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ON THE ASYMPTOTIC LEAST FAVORABLE CONFIGURATION OF
A SELECTION PROCEDURE BASED ON RANKS

Shanti S. Gupta® Takashi Matsui™

ABSTRACT

The probleﬁ of selecti@nxof the population with the largest parameter is
considered using the subset selection as well as the indifference zone approach
for distributions that belong to a location or a scale parameter family. The
procedures are based on the sums of combined (Wilcoxon type) ranks and vector
(Friedman type) ranks. The least favorable configurations are obtained in an
asymptotic framework under certain order relations between the "gaps” §f
parameters. The asynptotié theory is based on exact moments of the rank sum

statisties.

1. INTRODUCTION

Let Ty, Ty, ..., Tl be k independent populatiqns. vhere II; has the associ-
ated cumulative distribution function (c.d.f) Gg, (), i = 1,2,....k. It is
assumed that {G 4} is a location or a scale parameter family, i.e. Gg (¥) =
G(y - 8), -0 < 8 <o, or Gy (y) =G(/6), 8 > 0. Let the ordered 6; be
denoted by 6[1) & O(9] § ...& (3. The population asséciated vith 0y is

defined to be the best. Our procedures for selecting the best population are
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based on ranks of observations from these populations in the location parameter
case, and on ranks of the absolute values of the observations in the scale pa-
rameter case. For any observation Y from G, (v) in the scale parameter case, the
c.d.f. of X = |¥] is Fy(x) = G(x/8) - G(-x/8). For convenience of presenta-
tion, we use Fj (x) to denote the c.d.f. of |Y| in the scale parameter case as
well as that of Y itself in the location parameter case [i.e. F g4 (x) = G(x-8)].
Then we have
Fg,(x) 2 Fg () 2 ... 3 Fg ) (1.1)

for all x. We assume without loss of generality, that Il; is the best population
(i.e. 6 205, i =1,2,...,k1).

Let Y;4, Y9, ..., Y;, be n independent observations from TI;, i = 1,2,...,

k. Let Xij =Y..

ij in the location parameter case, and Xi.i = IYijl in the scale

parameter case. We consider rank sum statistics based on combined (Wilcoxon type)
ranké as well as vector (Friedman type) ranks. Let R:}) denote the rank of X, j
among all kn observations in the combined sample and Rg) denote the rank of X; j
among le. Xp;0 «--» ¥;- In ranking observations in a group, the smallest is

given rank 1. For a = 1,2, define

(a) (o)

B = oy jgl Rij » 1= L2k, 1.2)
and

B = @ ® i L ) (1.3)

vhere Cn1 = 1/n and Ch2 = 1.
For selecting the best population, we consider both the subset selection
approach of Gupta (see Gupta and Panchapakesan [5]) and the indifference zone
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approach of Bechhofer [3]. For selecting a subset containing the best, we define

the following procedures:

. . (a) (a)
R(a,8,1) ¢ Select IT; if and only if H; Z max Hj -dp

i=12, ...,ki dg 20; a,p =1,2 (1.4
Here B8=1 and 2 correspond to the location and scale cases, respectively.
The use of these rule is justified by Theorem 4.2. A correct selection (CS) is
said to occur if and only if the best population (in our case ﬂk) is included in
the selected subset. Our aim is to select a subset satisfying
inf PCSIR(a,8,1)) 2 p* (1.5)
where o, 8 = 1,25 k< P* <15 @ = {0 = (6, 05, ..., 6)3 6;€0, i=1,
2,...,k}, @ is a real line. The constant dp' is the smallest nonnegative number
satisfying (1.5), the so-called P*-condition.
Using the indifference zone approach, we define the procedures:
R(a, B,2) : Select the population associate with HE;]() as the besi:.
In this case, the rule R(«,B,2), a,B=1,2 are required to satisfy the(l.s)
folloving probability condition:
P(CSIR(a, B,2)) & P* whenever ¢ 5 (6. 8;) 3cy + 8,° 1.7)
vhere a,B= 1,2, 1/k < P* < 1, 813* > 0 is a given constant,

6: -0: vwhen B =1

1 J
S"B(Gi.ej) = . (1.8)
7] i/Gj when B8 = 2
and
0 when B=1
cp = (1.9)
1 when B= 2.



Selection procedures (using both subset selection and indifference zone
approaches) based on this statistic ﬂ(l) have been studied by many authors
including Lehmann [9], Bartlett and Govindarajulu [2], Gupta and McDonald [4],
Puri and Puri {15,16], and Alam and Thompson [1]1. Also procedures based on ﬂ(Z)
have been studied by McDonald [12,13], Matsui [10] and Lee and Dudewicz [8].

A reviev of procedures based on ranks is given by Gupta and McDonald [6], and
Gupta and Panchapakesan [7].

A parametric configuration which gives the infimum of PCS, the probability
of a correct selection, is calied the least favorable configulation (LFC). It is
fairly difficult to establish the LFC for both rules R(a, 8,1) and R(a, 8,2)
using statistics ﬂ(l). ﬂ(Z) and is still an open question in general (a,B8 =1,
2). The counter examples of Rizvi and Woodworth [17] and Lee and Dudewicz [8]
show that the configuration 81 =89 = ... = O in the case of subset selection
rules, and the configuration 6 =6y = ... = 6y _1i P 5 (6, 6_4) =cpg * 8*;,
in the case of indifference zone procedures, do not yield, in general the infimum
of the PCS. A discussion on the LFC can be found in Gupta and McDonald [6l.

Our purpose in this paper is to discuss the LFC in an asymptotic framework.
An order relation is assumed to hold between the "gaps” of parameters. This
assumption is similar to those considered by Puri and Puri [15,16], and Alam and
Thompson [1]. The LFC's of the procedure are studied by using the.exact moments
of the combined and the vector rank statistics ﬂ(CX), a = 1,2, for location and
scale parameter cases (8= 1,2) for both subset selection and indifference zone
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approaches.



In Section 2, asymptotic distribution of ﬂ(a). a = 1,2, are considered
under the assumption of order relation between gaps of parameters. The PCS and
LFC are investigated in Section 3. Moments results are given in Section 4 as an

appendix.

2. ASYMPTOTIC PROPERTY

2.1 Moments of Ranks

Let us define the mean vector and variance-covariance matrix of ﬂ(l) by

4] (1)
Eg and A g according as we are dealing with location (B= 1) or scale

(B = 2) parameters. Under the population model we considered in Section 1, the

(1) o))

elements of M 8 and A g are given as follows. These relations are obtained

from more general results given in Theorem 4.1 of Appendix

oy %
Bpi =knf GRdFy + 172, i=1.2,...k . @.1)
( kGn-1) J G*dF; - 2k@n-1) f F; G*dF; + k2 nJ G*2 dF;

-k HOF, - k2 n(] GRFD2 - @eD) B (F B2 - 12,
M o i =3

A g =
Bij *
kn(2 - J Fydfy) [ G*dFj + kn(2 - [ FydFp) J G'oF;
k % %
- nn)';ll FpdF; I FndFj - 2nf FJ G dFi - 2kn f Fi G dFj
\"' fFidij Fdei"’f FizdFj"'f szdFi "'.1; i#],
(2.2)
where
% k o
GT(x) = (I/k) L Fj(x). 2.3
Jj=1
% k 2 ’
j=1 J



In case of vector rank Ri 5 the moments results are given in Matsui [11]

) (2)

from which we obtain mean vector £ 45 , variance-covariance matrix A B of
statistic ﬂ(Z) as follows;
(2) " .
ﬂ-ﬁi = knf G dFi + n/2. 1= 1l2'~-'.k’ (2-5)
[ nl2k f G*dF; - 2k J F; G*dF; + k2 [ G*2 dF;
@ - kJ H'dF; - k2 (J P2 - 1/12], i=3,
Apij

nlk(@ - [ FydF;) J G¥dF; + k(2 - [ FydFy) J G¥dF;

k . £
-1 [ Fdfy [ FodFy - 2 Fy C°dFy - 2% f Fy GF

+f FydF; [ Fydf; +f Fi2dF5 +f F32dF; - 1], i # 5.(2 N

\

2.2 Assumption
Ve assume the following relation to hold between the gaps of parameters:
9565, 8) =cg * kpyyn V2o, =12, @.7)
vhere c 5 is given by (1.9); for each pair (i,Jj), Kpij depends on 6; and 6;
and is increasing in Oi when Gj is fixed, and decreasing in 95 vhen Gi is
fixed; also, Kgij = ¢p when 8; = ej.
Then putting
Iﬁij = /n{/f Fj(x)dFi(x) -1 Fi(x)dFj(x)}. (2.8)
we obtain the following lemma.
Lemma 2.1
For ¢ g (65, Gj) (B =1,2) given by (2.7), wve have the following:
Iﬁi.i =Kﬁi.i "'0(1). (2.9)

where



K1i; § 12 ®dx, vhen B =1,
K2ij fxfz (x)dx. when B = 2-
i, =12,...,ks i #J].
Example:
Yhen F(x) is N(0,1), ¢ B (Gi. 95) given by (2.8), we get
Ii;3 = W2V/@) kq4; + o) 2.11)

and

IZi.i (l/ﬂ') KZij + 0(1). (2.12)

2.3 Asymptotic Distribution

Let us define
ui(a) = (fo_")(“k(a) - Hi("‘)). a =1,2. (2.13)

Then

v = aum) ar(@), o =12 @.14)

vhere !(d) = (wl(d)’ Uz(a)' vees Uk(a))" .A_ = (-E(k_l), J(k)) (k-1) xk and

E(e-1) is a unit matrix of order k-1, Jgg = (I, 1, oooy D7 pyqe 4% has

(a) ) ) (a)

mean vector 7] 5 , variance-covariance matrix X g such that |

l;a)= M) Ay_fea) (2.15)
and

(a) .

25 am aagn (2.16)

Elements of 2p and X g are given by
) (a) (a)
’7;‘; = (14/n ) (K po{( el Bai ), i=12,...,k"1, 2.17)
652 = W (A gp) - Ash - Ago e AN ) 5= L2 kel

(2.18)



(a) (a) .
where 'u'ﬁi and AB j; are given by (2.1) through (2.6).

Now, under the assumption (2.7), using Lemma 2.1, we have for 8 = 1,2 and

a = 1’2s
(a) k K
(a)

j#i

as n » °o, vhere Kﬁi.i is given by (2.10). Also, under (2.7), we have

-k/12 for i #
Aqss =
115
(k? - K)/12 for i =
-k + 1)/12 for i #j
Azi;
(k2 - 1)/12 for i = j.
Consequently, .
() Vo for i #
Spij ™ (2.20)
2va for i =]
vhere
k2 /12 ' when a =1 ‘
Vo © 2.21)
k(k + 1)/12 when o = 2. '

Thus by applying the central limit theorem, we have the following asymptotic

' distribution of ¥(®):

(a)
FACURE U .s:i, Y, p=1,2 ‘ (2.22)
(a) (
vhere _‘Zﬁa = (‘75301). b ﬁo;). cees ")';a(l)( 1)) vith elements given by (2.19)
and
(a)
Sﬁa =v (E(k -1) * G(k 1)) - (2.23)

vhere G 1) = Jk-1)d" (-1)-



3. PCS AND LFC
. (a) .
Using the asymptotic distribution of N5 (a,B=1,2) given by (2.22), the
PCS for the rule R(oa,B8,m) (a,B,m =1,2) is given by

PCSIR(cx, B,m)) = Pr(!;a)i - 8(8,m) -J-(k-l))

- ()
~Prily s (Fp ¢ (BT )/ @)
where
dp//rT wvhenm =1 ‘
5(8,0) = 3.2)
0 . when m = 2
(@) (a) _(a) o
U, = Wy -y M (3.3)
(a)
Ug  ~ NOg-1)» Ege-1 * Ge-1))> (3.4)

and a, = bn means that lim an/bn =1asn > oo,

For the subset selection approach (m = 1), since

Kpkj = Kpij ®0

and
Kpgj 20
for large n, we have
(1)
TIp # Qg-1)-

Also, for indifference zone approach (m = 2), with the specification
Pp(Op 0 & cp + 8*}3.
ve have
@) (e f £2 (x)dx) /i 8, Iy when B=1
e [(k Sxf2 )dx) VA ( 8,%/(1 + 8,) J(yq)  when B= 2.

Thus we have the following



Theorem 3.1
‘Under the assumption of order restriction (2.7) and for large n, thé (asymp-
totic) LFC of the PCS for rules R(a,8,1) (a,B=1,2) are given by
Kg;i =0, 1J3=12,....ki a,p=1,2 (3.5
and for rules R(a, 8,2) (a,B8=1,2) are given by
Kpgzi =cp» Ld=L2,....k1, i#3;
Kpki =¢p *8p° i=L2..k1 a,b= 1,2 (3.6)
Under the asymptotic LFC
P(CSIR(a, B ,m) = Pr{ﬂza)é. ((v(8.m) +&(8,m))V,) i(k-l)} 3.7

vhere v , is given by 2.21), 8(B,m) is given by (3.2) and 7 (B,m) is defined

by
7(8,1) =0 for B =1,2
& f2@dw) /7 8 for B =1 (3.8
7(8.,2) = . .
kJ xf2@)dx) /A8 /(1 +8,7)  for B = 2.

The expression in (3.7) can be rewritten as
P(CSIR(ar. B ,m) = FOKLEx + (v (8,m) +5(8 )MV, 3D (x) 3.9
for a,B, m = 1,2, wvhere ®(x) is the standard normal c.d.f.
Determination of the dg Values
By Theorem 3.1, the d; values can be asymptotically expressed as
dg(m) =/n/2d /v, +oV?),  a,p =12 (3.10)
vhere d is the solution of the following equation:
QIV/Z , dMZ, ..., dNZ) = PF, (3.11)
Q is the joint cdf of a normally distributioned vector (Vq, Vj, ..., Vj_4) vith
E(V;) =0, Var(V;) =1 and Cov(V;,Vy) = 1/2, § # .
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Determination of the Minimum Common Sample Size
In the subset selection approach, let S denote the size of the selected
subset and E 9 [SIR] the corresponding expected value when subset selection rule

R is applied and € is the true nature of status. Then

Eg [SIR] = E P{1l; is selected IR} (3.12)
J=1
Having determined d; (n) from (3.10), one may determine the common sample size n
by imposing the additional requirement that
Eg[SIRI s 1+ ¢ (3.19)
for some 0 < & < k-1, vwhere 8 lies in a given proper subset of the parameter

space under study, for example, the subset defined by 9[1] = 9[2] = ... F

e[k-l] = G[k] - 8(") for location parameters case and 6[1] = 9[2] = ,.. =

01k-1] O[k]/ 1+ A(n)) for scale parameters, where & () 5 0 and A > 0.
| Asymptotically Relative Efficiency
Given two selection procedures Ry and Ry, the (asymptotic) efficiency of Ry
relative to Ry is defined by
Eff (Ry.Ry) = ny/ng | | (3.14)
vhere the n; are the sample sizes required to satisfy P(CSIRy)|pc = P¥, i = 1,2.
Then, by Theorem 3.1 and (3.10), we have the following result:
Eff(R(1,8,1),R(2,8,1)) =1, B =1,2,
EffR(a,1,1),R(a,2,1)) =1, «a =1,2,
Eff(R(1,8,2),R(2,8,2)) =k/(k + 1), B =1,2,

Eff R(«,1,2),R(a,2,2))

= (5,%8,%7(1 + $,2 ( xP2(Wdx/ [ 2@d0?%, a =1,2. (3.15)
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4. APPENDIX

Let k population My, Ty, ..., T be given, where II; has the associated
continuous distribution F (x) (s = 1,2,...,k). Take ng observations Xg;. Xso.....
Xsns from population 7y (s = 1,2,...,k) and consider the combined (Wilcoxon
type) rank Rgj of Xg35-as stated in Section 1. Then the means, variances and co-
variances of the ranks Rg; are given in the following.

Theorem 4.1

ERg;) = NJ GdFg + 1/2 4.1

V(Rgy) = 2N J GdF - 2N J FGdFg + N2 [ G2 dF

- NJ HdFg - N2(J GdF)? - 1/12 4.2)

Cov(Rg;sRg;) = 3N S GdFg - 4N J FGdF - Ilglnm(l FAF)2 - 1/12  (4.3)

Cov Rg; Ry;r) = N(2 - J Fydfy) J GdFy + N2 - [ FdFy) [ GdF

K
-1 g f Py J Fydfy - 2T FGdFy - 20 FGdFy

+J PR, [ Fdf + [ F2dF, + J F 2 - 1 (4.4)
vhere s,t = 1,2,...,k, s # t3 i,J = 1.2.....ns. i®js j'= 1.2.....nt and
N = { 4.5
£ ng (4.5)
k
660 = (/D) & g Fy® (4.6)
n=
- ,
H(x) = (1/N) Zl ny, Fg&() 4.7
m:
Proof

Ve sketch the proofs for (4.1) and (4.3) above. The remaining results are
obtained similarly.

Mean @
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Pr(Rll z=g) = % Pr(al of Xl's. a, of Xz's. cees By of Xk's 3 Xl s
(nl-al-l) of X;'s, (nz-az) of X5's, ..., (nk-ak) of Xk's) (4.8)

where aj (i =1,2,....k) is an integer such that

0 2 al =1 nl - 1, 0 2 ai - ni (i = 2.3:...;1{) (4.9)
E a; =s -1 (4.10)
#=1

and "ai of Xi's". "(ni-ai) of Xi's" should be read as "ai variables out of (Xil’

X;gs +-++ Xjp.) and remaining (n;-a;) variables”, and so forth. Further, sum-
i

mation % is taken over all k-tuples (al.az.....ak) of integers which satisfy the

relations (4.9) and (4.10). From (4.8), we have

N -1
ERyp) = J ):Ii:\s("l )("2) ...("“) Rl Fp? ... R

s= al 82 ak

(l’ll -al-l) (nz‘az) (nk-ak)

X (l'Fl) (1‘F2) cee (I‘Fk) dFl (4. 11)

By changing the order of summation, we have
N n{-1\/n n,_ a ay_
ERy) =/ L Ls [L)[2) . (%) mlp2... Fil
s=1 Al al 82 ak‘l k-1

(ny-a;-1) (ng-25)

(nk_l-a _ ) k-1
x (1-F) Q-Fy) cor (Q-Fp) Tty + Ty ¢ Dy

where the summation ;L is taken over all (k-1)-tuples (aj.a9,...,8_¢) of
integers which satisfy the relation (4.9).‘Adding in turn over a_1, 8 _o» ...,
aq, ve obtain the result for ERyy).
Covariance :
For s < t, we have
Pr(Rj; =s. Ryy = t) = % Pr(a; of X;'s, ag of Xy's, ..., @ of X 's
S X118 by of X;'s, by of Xo's, ..., by of X 's
% Xy & ¢y of X;'s, ¢y of Xp's, ..., ¢ of X 's) (4.12)

vhere a;, b;, ¢; (i =1,2,...,k) are integers such that
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a; +b; +ep=v, i=12..,k 4.13)

1

k

a.=s -1, Eb-=t-s-1. 5c-=n-t (4.14)
j=14 J=1J j=1

and Vi = n; - 1fori=1,2, v = n; for 1 = 3,4....,k.

Summation% is taken over all tuples (al. cees Ao bl’ ceos bk' cq» ...,ck)
vhich satisfy the relations (4.13) and (4.14). Then

11 = sz<:t st Pr(Rll = s, R12 = t)
k
= P. (x,y)d d 4.15
xj<‘yf s%t % ir=[1 l(x y) Fl(x) Fo (y) | ( )

where

Vi ai bi Ci .
Pi(X.Y) = a Fi (x) (Fi(y)-Fi(x)) (I‘Fi(Y)) ’ i=12,...,k.

2 9Ds,Ce
i*Pi%
By changing the order of summation, first for s then for t, we have

. -1
=41 5 % ¢ f Pytv)dy GOdRy()
Ky s<t B i=1
vhere
c By e e 7y b (S apze CF a0 E by
= + .+ . * D2 4 . .
1 a1 1 j=1 aJ 1 j=1 Jd j=1 aJ j=1 aJ j=1 J
and
dl = nk(nk-l) Fk(X)Fk(Y) + 3nk Fk(X) + nk Fk (y) +2
ﬁl = nk Fk(X) + l'lk Fk(Y) + 3
71 = n Fk(X) + 1.

S ti is tak 11 tupl » eses BL_1s D1y vy Br_1s C1y cues
umnat ion %1 is taken over a upes(al a1, by v k-1¢ €1

°k-1) vhich satisfies the condition (4.13). By carrying out the addition in turn

for a set (ai. bi’ ci). i=k-1,k-2,...,1, we have a reduced fofn of Il’ By

proceeding on similar steps for };.ts t Pr(RH =s, Ry = t), we obtain
s
COV(RllpRZI).

" For rank sums
g
Xz
J=1

T =

s R * S = 1.2;..-.k (4.16)

sJ’

14



we have

E(TS) = ns E(st). S = 1.2.....k ‘ (4017)
Cov(Ts,Tt) = ng ny Cov(st,Rtj.). ‘s,t =1,2,...,k, s # k, (4.18)
and
g g
V(TS) = j§1 V(st) + i§j COV(RSi'RSj)

2 2
Nng (3ng-1) J GdFg - 2Nng(2ng-1) J FdFg + Nng J G5dF

N %n 2 3 2 -2/

- Nng f HdFg - Nen (] GdFy) © - ng(ng-1) L ng(f FdF )¢ - ng® /12,
w=1 (4.19)

Especially, if F; (x) = F(x) for all i, then we have

E(Ty) = ng (N+1)/2, (4.20)
V(L) = ng (n ) (WD)/12, (4.21)
Cov(Tg,Ty) = -nsnt(N+1)/,12. (4.22)

Also for k = 2, we have the following:

E(Ti) ni(ni"‘l)/z * nin.i I F.idFi' i,d=1,2: j#1i (4.23)

V(T

nyn;(@2ns-1) J Fydf; + nyn;(ng-1) J Fy2 dF;
+nin;g-1) S F2 dF; - ngng(ngng=1) (f F3dF) 2 - nyngng-1)
i,d=121+#3, (4.29)
Cov(Ty,Ty) = nqnglny f Fidfy + ng f FodFy = (ngny-1) | FydFy [ FydFy
= (ny-1)  F2 dFy - (np-1) f Fo2 dF; - 11. (4.25)
Finally, we state an order relation for the expected rank sum. Let {F g (x)}
be a family of distributions Qtochastically increasing in 6. Then we have the
folloving.
~ Theorem 4.2
ER,) & E(Ry) if and only if Fg & F where s,f =1,2,...,k.
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