal for x is symmetric and unimodal at zero, the true value.
That of ¢ has mode approximately 0.73, close to the value 0.67 of the upper quartile of the
standard normal target. To explore the joint structure, Figure 1 displays the conditional
density of (g|u) for p = —2,0 and 2. Clearly this density is zero for ¢ < u. As p decreases to
negative values, the conditional distribution of ¢ flattens out with mode tending quickly to
zero. As u takes larger, positive values, the conditional distribution for ¢ becomes highly
skewed, concentrating near the value of u conditioned on as x moves away from the target

value of zero. Also displayed is the marginal density of q.

As a likelihood for Y given g, the form in Theorem 1 has two components: one from
the Dirichlet involving the product of the probabilities x,,; the other given by the product

of densities my (g;). The latter is just what would be obtained if the quantiles were treated
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as a random sample from the target distribution given Y. The former provides correction
for the postioning of the quantiles under the target distribution determind by the U,,, and
the implied dependence.

5. EXPERT OPINION: FULL DISTRIBUTION

Consider the generation of the expert’s quantiles ¢; in the previous Sections. Letting
n tend to infinity with the grid points U; remaining distinct leads to Q(U) being evaluated
almost everywhere. Assuming continuity implies that Q(U) is fully observed, hence so
is the inverse F(Y). Thus the likelihood for Y based on the full expert distribution is
obtainable as the limiting form, if it exists, of the likelihood from a discrete approximation -

as in Theorem 1. An easy way to do this is simply to take U; = ¢ /n and this is done here.
Let H, denote the information set H, = {gn} where the quantiles are as in Definition

1 but now with U; = t/n for each t. Denote full information by H, so that

H= lm H,={QU); 0<U<1}.

n—oco

The following result now holds.

Theorem 2. Asn — oo, H, — H and p(q_|Y) = p(Ha|Y) — p(H|Y') where the limiting
likelihood has the form
P(H|Y) o exp{-6D(¥)}

as a function of Y, with

p(v)= [ alF(ellfeios | L0 o

—oco my (:l:)

whenever the integral exists for all Y.

Proof. The density of My [Q(U)] over 0 < U < 1 s just the derivative my [Q(U)]/f[Q(U)].

Hence
| My (@) — My (g1-1) = %?(Ut ~ Up—1)
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where ¢f = Q(U}) for some U} between U;_; and U;. As n tends to infinity, the contri-
bution to the likelihood from the last interval (Un—1,1] is negligible compared to the rest

of the likelihood, and so, for large n,

faz—1
RS (T e

as a function of Y. Now a; = a(ﬁt)(Ut — U;_1) where A lies between U;_; and Uy, and

it follows that

n—1

m *
loglp(g, [¥)] ~ ) {log[my(qt)] + (6as — 1) log [L@Q]} +k
t=1 flar)
for some constant k. Now, since U; — U;_; = 1/n,

loglp(g, [¥)] ~ & - ; {loglmﬂ%)l * [@ - 1] o8 [ﬁf%] }

tends to zero as n tends to infinity. The sum in this expression may be written as

— Z (U:) log [ flz (q)t)] + terms not involving Y,

the first term of which has the limiting value
my [Q(U )]]
) / (U) log [ du
(U)o8 | 7o)
if this integral exists. Then, transforming to X = Q(U) so that U = F(X), this integral is
given by —6D(Y’) where

D(Y) = /00 a[F(z)]f(z) log [;;{(L))] dz.

—oo v(z
Thus log[p(g, |Y)] — —6D(Y) + constant as n — oo and so, asymptotically, {¢,} - H
and p(H|Y) o exp{—6D(Y)} as stated.

Corollary. If my prior distribution for Y has density p(Y), then fully observing the expert

distribution as stated leads to posterior

p(Y|H) o p(Y) exp{—6D(Y)}.
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The function D(Y) determining the likelihood is a generalized divergence measure;
it measures the discrepancy between the target demsity my (X) and the stated expert
density f(X), for each Y. D(Y) is always non-negative, being zero for all Y if and only
if f(X) = my(X) for all X. Thus, as the value of ¥ varies, a large divergence leads to
a small likelihood p(H |Y'); conversely, if f(X) and my (X) are close in the sense of small
divergence, then p(H|Y') is large. Some special cases and examples appear in Section 6
below. Here note the special case in which A(U) = U, 0 < U < 1, so that «(U) = 1. This
implies that, given the finite data 4. E[m;) = a; = 1/n in the Dirichlet distribution of
Assumption 1. The implication for p(H|Y) is that D(Y’) is the well-known Kullback-Leibler

/_ o:o f(z) log [ /() ] dz.

my (z)

directed divergence

Note that, as mentioned in the proof, D(Y') is assumed to exist for all Y. Some discussion

of this appears in Section 6 below.

6. DISCUSSION AND EXAMPLES

Some general comments are in order before proceeding to examples. Sections 3,4and
5 detail the model that allows a variety of forms of expert opinion to be processed. If the
full distribution is made available, Section 5 shows how a generalized divergence measure
between the stated density and the target, my (X) for each Y, determines the likelihood.
Given only collections of percentage points as in Section 4, the likelihood clearly shows
that the global form of expert distribution is irrelevant; only the values of the chosen
quantiles appear there, naturally weighted with the Beta form for probabilities under the

target model, the values My (g;), and the target density my (g;).

The choice of the Dirichlet precision and the target distributions My (X) will typically
depend on previous experience with the expert, and may be estimated based on such
experience, although this is not considered here. The distribution A(U) must also be
specified; often A(U) = U will be suitable. It leads, in particular, to the Kullback-Leibler
based likelihood from the full distribution. This choice is consistent with a view that the

random quantiles ¢; obtained in Section 3 are to be treated equally; that is, the expert’s
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assessment of his quantile function/distribution function is as sound in the tails as it is in
the center. To model the commonly held view that tail behavior is generally difficult to
determine and so ¢; and g¢,_;, for example, are more likely to be subject to assessment
error than, say, g7 and qg, alternative forms for A(U) can be specified. It is clear from
the form of D(Y') in Theorem 1 that assessments in the tails will be discounted if the
density a(U) decays rapidly as U tends to 0 or 1. As an extreme example, a “trimmed”
assessment, ignoring the expert distribution below 5% and above 95% probabilities whilst

treating the rest of the range consistently, can be modelled with

_J1, 0.05<u<0.95
oU) = {0, otherwise.
Finally note that these features, and the forms of likelihood, derive directly from the initial
focus on Q(U) rather than F(Y) as providing the data. This parallels experiences with
elicitation where it has often been found that quantiles are more easily understood and

elicited from subjects than probability distributions directly.

And now for some examples. In each of the examples, A(U) = U so that D(Y) is the

usual, Kullback-Leibler divergence measure.

Example 6.1 The target distribution My (X) is that of
(X]Y) ~ N[c + Y, W],

a normal distribution with mean ¢ + Y and variance W. The constant ¢ is an expected
forecast bias; if ¢ =0 then the expert is viewed as unbiased in the sense that his forecast
distribution is essentially expected to be centered at the hypothesized value ¥. Three
information sets are considered: the median of F(Y) alone; the median plus quantiles;
and the full distribution. In the first two, the global form of F(Y) is irrelevant. In the
third case, suppose the expert actually states a distribution, of any form, with mean f
and variance V. It is easily shown that, using the Kullback-Leibler divergence in Section

4, the likelihood is
6 2
p(H|Y)aexp {——ZW (f—c-Y) } .
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The likelihood is the same as would be obtained from an ad-hoc model in which the
point forecast f is viewed directly as a random quantity to be modelled, having a normal
distribution (f|Y) ~ N[e+Y,W/6]. Such methods are used in Lindley (1983) and Harrison
(1985); the current approach thus provides a foundation for such methods. That the
likelihood does not depend on the spread of the forecast distribution of the expert is a
rather surprising feature of the model, suggesting a need for refinement. This is a general
feature arising from the assumption of target distributions that depend on Y essentially
only in location parameters. Note, however, that had the expert provided a non-normal
distribution with infinite variance then the results would be rather different. In fact in such
a case with F(Y) Cauchy for defiteness, the Kullback-Leibler divergence does not exist.
This highlights the need for discounting of the tails of F(Y) using a(U) # 1, decaying to
zero as U tends to 0 and 1. Generally the Kullback-Leibler divergence will exist only when
the tails of My (X) are heavier than those of F(X), for all Y. Since this cannot typically
be ensured before observing the expert distribution, a weighting function a(U) decaying in
the tails is essential if the likelihood is to exist. It is always possible, for example, to ensure
a finite divergence using a(U) constant over most of the unit interval but zero for U < €
and U > 1 — € where ¢ is a very small, positive quantity. It is also clear, however, that
with a(U) = 1 the likelihood based on any finite collection of quantiles from the Cauchy
distribution is perfectly well-defined and appropriate, so that a discrete approximation to

@ may be used in such cases.

Figure 2 shows the likelihoods for the three forms of information: median alone, f = 0;
median f = 0 and quantiles +:0.67 (coinciding with those of a unit normal distribution for
illustration); and full information with forecast distribution having mean f =0 and finite
variance. The likelihoods have each been normalised to integrate to unity over the interval
+3 for each comparison. They thus coincide with posterior densities relative to a prior
p(Y) being uniform over that interval. In this special case, the three forms of information
can be viewed as an increasingly informative hierarchy. The model assumes ¢ =0, W =1

and § = 5. The effects of increasing information are apparent in Figure 2.

Example 2. Suppose Y > 0 is the survival or failure time of a patient or test component
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and that the target distribution My (X) is gamma,
(X|Y) ~ G[b,be/Y],

with density
my(X) a Y2 X" Lexp{—beX/Y}, (X > 0),

as a function of both X and Y. Under My (X), E[X|Y] = Y/c so that ¢ is a multiplicative
bias; ¢ = 1 implies an unbiased target analogous to that in the previous example where
the bias was additive. Suppose that the expert actually states a distribution, of any form
such that E[log(X)] < oo, having mean f. Then the Kullback-Leibler based likelihood is

easily seen to be given by
p(H|Y) a Y% exp{—6bcf/Y}.

This is a form that is analogous to that provided by an ad-hoc model in which the point
forecast f is directly model as (f|Y) ~ G[6b,6bc/Y]; i.e. with the bias correction ¢ and an

extra scaling 6.

Example 3. The above examples are each special cases of the following, exponential

family class models. Suppose that the target distribution has density

my (X) = h(X, ¢) exp{$[Xpy — a(puv)]}

for some location parameter uy (for each Y), precision ¢b> 0, and known functions a(-)
~and A(-,-). Note that this distribution has mean E[X|Y] = a’(uy). Suppose that the
expert distribution is such that E[X] = o’(f) for some f, and that E[log{h(X, ¢}] < oo.
The Kullback-Leibler based likelihood is easily derived as

p(HY) a exp{é6¢[a’(f)uy — a(uy)]}-

This is a form analogous to that provided by an ad-hoc model in which the point forecast
E[X] = d'(f) of the expert is directly modelled as coming from a distribution of the form

My (+), but with precision 6.
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Note that in each case the expert distribution appears only through the mean. The

comments on this point in Example 1 are relevant generally. Thus, again, partial expert

opinion is processed, now in terms of the mean rather than quantiles. This is a very

special setup, however, and is not the case if the precision ¢ of the target model depends

on Y; then calculation of the Kullback-Leibler divergence requires other features of F to

be available.
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