Stochastic Search in a Convex Region!
by

Steven Lalley and Herbert Robbins
Purdue University Rutgers University

Technical Report 87-1

Department of Statistics
Purdue University

January 1987

1 Supported by NSF grant DMS 82-01723



Stochastic Search in a Convex Region!

by
Steven Lalley and Herbert Robbins
Purdue University Rutgers University
SUMMARY

A stochastic search strategy is proposed for locating a possibly mobile target in a
‘bounded, convex region of the plane. The strategy is asymptotically minimax as € — 0
with respect to the time required to get within € of the target. The proof involves the

study of first passages to time-dependent boundaries by a certain semi-Markov process.

1. Introduction

“Princess and Monster” [7] is a two-person game with two players who are restricted
to a bounded, connected, two-dimensional region €. The Monster M has maximum speed
1, the Princess P has maximum speed v < 1. Neither player obtains any information about
the position of the other until the distance between the two is < €; at this time M captures
P and the game ends. The payoff to P is the time elapsed before capture.

This game is a crude model for naval operations involving a surface ship M attempting
to locate a submarine P with active sonar. Here the parameter 2¢ (the sweep width) is
typically small relative to the dimensions of 1.

The P and M game is too complex to admit simple minimax strategies. Even if the

continuum {) is replaced by a finite set of points, and even if P’s strategy is known to M,

1 Supported by NSF grant DMS 82-01723
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M’s optimal strategy can only be determined approximately by a dynamic programming
algorithm [2]. Nevertheless, for convex 0 Gal [4] [5] and Fitzgerald [3] have exhibited
-strategies for both players that are asymptotically minimax as € — 0, in the sense that
the ratio of the expected payoff to the minimax value approaches 1 uniformly over the

opponents’ strategies. They have also shown that the minimax value V () satisfies

lim 2e V (e) = ||,

e—0

where |Q2] denotes the area of 0.

P’s strategy is easily described. Let Q;,Qs,... be an i.i.d. sequence of random points
uniformly distributed in 0. P starts at Q;, stays there T' time units, moves to Q2 at full
speed, stays there T' time units, and so on. The parameter T' — 0o as € — 0, but eT — 0
(e.g., T = &7/2). It is not difficult to show that no matter what strategy M uses, the
expected time to capture is at least |Q|/2¢ (approximately) when ¢ is small.

M’s strategy is more complicated. The region Q is partitioned into long, narrow (width
€1/2) rectangles. M searches in one of these rectangles for a long time T', and so on (cf. [3]
or [5] for details).

Despite its asymptotically minimax character, this strategy for M has the defect that
when ¢ is small, M is confined to small subregions of () for very long periods of time. If the
rules of the game were changed to allow P a small amount of partial information; e.g., if P
were informed of M’s position about once every €1/ time units, then she could elude it
indefinitely. Thus, Gal’s strategy for M is not robust to changes in the rules which might
be relevant in naval operations.

The purpose of this paper is to present an alternative strategy for M that is (nearly)
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asymptotically minimax but does not suffer from the localization of Gal’s strategy. Our
plan is nearly independent of €, and is robust to changes in the rules that allow P to have
occasional partial information.

Let Q2 be a compact, convex region in R? with smooth (C°) boundary 91, and let v
be the normalized arc-length measure on 9N (i.e., f;, dv = 1). Assume that Q is strictly
convex in the sense that any line tangent to 80 meets £ in only one point. Let ©4,0.,...

be i.i.d. random variables with distribution
Pr{0©; € df} = %sinﬁ dd, 0<6<m. (1.1)

Define a sequence of random points Py, Py, P;,... on 91 as follows. Let P, have distribu-
tion v. Having defined P;, draw the chord in Q from P; that makes an angle ©; with the
tangent to 9{1 at P;, and define P;,; to be the second point of intersection of this chord
with 802. The trajectory of M is obtained by following the chords PoP;, P P,,... at unit

speed. Let X(t) denote the position of M at time ¢ > 0.

PROPOSITION 1: The stochastic process Py, Py, ... is a stationary, Harris recurrent
Markov chain on 00 with stationary distribution v. For every continuous f : 801 — R

n

lim n7? Z f(P) = o f(p)v(dp) a.s. (1.2)
and
lim E(f(Pa)|Po=po) = o f(p)v(dp) (1.3)

for every po € 011.

See [12] for the definition of Harris recurrence. Observe that the Markov chain P, has
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a transition kernel k(p, p') that is jointly continuous in p, p’,
Pr{P; € dp'|P, = p} = k(p,p")v(dp'). (1.4)
Using this and the compactness of 30 it can be shown that (1.3) holds uniformly in po.

PROPOSITION 2: The stochastic process X(t), t > 0, is an ergodic semi-Markov
process whose stationary distribution is the uniform distribution on Q. In particular, if

f:Q — R is continuous, then

Jim v [ r(x@)e= [ s@az/inl as (15)
and
Jim E(7(X0)1X(0), €1) = [ f(z)dz/I0) (1.6)

In fact, (1.5) holds uniformly over all values of X (0) and ®;. We shall not prove this,

however.

For 6 > 0 let ¥ be the set of continuously differentiable functions y : R — Q such
that |y'(t)] < v and dist (y(¢),80) > 6 for all t € R. For g € Q let y,(t) = ¢. Fory € %
define

7e(y) = inf{t > 0: dist (y(t),X(t)) < e}
THEOREM 1: For any q € 1\80Q and t > 0,
1i1%25|ﬂ|_1Ers(yq) =1 (1.7)

and
lin%)'Pr {20 1ro(yy) >t} = €7t (1.8)
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THEOREM 2: For any 6§ >0

lim sup 2¢|0|~'Er.(y) = 1. (1.9)

This shows that the strategy for M of following the random trajectory X(t) is almost
asymptotically minimax. Since, according to the rules of the game, P is not required to
stay at least § away from 89, M should actually follow the trajectory X (¢) for a convex
region containing € in its interior, with some reasonable modification at 90 (there is no
point in searching outside 02). It is clear that one may construct an asymptotically minimax
family of strategies for M by choosing convex regions that shrink to Q as ¢ — 0.

Our strategy does not suffer from the localization defect of Gal’s strategy. Even if P
is given the position and direction of M from time to time, she will not be able to predict
its course for very long, in view of Proposition 2. Therefore, the strategy for M that we
have described is not only fully efficient in the minimax sense, but also robust to partial

information.

We shall assume throughout that the arc-length of 80 is 1. We prove Propositions 1,
2 in sections 2-3; the rest of the paper is devoted to proofs of Theorems 1, 2.

The results we have stated are true without the assumption that Q is convex; it is
only necessary to assume that {1 is connected and compact, and that 80 consists of finitely
many smooth closed curves. The only substantial modifications needed for the non-convex
case in the arguments below are in proving the irreducibility of P, (Section 2) and the
existence of the density f, (Section 6, Lemma 6).
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The results of this paper were announced in [9]. A related problem was studied in

[10].
2. Ergodic Properties of P,

In this section we shall prove that {P,},>0 is an aperiodic, v-irreducible, Harris
recurrent Markov chain with stationary probability measure v. Standard ergodic theorems

([12], Th. 4.3.6, Th. 6.2.8) then imply (1.2) and (1.3).
(A) Recurrence

It is apparent from (1.4) that the transition probabilities are absolutely continuous

relative to v; i.e.,

Pr{Py € dp'|Po = p} = ka(p,p")v(dp’),
where ky,(p,p’) is jointly continuous in p,p’. Since A1 is compact, for each p € 90 the
sequence ky, (p, p')v(dp’) has a weakly convergent subsequence. Consequently, the potential
kernel Y 0° o kn(p,p')v(dp’) is improper. It follows that if {Ppn} is v-irreducible, then it is

Harris recurrent ([12], Th. 3.2.6, Th. 3.2.7).
(B) v-Irreducibility and Aperiodicity

The strict convexity of 2 and (1.1) guarantee that k(p,p’) > 0 provided that p # p'.
Therefore, if p € 90 and F C 99 is a Borel measurable set with v(F) > 0, then Pr{P; €

F|Py = p} > 0. It follows that {P,} is v-irreducible and aperiodic ([12], Defs. 3.2.1, 6.1.4).
(C) Invariance of v

Let o € K, and p € 0. (K denotes the circle group {6 :0 < # < 27}). Consider the
ray emanating from p at angle @ to the horizontal (horizontal means parallel to the z-axis);
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define p’ to be the second point of intersection with 91, if there is one. Let ¢ (respectively,
—1') be the angle between the tangent to Q2 at p (resp., p’) and the horizontal. Let dp be
an infinitesimal arc on 91} centered at p, dp’ the corresponding infinitesimal arc at p’, and
v, (dp) the length of the projection of dp (or dp’) onto a line perpendicular to the segment
pp' (Figure 1). Let dp be an infinitesimal segment of K centered at . Finally, let ®; be

the angle between the horizontal and the line P;_{ P;.
(Figure 1 here)

LEMMA 1: For each p € 91} and ¢ € K such that p' is defined

PT{PO € dp; @1 € dtp}
=Pr{P, € dp’; ®; € —dp}

:%V(P(dp)dtp (2.1)

PROOF: This follows immediately from (1.1) and the fact that

sin(p + ¢)v(dp)
=sin(—p + ¢')v(dp’)
=v,(dp). |
We argue now that P; has the same distribution as Py; since the distribution of P, is

v, this proves that v is invariant. If Py € dp’ and ®; = —p then P; € dp. Consequently,

Lemma 1 implies that

Pr{Py € dp; ®; € dp} = Pr{P, € dp; ®, € —dp},
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from which it follows that Pr{Py € dp} = Pr{P; € dp}.

3. Ergodic Properties of X(t)

Let T; be the length of P, _, P;, 4= 1,2,...; this is the time the trajectory X (¢) takes

to traverse P;_1P;.

LEMMA 2: For each continuous function f : 1 — R,

T
E /0 FX(0)dt = /Q f(2)da. (3.1)

Before proving this we indicate how it implies (1.5) and (1.6). Define

Tn=Ti+To+ - +T,, n>1,

Y, = / F(X@)dt, n>1.

Observe that T, and Y}, are functions of (P,_1, P,); by (3.1) and the stationarity of {P,}

ET, =r|Q| and

EY, =7r/ f(z)dz
Q

The pointwise ergodic theorem for Harris recurrent Markov chains ([12], Th. 4.3.6) implies
that

Tp/n— 7] as. and

P - d =N
;Y/n wa(g:)q; a.s

Therefore,

/0 nf(X(t))dt/T'n—> /ﬂ f(z)dz /|0] as. ;
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(1.5) follows routinely. The weak convergence (1.6) is an instance of a standard ergodic
theorem for semi-Markov processes ([11], Th. 2; [1], Th. 3.1). It must be checked that T}
has a nonarithmetic distribution ([1], Th. 3.1(iii) ). For this it suffices to show that for
each ¢ > 0, Pr{0 < T} = |PyPy| < €} > 0: but this is obvious from the construction of

{P,}. This proves (1.6).

PROOF of Lemma 2: For each convex subset A of 0 define L(A) to be the length of the
line segment POPI N A, and define A(A) = EL(A). Observe that A extends to a positive
Borel measure. To prove (3.1) it suffices to show that A is 7x Lebesgue measure.

Recall that ®; is the angle between the horizontal and PoP;. We shall prove that for
each p € K, E(L(A)|<I>1 = go) is a constant multiple of Lebesgue measure. By Lemma 1,
for all p € 80 and p € K such that the ray R(p, ) emanating from p at angle (p to the

horizontal points into {2,

Pr{Po € dp|®1 = ¢} = (1/Cy)v,(dp) (3.2)

where C,, is the length of the orthogonal projection of I onto a line perpendicular to
R(p,p) (Figure 2). Let A be a square of side 8 contained in ) with two sides parallel to

R(p,p); define
B={peoQ:R(p,p) N A+# ¢}
(Figure 2). If ®; = ¢ and P, € B then L(A) = 8, but if ®; = ¢ and Py & B then
L(A) = 0. Hence, by (3.2)
B(L(A)@ = p) = C36.
Since the collection of squares contained in 2 with two sides parallel to R(p, ) generates
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the Borel o-algebra, it follows that
E(L(A)|21 = p) = C 4]

for all Borel sets A C 0.
Now A(A) may be obtained by integrating over o € K. Observe that (2.1) and (3.2)
imply

Pr{®,; € dp} = (Cp/2)dp, v € K.

Consequently,

MA) = EL(A) = 27|A|/2 = 7|4]. O

(Figure 2 here)
4. An Upper Bound on the Probability of a Hit

One expects that as € — 0, 7.(y) — oo in probability for y € #;. The following lemma

provides an estimate for the rate of convergence.

LEMMA 3: For each 6 > 0 and C > 0 there exists K < oo such that for every y € %,
po € 0N, and € > 0,

Pr{re(y) < C|Po = po} < Ke. (4.1)

PROOF: First we show that there exists K’ < oo such that for every y € %, po € 911, and
e>0
Pr{re(y) S T1|P0 = po} S K’&'. (42)
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Recall that if y € % then dist (y(t),00) > 6 and |y/(t)] < v < 1 for all ¢t. In order for
the event {r.(y) < T} to occur with 7. (y) =t it must be the case that dist (y(t),Po) €
[t —€,t + €], because X(-) traverses the chord Py Py at unit velocity. Say that y(-) is “in
range” of po € 90 at time ¢ > 0 if dist (y(t),po) € [t —&,t +€]|. Since |y'(t)| < v < 1
for all ¢, the set of times ¢ when y is in range of p, is contained in an interval of length
< 2¢(1 —v)~!. Thus {z € O: dist (z,y(t)) < € at some ¢t when y is in range of po} is
contained in a disc D of radius € + 2ev(1 — v) ~! whose center z satisfies dist (20, po0) > 6.
The set of 8 € (0,7) such that the ray emanating from pg at angle 0 to 90 intersects D is
an interval whose length ¢ satisfies
| sin(£/2) =e(1 + 2v(1 — v) ™)/ dist (20, po)
<e(142v(1—v)"1)/6.

Since 7.(y) < T occurs only if O is in this set, since the probability density function of
©o is bounded, and since sinz ~ z as z — 0, this proves (4.2).

For p € 90 define

f(p) = Pr{re(y) < T1|Po = p};

by (4.2), f(p) < K'e for all p € 0. By the Markov property of {P,},

Pr{rs(y) <C|Po = po}

0 n—1 n
=ZPr{Z T; <7e(y) < ZTi < C|Po =p0}
n=1 i=1

i=1
(o] n
<Y f(Pn)Pr {ZT,- < C|P = Po}
n=0 =1
oo n
<K'e Z Pr {ZTi <C|Py = Po}
n=0 =1

Therefore, to prove (4.1) it suffices to show that E(Ng|P, = p) is uniformly bounded for
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p € 011, where

n
Ng =inf{n:) T;> C}.

1=1

It is easily proved that there exist ¢ > 0, o > 0 such that Pr{T; > t|P;_; = p} > o for
every p € () and ¢ = 1,2,..., and it follows by routine arguments that E(N¢|P, = p) is

uniformly bounded in p.

5. A Lower Bound on the Expected Number of Hits

Recall that T is the length of the line segment P;_; P;. The successive visits to 80 by
X(t) occur at the points P, at the times Yo, T;; the renewal measure U for the Markov

renewal process consisting of these successive visits is

U(ds, dp|po) = Z Pr {ZT" € ds; P, € dp| Py = po} (5.1)

By the Radon-Nikodym and Lebesgue decomposition theorems
U(ds, dp|po) = u(s, p|po)dsv(dp) + U+ (ds,dp|po),

where u(s, p|po) is nonnegative and locally integrable relative to dsv(dp), and U~ (ds, dp|po)

is singular relative to dsv(dp).

LEMMA 4: For any finite interval J C R there exists. K < co such that
U((s+J) x 89po) < K (5.2)
for all s € R, pg € Q. Moreover for each arc A C 31,

lim U((s+J) x Alpo) = |[J|v(4)(r|02])~? (5.3)

8$—00
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and

lim UL ((s +J) x 8Q|po) =0 (5.4)

uniformly for all po € 9). Finally, for each 8 > 0 there exists sp < oo such that if s > sp

then
u(s, plpo) > (7)1 (1 - ) (5.5)
for all p,py € 0.

The proof will be given in section 6. Except for (5.4) and (5.5), which will be needed

for Lemmas 9-10, the result follows from standard results in Markov renewal theory.

To get a handle on the distribution of 7.(y) we shall obtain an asymptotic lower bound
for the expected number of chords of X (¢) that pass within ¢ of the path y(t) during a fixed
period of time. Each chord of X(t) is determined by a time s € R (the time at which X (¢)
begins traversing the chord), a point p € 80 (the initial point), and an angle p € 90 (the
angle the chord makes with 90 at p). Consider the Markov renewal process consisting of
the triples (s, p,8) specifying the successive chords of X (t). By Lemma 4, the as&mptotic
form of the renewal measure is a scalar multiple of the measure u on R x 31 x (0, 7) defined

by
1 .
p(ds, dp, df) = 5 sin 6ds v(dp)dd.
For each (s,p,0) € R X 892 x (0,7) and ¢ > s let 4(¢;s,p, 0) be the point at distance

t — s from p on the ray originating at p at angle 6 to 9. Let y(t) be a continuous path in
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1, and for o, € > O define

Fea(y) ={(s,p,0) € R x 801 x (0,7) : for some ¢ € [0, c)

dist (y(t),7(t;s,p, 6)) = € and dist (y(t’),'y(t';s,p,ﬂ)) >¢€

for all t' € [s,t)}.

The key to Theorems 1, 2 is the following
LEMMA 5: Foreaché >0,a>0,and0<¢e< 6, ify € Fs then
u(Fe,a(y)) > 2mae — 4mel. (5.5)

Furthermore, for q € () such that dist (g,80) > 6,

1(Fea(yg)) = 2mae. (5.6)

PROOF: Fix p € 1 and 6 € (0, 7). Consider the ray emanating from p at angle 8 to 89:
let © be the angle between the horizontal and this ray. In the coordinate system (s,p,0)

the measure y takes the form

1
p(ds,dp,dp) = Er(p,tp)dsup (dp)dyp (5.7)

where 7(p, ) = 1 if the ray v*(t; s, p, ) points into Q and r(p,p) = 0 if v*(¢; s, p, ) points

out of ) (cf. Lemma 1). For each ¢ € K define a measure A, on R x 990 by

Ap(ds,dp) = r(p,p)dsv,(dp).

Let p €K, s € R, and p € 30; for t > s define v*(¢; s, p, ) to be the point at distance
t — s from p on the ray originating at p at angle ¢ to the horizontal. For y € %5 and «,
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€ > 0 define

Ff,(y) ={(s,p,) ER x N : for some ¢ € [0, )

dist (y(t);'y* (¢; 8,2, go)) =¢eand
dist (y(t'); v*(t'; s, p, ©)) >e¢

for all ¢’ € [s,1)}.
By (5.7) and Fubini’s Theorem,

1
x E)VP (Fs‘fa (y))d‘P'

w(Feat) = |

To prove (5.5) and (5.6) we shall show that for each ¢ € K and y € %
Ao(FEL) + Ao (FE) > 2(20e — 46?), (5.8)
and that if y = y, for some ¢ € 80 such that dist (g, 1) > ¢,
Ap(FE,) = 20e. (5.9)

This suffices, since fn( dp = 2.

Recall that for each arc A C 911, v,(A) is the length of the orthogonal projection
of A (counting multiplicities) onto a line at angle © + 7/2 to the horizontal. Imagine a
(2-dimensional) incompressible fluid with density 1 flowing through R? with velocity 1 in
the direction ¢: then v,(4) is the amount of fluid flowing through A in a unit of time.
Consequently, for —co < @3 < @3 < 00, Ay ([e1, 02) X A) = (az — a;)v,(4) is the amount
of fluid that flows through during the time interval [ay, a3).

Consider y € 75. The set F£,(y) consists of those (s,p) € R x 8Q such that the ray

v*(t; s, p,p) comes within € of y(t) for the first time at some t € [0, a). It follows that
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Ao (F;‘fa (y)) is the amount of fluid that comes within & of y(t) for the first time at some

t € [0, &), since the fluid is incompressible.

Suppose y(t) = ¢ for some ¢ € ). Then A, (F‘P (y)) is the amount of fluid that

&,a
enters the circle D.(q) = {¢’' € R%: dist (¢/,¢) < €} at some t € [0,c). (Fluid can only
enter D, (qg) once, because the direction of the flow is constant and D, (g) is convex.) The
amount of fluid entering D, (g) during [0, &) equals the area occupied by that fluid at time

0, since the flow is incompressible and the density of the fluid is 1. It is easily seen that

this area is 2a¢ (Fig. 3): this proves (5.9).

Figure 3 here

Consider now the general case y € %. To calculate A, (F;’fa (y)) we must calculate the
amount of fluid passing within ¢ of y(t) for the first time at some ¢ € [0, ). Think of y(t)
as the locus of a point moving through the fluid; imagine that this point is the center of a
rigid disc of radius € that moves with the point. Consider the reference frame R, in which
the fluid is at rest. The amount of fluid that enters the disc for the first time during [0, )
is the area covered for the first time by the disc during [0, a) in the reference frame R,,.
Recall that in the original reference frame R the velocity of the disc is |y'(¢)| < v < 1 and
the velocity of the fluid is 1 (in the direction p). Consequently, if v, (t) is the p-component

of the disc’s velocity vector in the reference frame R, at time ¢, then

v,(t) >1—v>0.

It follows that the area covered for the first time by the disc (in the reference frame R,)
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during [0, ) is at least
[23
2¢ / v, (t)dt
0
(Fig. 4). This, then, is a lower bound for A, (F€,(y)). To prove (5.8) we merely note that
volt) +v-p(t) =2,
because the relative velocity of R, with respect to R_,, is 2. O

(Figure 4 here)

6. The Renewal Measure

In this section we prove Lemma 4. The primary difficulty is the lower bound (5.5); for
this it is necessary to establish first that the renewal measure has a nontrivial absolutely

continuous component.

LEMMA 6: There exists a nonnegative, continuous function f,(s,p|po), where s € [0, o0)

and p,po € 0N, such that for every po € 1
f2(s,plpo) >0 (6.1)
for some s > 0, p € 312, and such that for all s > 0 and p,po € 91},

Pr{T\ + T2 € ds; P, € dp|Po = po} > fa(s, p|po)dsv(dp). (6.2)

PROOF: It suffices to prove that for each p. € 91} there exists a nonnegative continuous
function f,, (s, p|po) satisfying (6.2) and such that f,, (s, p|p«) > 0 for some s € R, p € 9.
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For if this is true, there exists a neighborhood N(p.) of p. in 80 such that f,, (s, p|po) > 0
for all po € N(p.); by the compactness of A0 there exist pﬁl),pﬁz),...,ps‘n) such that
N = U?=1N(p£i)), and hence f2(s,p|po) = maxi<i<n fpii) has properties (6.1) and (6.2).

Fix p,,p € 81; consider the function g : 30 — R defined by g(p') = |p.p'| + |p'p|,
where |p.p'|, |p'p| are the lengths of the line segments p,p’, p'p. Clearly, g is C, since 1)
is smooth; moreover, g is not constant, because if p’ # p,,p’ # p then g(p') > g(p), by the
convexity of 2. Therefore, by Sard’s theorem ([6], sec. 1.7) there exists p € 30 such that
P’ # p«, P # p, and such that the differential of g at p' is nonsingular.

Consider now the map G, : 90x30 — Rx 9N defined by G, (p', p) = (|p«2'|+]?’ |, D).
By the argument of the preceding paragraph, for each p € 9 there exists p’ € 91,
p' # P«, D, such that the differential of Gp, at (p,p) is nonsinguiar. Since Gy, (p', p) is C™
in (p«,p’,p), the Inverse Function Theorem implies that there exist a neighborhood N of
p« and a neighborhood M of (p,p) such that for each py € N the differential of Gp, is
nonsingular in M and Gy, is a diffeomorphism of M onto a neighborhood of Gy, (p', p).

Let hy : 92 — [0,1] be a smooth function with support contained in N, such that
h1(ps«) > 0; let hy : 61 X 801 — [0,1] be a smooth function with support contained in M,

such that ha(p’,p) > 0. Consider the measure
€(ds,dpa|po) = E(k1(Po)he(Py, P2); Ty + T: € ds; P € dp2|Po = po).

Obviously, &(ds,dpz|po) < Pr{Ty + T2 € ds; P2 € dp2|Po = po). Since the transition
kernel k(po, p1) of the Markov chain P; is smooth and strictly positive except for p; = po,

the transformation theorem for multiple integrals implies that

&(ds,dpz|po) = fp.(s,p2]p0)dsv(dp),
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where f,, (s,pz2|po) is jointly continuous in s,p2,po and fp, (s,p2|ps) > O for (s,p2) =

Gy, (P, p). O

COROLLARY 1:

There exist a constant p < 1 and nonnegative continuous functions

f2x(s, plpo) such that

2k
Pr{Z T; € ds; Pax € dp|Po = po} > far(s,p|po)ds v(dp) (6.3)

=1

for all s € [0,00), p, po € 8N, and k = 1,2,..., and such that

/ / fak(s, plpo)dsv(dp) > 1 — pF (6.4)
[0,00) %802

for allpo € 90 and k = 1,2,....

PROOF: By induction on k. Let

1—p= mi , ds v(dp);
p pfélgﬂ//[o,oo)xan fa(s, p|po)ds v(dp)

by Lemma 6, 1 — p > 0, so (6.3) and (6.4) are valid for £ = 1. Let

2k
Fax(ds,dplpo) = Pr{) | T; € ds; Pay, € dp|Po = po}
=1
and
Fox(ds,dp|po) = Fai(ds,dp|po) — f2x(s, p|po)ds v{dp).
Then

Favvaldo,dplp) 2{[ [ o o) Fnla' il lpo)} s v(d)
8',p')E[0,00) X802

+f Fy(ds — o', dplp") fan(s', 7' |po) ds’ v(dp') }
(¢',p')€[0,00) X302
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By the induction hypothesis, the total mass of the measure on ther. h. s. is > 1—pk+t1,
The continuity of f2(s,p|po), the transition kernel k(p,p’), and the map (p,p') — |pp’|,

together with the compactness of 91, imply that

/ / fa(s — &', p|p’) Far(ds', dp’|po)
(3',p')€[0,oo)xaﬂ

is a continuous function of s, p, py. Thus, to complete the proof it suffices to show that the

measure
/ / Fy(ds — o', dp|p') far(s', p'|po) ds’ v(dp')
(s',p")€[0,00) x 2
has a density w.r.t. dsv(dp) that is jointly continuous in s, p, p’, po. For this it suffices to

show that
/ / Fy(ds — ¢', dp|p’) fax (5", o' |po) ds'v (dp") (6.5)
8!,p’)E[0,00) %30

has a continuous density, since fa(s,p|p’) is continuous. But there exist probability mea-

sures Hy(ds|p,p’) such that

Fy(ds, dplp’) = Ha(dslp, p")k2(v", p)v(dp),

where k2 (p’, p) is the 2-step transition kernel for P, (kz (p',p) is continuous ). Clearly,

Hy(ds — &' |p,p') far(s', p'|po)ds’
s'ER

has a density w.r.t. dsv(dp) that is jointly continuous in s,p,po. It follows that the

measure (6.5) has a continuous density. O

LEMMA 7: Let g : R X 30! — R be any continuous function with compact support.

For (t,po) € R x Q1 define

G(t, po) =//Rxang(t—s,p)U(ds,dp!po);

20



then G(t,po) is uniformly continuous on R x 90, and

Jim G(t,po) = (x[2))~* / / o(s,p)ds v(dp). (6.6)
—oe RXx8Q
uniformly for po € 91.

PROOF: First we show that for any a > 0 there exists C,, < oo such that
U([s,s + a] x 30|po) < C, (6.7)

for all (s, po) € Rx 0. It suffices to consider s = 0 (condition on the first visit to [s,s+ o]

by E?=1 T; and use the Markov property). Now

U ([0, o] x 89|po)

= Z PT{Z T; < a|Po = po}
1=1

n=0

<1+ Z / Pr{z T; < a|lPy = p1}tk(po, 1) v(dpi)
n=0" 00 i=1

< dpo).
< <agl>§-§nk(l’o,p1)> [ 00,1 x 091p0) v(dpo
Here k(po,p1) is the transition kernel for P,; since it is continuous on 80 x 81, it is

bounded. That
/ U ([0, ] x 39po) v/(dpo)
an

w .
= ZPr{Tl—f—...TnSa}

n=0
< 00

follows because there exist ¢,7 > 0 such that Pr{T;,; > t|P;} > 7.
To prove the uniform continuity of G(¢,po) we obs_erve that

G(t, pO) = g(tap0)+
/// g(t — s — |pop1|,p)U(ds, dp|p1)k(po, p1)v(dp1).
OOXRXON
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Since k(po, p1) is uniformly continuous in po and g(¢,p) is uniformly continuous in (t,p)
and has compact support, it follows from (6.7) that G(t,po) is uniformly continuous in
(¢, p0)-

For po € 91, (6.6) is a consequence of ([8], Th. 4). (Conditions IL.1, I1.2 of [8] follow
from Proposition 1 and Lemma 2; Condition IL.3 follows from Lemma, 6). The uniformity

in po holds because G(t,po) is uniformly continuous. O.

PROOF of Lemma 4: We have already proved (5.2) ( cf. (6.7) ). Moreover, (5.3) follows

from (6.6) by a routine approximation argument. Now observe that by (6.3), for every

k=1,2,...
U(ds, dp|po) > { / / far(s — &', p|p)U (dS’,dp’Ipo)} dsv(dp);
Rx3Q
thus (6.6) and (6.4) imply (5.5). Finally, (5.4) is a consequence of (5.5) and (5.3). @I
7. Proof of Theorems 1 and 2

We shall use the results of Sections 4, 5 to prove the following

LEMMA 8: For each f > 0, 6 > O there exist a > 0, €, > 0 such that for every ye%;,

0<e<Len,andn=0,1,2,...
Pr{r:(y) > na} < (1 — 20e]|71(1 - ,8))", (7.1)
and for every q € Q) satisfying dist (q,00) > 6

|Pr{r(yq) < (n + 1)a|r.(yq) > no} — 2¢¢|Q]71| < Bae. (7.2)
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Theorems 1-2 follow easily from Lemma 8. For y € % and € < &, (7.1) implies
[0, 0]
Er(y) =/ Pr{rc(y) > t}dt
0
oo
< Z aPr{r.(y) > no}

n=0

<|aK{2e(1 - B}

As > 0 may be arbitrarily small, it follows that

limsup sup 2¢|Q| " E7.(y) < 1. (7.3)
e—0 ye¥s

The inequality (7.2) implies that ase — 0
Pr{2e|0| 're(yy) >t} — €7t (7.4)

for all ¢ > 0, uniformly for ¢ € Q satisfying dist (g, 80) > 6. Now (7.3) and (7.4) together
imply that as ¢ — 0

2|0~ Ere(y,) — 1 (7.5)

provided that dist (¢,00) > 6. Theorems 1-2 are immediate consequences of (7.3), (7.4),

and (7.5).
Before proving Lemma 8 we shall record some consequences of Lemmas 4-5.

LEMMA 9: For any 3 > O there exists o > 0 so large that for every y € %, po € 89,

ande >0

/// —s1n0U(ds dp|po)db
Fa,e(y) 2

> (20e(1 — B) — 4?07 (7.6)
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PROOF: By Lemma 4 there is an o’ > 0 so large that for every s > o' — diamf) and all
P;Po € an:

U(ds, dplpo) = (1 — B)*/2/(x|02|)dsv(dp). (7.7)

Let a > of; define Fy o10(y) = Fea(y) N {(s,p,0) : s > o — diamQ1}. By Lemma 5 and

the translation invariance of p in s ( cf. (5.7) ),
1(Fe,ar,a(y)) > 27(a — )e — 4me?, (7.8)

It follows from (7.7) and (7.8) that if (o — &) > (1 — B) then (7.6) holds. O

LEMMA 10: For any 8 > 0 there exist o > 0, e, > 0 such that for every po € 9Q1, q € 9N

satisfying dist (¢,09) > 6, and 0 < € < ¢,

< Bae. (7.7)

l/// 1sin 0U (ds, dp|po)df — 2ce|2| 1
Fa,e(yg) 2

PROOF: It follows from (4.2) that

’/ // lsin0 (U(ds, dp|po) — (n|02|) ~dsv(dp)) d6
_Fa,e(yq) 2
< K'e / / |U(ds, dplpo) — (x|2)) ~*ds(dp)|
pE3Q Js€[—diam Q,a]

Lemma 4 implies that the double integral is o(a) as a — co. The result now follows from

the observation that

[ [ [Geinoainldonds)as = u(Faelue)) /(rln)
Fu,e(yq)

and Lemma 5. O
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PROOF of Lemma 8: Let N, (y) be the number of chords of X(t) that pass within € of
y(t) before time ¢; i.e.,

Na,e(y) =#{n > 0: for some t < « satisfying

n n+1
YT <t< ) Ty dist (X(t),y(t) < e}
=1 1=1

Lemma 3 provides an upper bound for Pr{N,(y) > 1|Py = po}. Together with the
Markov property of {P,},>0 this bound implies that for each a > 0 there exists K, < 0o

such that

Pr{Na(y) = n|Po = po} < Kqoe" (7.8)

for every n >0, po € 892, and y € F5.
Consider now E(Na,(y)|Po = po). This may be written in term of the renewal

measure (5.1) as

1.
E(Na,e(y)|P0=po)=/// §s1n0U(ds,dp|po)d0.
Fa,e(y)

Lemma 9 implies that for each # > 0 there exists a > 0 so large that for every py € 91
and y € %

E(No,e(¥)|Po = po) > (2ae(1 — B) — 4e%) |0~ (7.9)

Together, (7.8) and (7.9) imply that for-each § > 0 there exist a > 0, £, > 0 such that if
0<e<es,po€dN,and y € F then
Pr{Na,(y) > 1|Po = po}
=Pr{re(y) < a|Po = po}
>20e|0[71(1 - B).
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[1]

2]

3]

[4]

[5]
[6]

[7]

8]

The statement (7.1) (with a different ¢) follows by a routine argument using the Markov
property of P, and the fact that T; < diam 0.
A similar argument using Lemma 10 shows that for each 8 > 0 there exist a > 0,

€« > 0 such that if 0 < & < &, po € 91}, and ¢ € Q satisfies dist (g,00) > 6 then
|Pr{re(yq) < a|Po = po} — 20¢[0| 7 < Bae.
The relation (7.2) follows by a routine argument. a
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