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Abstract

Suppose several quantiles of the prior distribution for 8 are specified or, equivalently,
the prior probabilities of a partitioning collection of intervals {I;} are given. Suppose, in
addition, that the prior distribution is assumed to be unimodal. Rather than selecting a
single prior distribution to perform a Bayesian analysis, the class of all prior distributions
compatible with these inputs will be considered. For this class and unimodal likelihood
functions, the ranges of the posterior probabilities of the I;, and of the posterior c.d.f. at
the specified prior quantiles, are determined. Small ranges ensure robustness with respect

to the exact functional form of the prior.
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1. INTRODUCTION

In any practical Bayesian analysis a prior distribution for a continuous parameter can-
not be specified in complete detail. To do so would imply infinitely many prior probability
judgements. Instead, only a few judgements are actually made. ‘The prior specification is
then usually completed by assuming a reasonable, and preferably tractable, form of dis-
tribution which fits the judgements that have been made. Furthermore, the judgements
that are required are often not prior probabilities but complex functions of them, such as
prior means and variances. We consider here a scenario of prior specification that does not
require the fitting of a specific distribution to the prior judgements. The user assigns his
prior probabilities for the parameter lying in each of the intervals I 15125 ..., I, which are
contiguous and partition the real line; this amounts to asserting m — 1 points of the prior
c.d.f. of the parameter. We then assume only that the prior distribution 7 lies in some set
IT of distributions, all of which agree with the stated prior probabilities over the intervals
{I;}. The posterior distribution 7* then lies in a corresponding set IT*, and we consider

what bounds are thereby implied for relevant posterior probabilities.

Ezample 1. In Martz and Waller (1982), Example 5.1 supposes that two engineers
are concerned with the mean life 8 of a proposed new industrial engine. The two engineers,
A and B, quantify their beliefs about 8 in terms of the probabilities given in Table 1 for

being in specified intervals. Note that A has substantially more precise beliefs than does
B.

Table 1. Specified Prior Probabilities of Intervals

i Interval ; pf = Pr(0 € I;|/A) pP = Pr(0 € I;|B)
1 [0, 1000) 0.01 0.15
2 [1000, 2000) 0.04 0.15
3 [2000, 3000) 0.20 0.20
4 [3000, 4000) 0.50 0.20
5  [4000, 5000) 0.15 0.15
6  [5000, co) 0.10 | 0.15

Either of these probability specifications determines a class of prior distributions ,

namely

Mo={m:p;=Pr(@e L) = / w(df) for all 7}. (1.1)
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Berliner and Goel (1986) determine the ranges of the posterior probabilities of the
I; when Il is the assumed class of priors. Earlier, DeRobertis (1978) had considered
the related class of priors with Pr(@ € I;) > ~; for all 7. For both this class and II,
the ranges of the posterior probabilities are often quite large because the classes include
discrete distributions concentrated at “least favorable” configurations. The engineers in
Example 1 might well deny that such discrete priors are plausible reflections of their prior
beliefs for a,’continuous parameter, and might insist that they actually have smooth prior
densities. Indeed, it would not be uncommon to encounter the belief that II is actually

unimodal, leading to a class such as
I, = {unimodal  : p; = Pr(# € L) for all i}. (1.2)

Use of this more realistic class can sharply reduce the variability in posterior answers,
and is the subject of Section 4. It is shown that, a.lthough II2 is a huge class of priors,
maximizations and minimizations over this class can be} reduced to low dimensional nu-
merical optimization. Section 2 presents basic notation that will be needed, while Section

3 illustrates the type of answers obtained, through several examples.

Previous work on finding ranges of posterior quantities for classes of priors mainly
dealt with conjugate priors (e.g. Leamer (1978, 1982) and Polasek (1985)). Huber (1973)
was the first to explicitly consider a large “nonpa.fametric” class of priors. He determined
the range of the posterior probability of a set when II is an e-contamination class of priors
having the form m = (1—&)mo+eg; here g is a single elicited prior, € reflects the uncertainty
in 7r§, and ¢ is a “contamination”. Huber considered the case wheré all contaminations
(even discrete) are allowed. Berger and Berliner (1986), Sivaganesan (1986a, 1986b), and
Sivaganesan and Berger (1986) considered a variety of generalizations, to different classes
of contaminations (e.g. unimodal) and different posterior criteria (e.g. the posterior mean
and variance). DeRobertis and Hartigan (1981) considered a large class of priors specified
by a type of upper and lower envelope on the prior density, and also find ranges of posterior
quantities of interest. Each of these classes is plausible as a model of prior uncertainty.
Classes such as Iy and IT; perhaps have the advantage of being the simplest to understand
and elicit. Other work dealing with similar classes of priors includes Bierlein (1967), Kudo

(1967) West (1979), Manski (1981), Lambert and Duncan (1986), Cano, Hernéndez, and
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Moreno (1985), and Lehn and Rummel (1987). Related analyses for testing situations
can be found in Edwards, Lindman, and Savage (1963), Berger and Sellke (1987), Berger
and Delampady (1987), Casella and Berger (1987), and Delampady (1986). Other related
works include Kadane and Chuang (1978), Wolfenson and Fine (1982), Berger (1984, 1985,
1987), and Walley (1986). These latter works of Berger and Walley also include general

review and history of the subject.

2. NOTATION AND THE FORMAL PROBLEM

Prior information is to be stated for an unknown, continuous parameter 6 € [@0, am]
by giving
p;=Pr(0 € L) = Pr(a;—; <6< a;)

for « = 1,2,...,m. The intervals partition the parameter space [@0,am] and their end-
points a1, az, ..., a,—1 are arbitrary, possibly even specified by the user. Infinite parameter
spaces are included by ap = —oco and/or a,, = co. It is assumed that there is an underlying

prior density () on [ao,am| constrained by

/a‘ rO)dd=p; (i=1,2,...,m). (2.1)

a—1

Data are obtained, yielding a likelihood function (). We will assume that I(f) is
unimodal, with mode . For an arbitrary prior density , the posterior density 7* is, by

Bayes theorem,

*(8) = n(6)1(6)/ / " ri)d. (2.2)

Of interest is some set

C = Useal, (2.3)

where (1 is some subset of the indices {1,2,...,m}. We will seek bounds on Pr*(C), the
posterior probability of the set C. The two cases of most common interest will be C = I;
and C = U;<,I;; for the latter case, Pr*(C) is the posterior c.d.f. evaluated at a;. Sets,
C, more general than (2.3) can be considered (see Section 4.2), as could quantities such as

the posterior mean, but the analyses then become substantially messier.
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For a given C and class of priors, II, we seek the range of the posterior probability of

C as 7 ranges over II. Specifically, we will calculate

Pr(C) = sup Pr*(C), (2.4)

Pi(C) = inf Pr*(C). (2.5)

The classes Ilp and II3, defined in (1.1) and (1.2), will be considered. Consideration
of I, is sensible, of course, only when the specified p; are compatible with the unimodality

condition (so that IT, is nonempty). This will be the case when the constants
q; =pi/(ai_a’i-—-1)’ 1= 112s-"’m (26)

(defined to be zero if the denominator is infinite) satisfy

<< .. <G %+t1>%i2>...>qm (2.7)

for some k. Note that g; is the uniform density on I; which has mass p;. We will henceforth

assume that (2.7) holds, and that the prior mode is known to be in Ij.

In addition to Il and II, two simplified versions of IT, will be considered. The first

(in section 4.1) is
2 ={m €Il : aj is the mode of 7 and w(az) < h*}. (2.8)

The motivation behind consideration of this class is twofold. First, it substantially sim-
plifies the analysis, there being no uncertainty in the location of the prior mode, and no
need to allow for point masses at the prior mode. The additional inputs needed for I} are,
however, certainly ascertainable. Indeed, elicitation processes often begin by determining
the “most likely” value of 8, with the partitioning intervals I; determined by working away
from this mode. Allowing a maximum prior density of h* is also very reasonable, and
“safe” values of this upper bound are not hard to elicit. (Of course, setting ~* equal to a
very large number will yield answers more or less equal to the answers with no constraint

on this height.)

A reasonable value for this upper bound in many situations is
h* = 3max{q;}, (2.9)
1
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the reasoning being that it would typically be unreasonable for the prior density to exceed
the largest “average” density on an interval by more than a factor of 3. In all examples,

we will assume (2.9) as a “default” value of h* for IS,

While IT} results from applying additional restrictions to I, a certain loosening of the
unimodality condition leads to a class II;, defined in O’Hagan and Berger (1987), which
involves only univariate optimizations, and is hence very easy to analyze. Furthermore, it
will be seen to frequently give answers similar to those from the more complicated II,. (We
do not repeat this analysis here but will include calculations for this class in our examples,

for comparative purposes.) Note that
I, o 11, DHzDH’z,
so that the posterior ranges (P}(C),Pr(C)) will be nested in reverse order.

3. EXAMPLES

As the calculations are rather complex, we delay their development until after the
presentation of several illustrative examples. In these examples we calculate the range of
the posterior probabilities of the intervals I;, and also of the c.d.f. evaluated at the a;.
The format used for each example is to present the range of the posterior probability of
the relevant set C as the interval (P} (C), Py(C)). For each example, the classes I, and
II; defined in Section 1, and the classes II5 and IT; defined in Section 2, will be considered.

Ezample 1 (continued). Data becomes available in the form of two independent life-times
which are exponentially distributed with mean 8. The observed life-times are 2000 and

2500 hours, leading to a likelihood function

1(6) = 62 exp(—4500/6).

Tables 2 and 3 present the ranges of the posterior probabilities of the intervals I;
for engineers A and B, respectively. Tables 4 and 5 present the ranges of the posterior
c.d.f.s evaluated at the a;, for A and B respectively. For engineer B we make the natural
assumption that the prior mode is specified to be ay = 3000 (see Table 1) in calculations

with II;, I, and ITI5. For engineer A, the probabilities in Table 1 lead to no natural

6



restriction on the prior mode, other than that it be in the interval [3000,4000). The
calculations with II; and II; allow an arbitrary mode in this interval, but IT5 admits
only the choice of 3000 or 4000 as the mode. It somewhat surprisingly makes very little
difference to the answer for I} whether 3000 or 4000 is chosen as the mode; the tables

present the answers for the choice 3000.

Table 2. Posterior Ranges for C = I;, Engineer A

I; Di Il I, I, 115
[0,1000) 0.01 (0,0.006) (0.001,0.004) (0.001,0.004) (0.001,0.004)
[1000,2000) 0.04 (0.019,0.057) (0.037,0.049) (0.037,0.049) (0.038,0.049)
[2000,3000) 0.20 (0.214,0.291) (0.222,0.260) (0.225,0.260) (0.229,0.260)
[3000,4000) 0.50 (0.476,0.613) (0.512,0.584) (0.517,0.584) (0.517,0.579)
[4000,5000) 0.15 (0.106,0.164) (0.121,0.147) (0.121,0.147) (0.122,0.146)
[5000,00)  0.10 (0,0.083) (0,0.071) (0,0.071) (0,0.071)
Table 3. Posterior Ranges for C = I;, Engineer B
I; Pi Ilo IT; IT2 2
[0,1000) 0.15 (0,0.111) (0.020,0.023) (0.020,0.023) (0.020,0.023)
[1000,2000) 0.15 (0.088,0.255) (0.171,0.197) (0.172,0.197) (0.172,0.197)
[2000,3000) 0.20 (0.235,0.391) (0.282,0.327) (0.283,0.327) (0.284,0.327)
[3000,4000) 0.20 (0.197,0.349) (0.247,0.288) (0.248,0.288) (0.248,0.288)
[4000,5000) 0.15 (0.125,0.233) (0.149,0.175) (0.149,0.175) (0.149,0.175)
[5000,00)  0.15 (0,0.146) (0,0.121) (0,0.121) (0,0.121)
Table 4. Posterior Ranges for C = [0, a;], Engineer A
ag Ho Hl Hz le
1000 (0,0.006) (0.001,0.004) (0.001,0.004) (0.001,0.004)
2000 (0.0194,0.062) (0.038,0.053) (0.039,0.050) (0.039,0.050)
3000 (0.241,0.341) (0.262,0.310) (0.265,0.308) (0.268,0.308)
4000  (0.769,0.886) (0.794,0.871) (0.800,0.870) (0.801,0.869)
5000 (0.917,1) ' (0.929,1) (0.929,1) (0.929,1)
Table 5. Posterior Ranges for C = [0, a;], Engineer B
a; Ilp I, I, 2
1000 (0,0.111) (0.020,0.023) (0.020,0.023) (0.020,0.023)
2000 (0.096,0.327) (0.191,0.221) (0.192,0.221) (0.192,0.221)
3000 (0.388,0.623) (0.474,0.547) (0.476,0.547) (0.477,0.547)
4000 (0.659,0.860) (0.725,0.830) (0.728,0.830) (0.728,0.830)
5000 (0.854,1) (0.879,1)° (0.879,1) (0.879,1)




Note first that II;, ITz, and II} yield usefully small ranges of posterior probabilities, in
all cases. For instance, if engineer A is willing to assume unimodality as well as the given
pi, then he knows that his posterior probability that 8 € [3000,4000) lies between 0.517
and 0.584, while his posterior probability that # < 2000 lies between 0.039 and 0.050. For
engineer B, the corresponding ranges are 0.248 to 0.288, and 0.192 to 0.221. These ranges
are small enough that the engineers can probably make decisions on this basis, obviating

the need for more detailed prior specification.

Note also that II;, II;, and II} tend to yield similar answers, so that the particular
manner in which one chooses to implement unimodality does not seem to matter greatly.
On the other hand, I, yields substantially broader intervals (typically 2 to 4 times larger

than II,, say), indicating that the unimodality assumption has a pronounced effect.

A secondary point of interest is the very small interval of posterior probabilities that
is obtained for interval I; of engineer B when II;, II, or IT} is used. The reason serves
as a warning about casual assumption of the unimodality constraint. It is easy to see
that, when two adjacent intervals have equal ¢; (as do I; and I, for engineer B), then
any unimodal prior must have its mode in one of the intervals or be uniform over those
intervals. In Table 3 the mode could only be between 2000 and 4000, so a11>priors in IT,,
Iz, and IT} are uniform over I; and I,. Thus there may be little variation in the prior
(over II) under the unimodality assumption if certain of the adjacent ¢; are nearly equal

(the central intervals excepted.)

Ezample 2. As a second example, we illustrate the methodology on a standard type
of Bayesian example. Suppose subjective elicitation yields the following intervals and

corresponding prior probabilities, p;, for a normal mean 6.

Table 6. Intervals and Prior Probabilities: Normal Example

I; (-o0,-2) (-2,51) (-1,0) (0,1) (1,2) (2,00)
P 0.08 0.16 026 026 0.16 0.08

A “textbook” Bayesian analysis would be to notice that the p; are a good match
to a N(0,2) (normal, with mean O and variance 2) prior distribution. Suppose now that
z = 1.5 is observed from a N(0,1) experiment. Then usual conjugate prior Bayesian theory

would be employed, resulting in a N (1,2/3) posterior distribution. The resulting posterior
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probabilities of the I; are listed in Table 7 as p}.

As an indication of the robustness of the p} to the prior normality assumption, we
can calculate the ranges of the posterior probabilities of the I; for the various classes of

priors we are considering. These results are given in Table 7.

Table 7. Posterior Ranges for C = I, Normal Example

Ii p:-‘ Ho Hl Hz H,Z
(—00,—2) .0001 (0,0.001) (0,0.0002) (0,0.0002) (0,0.0002)
(-2,—-1)  .007 (0.001,0.029) (0.006,0.011) (0.006,0.011) (0.006,0.010)
(—1,0) 103  (0.024,0.272) (0.095,0.166) (0.095,0.166) (0.095,0.155)
(0,1) .390 (0.208,0.600) (0.320,0.447) (0.322,0.447) (0.332,0.447)
(1,2) .390 (0.265,0.625) (0.355,0.475) (0.357,0.473) (0.360,0.467)
(2, 0) 110 (0,0.229) (0,0.156) (0,0.156) (0,0.154)

The p; are reasonably robust, except possibly for p;. Also of interest is the now very
dramatic difference between the Il ranges and the ranges for the unimodality classes;
their sizes differ by roughly a factor of 4. This provides further evidence of the value of
incorporating the unimodality assumption (if subjectively warranted). Of course, these
are but two examples, and situations can be constructed where there is little difference
between the results for Il and II;, but our general experience in looking at a variety of

examples is that incorporation of unimodality typically has a substantial effect.

One final comment: the degrees of robustness in situations such as Example 2 will
typically depend strongly on the data z. In particular, as = gets extreme, so that the
likelihood and the prior clash, substantially less robustness will be observed (cf. Berger

and Berliner (1986) and Sivaganesan and Berger (1986)).

4. ANALYSIS UNDER STRICT UNIMODALITY CONSTRAINTS

In this section we present analyses for the classes Il and IT} defined in (1.2) and (2.8),

respectively. Since II} is easiest to analyze, it is discussed first. Section 4.2 considers II;.

4.1 Solutions for 11}

Minimizations and maximizations of Pr*(C) over II}, can be reduced to minimizations

and maximizations over a small dimensional class of extreme points. We describe these
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extreme points and the algorithm for calculating P~ (C) and P*(C) (dropping the subscript

IT%) below, in a series of steps. Proofs of most assertions are given in the appendix.

Step 1: Classification of Intervals

There will be two relevant classifications of intervals. The first classification is as a
“maximizing” interval (Max) or a “minimizing” interval (Min). Essentially, these are inter-
vals in which it is desired to maximize or minimize the posterior probability, respectively.

Table 8 presents this classification.

Table 8. Min-Max Interval Classification

Interval ¢

Goal of analysis In 2 Not in 0
P (C) Max Min
P*(C) Min Max

The second classification is according to the form of the “optimizing” prior in each
interval. It will be shown that there is a prior distribution (possibly a subprobability
distribution) at which P (C) or P*(C) is actually achieved, and that in each interval this

“optimizing” prior is one of the following types:

Uniform (denoted by U): on I;,
7(0) = g¢;; (4.1)

Step (denoted by S): on I,

x(6) = {hi—l ifa;_1 <0< s; (4.2)

h; if s; < 0 < ay,
where s; is defined in (4.8) and makes the total probability in I; equal to p;. Each interval
is classified as a U or an S in Table 9. In the table, “likelihood form” refers to whether I(4)
is increasing, decreasing, or both (called modal) in the interval. In the modal interval (note
that there can be only one), it is necessary to distinguish between three cases, depending on
a comparison of the values of the likelihood at the endpoints with the “average” likelihood

over the interval; in the table and in general, we define
y
L@@:/zmw. (4.3)
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Table 9. U-S Interval Classification

Intervals
Likelihood Form Class I3 to I Igyq to I,
Increasing Max S U
Min U S
Decreasing Max U S
Min S U
Modal
(i) L(ai-1,a;) <l(a;—1)(a; — a;—;) Max U S
Min S U
(i) L(ai—1,a:) < l(ai)(a; — ai—1) Max S U
Min U S
(iii) otherwise Max S S
Min S S

Step 2: Fill in Uniforms.

After classifying each interval, choose 7 in each “U” interval according to (4.1). These

will define the actual “optimizing” 7 in such intervals. Note that then

/ 1(0)(6)d8 = q:L(ai—y, as). (4.4)

Step 3: Classify Chains

A chain is a set of consecutive intervals among {I1,...,Ix} or among {Ix,1,...,I}
which consists only of “S8” intervals and which is bordered on each side either by a “U”
interval or by ao, ax—1, ak, or ay,. Such a chain is simple if it consists only of “Max” or

only of “Min” intervals; otherwise it is a compound chain.

It turns out that, within a chain, the “optimizing” 7 is one in which the adjoining
step functions match up at the boundaries to form a stairway. This leads to the following

algorithms for calculating the contributions of chains to P~ (C) or P*(C).

Step 4: Evaluating Simple Chains

Let {I}, Ii+1,...,I,} be a simple chain, and let h; = w(a;) for: =1—1,...,n. Again,

the “optimizing” prior over a chain is essentially a stairway ascending or descending from
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hi—1 to hyn, with one (or no) steps occurring in each interval (at s;), and h; being the
height of each step. (The special case of the chain consisting of only a single interval is
separately treated, for convenience, as Case 4.) The step heights are constrained by the

probability and unimodality requirements to satisfy

G <h;<gyi, t=L1+1,...,n—1. (4.5)
(Specification of h;_; and h, will be considered later; they are defined in terms of
hiy...,hp_1.) Define

A={h=(hy,...,hn_1): (4.5) holds}. (4.6)

For any such “stairway” prior, the function determining the contribution of the chain
to Pr*(C) is

¥(E) = (s n) = 3 [ 10010
=] V4 i

n—1
= hi_1L(@i1,51) + Y hiL(5i, 8i41) + hnL(sn, az). (4.7)
=]
The step locations, s;, are defined by the constraint that I; have total mass p;: (4.4) thus
yields
8i = [pi + hi—1ai—1 — hia;]/[hi—y — hy] (4.8)
(to be understood as “empty”, i.e. there is no “step”, if h;_; = h;). We will need,

depending on whether this is a “Max” or a “Min” chain, either

W = h) or ¥ = inf . 4.9
igg‘l’()or_ inf ¥(h) (4.9)

Numerical maximization or minimization is generally needed to find ¥ or ¥. This is
typically easy, since ¥(k) turns out to be concave on A if it is a “Max” chain and convex if

it is a “Min” chain. Additional comments about this calculation are given in the appendix.

It remains only to determine the boundary values, h;_; and h,,, for each simple chain.

Defining
0 ifl=1
h={ h* ifl=k+1 (4.10)
qi—1 otherwise,
h* ifn==~k
h=40 ifn=m (4.11)

gn+1 otherwise,



three cases need to be considered.

Case 1. (No Modal Interval).

If the chain does not contain the modal interval, then set

hi_i=h

-

hp = h. (4.12)

Case 2. (Modal; Min-Left or Max-Right)

If the chain contains the modal interval and is a “Min” chain lying to the left of a
or a “Max” chain lying to the right of aj, then it must be the case that the first interval
in the chain, I, is the modal interval. To solve this case, find the unique v > 8, in I; such

that
(v — ai—1)!(v) = L(ai—1,v), (4.13)

define
f=1Ipi — hi(a; — v)]/ (v — a1—1), (4.14)

and set

hn =k, and hy_; = max{f,h} (left case) or hy_; = min{f, h} (right case). (4.15)

Note that h;_; depends on h;, one of the variables over which optimization is performed.

Case 3. (Modal; Max-Left or Min-Right)

If the chain contains the modal interval, and is a “Max” chain lying to the left of ax
or a “Min” chain lying to the right of ak, then it must be the case that the last interval,

I,,, is the modal interval. To solve this case, find the unique v < 8, in I,, such that
(an — v)l{v) = L(v, an), (4.16)

devﬁne
f=Ipn—hn_1(v —an_1)|/(an —v), (4.17)
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and set
hi—1 = h, and h, = min{f,h} (left case) or h, = max{f,k} (right case)." (4.18)

Note that h, depends on h,_1, one of the variables over which optimization is performed.

Case 4. (Single Interval)

The preceding formulas are formally correct when ! = n (i.e., there is a single interval
in the chain), but the notation might become garbled in a computer program; also no
numerical optimization is needed. Thus we present the formulas for this special case

separately. Labelling the single S-interval I, it is clear that
¥ (k) = hi—1L(ai—1,s1) + hiL(s1, 1), (4.19)

and that ¥ or ¥ are achieved at the following choices of h;_; and h;, analogous to Cases

1 through 3. Here h is as in (4.10), and & is as in (4.11) with n replaced by .
No Modal Interval: hj_y = h and h; = h.

Modal; Min-Left or Maz-Right: h;_; = max{f,h} and h; = h, where v > 0, satisfies (4.13)
and f is defined by f = [p; — h(a; — v)]/(v — a;_1).

Modal; Maz-Left or Min-Right: h;_; = h and h; = min{f, h}, where v < 0, satisfies (4.16)
and f is defined by f = [p; — h(v — ai—1)]/(a1 — v).

Step 5. (The Solution If No Compound Chasn is Present)
The contributions of the “U” intervals to Pr*(C) are determined by

K, = Z ¢:L(a;—1,a;),
ieq:I; is a “U”

Ky = Z | qiL(a,-_l,a,-). (4.20)
igQ:1; is a “U”

14



Next, suppose that there are r; simple chains consisting of “Max” intervals, and r, simple
chains consisting of “Min” intervals. Denote the corresponding ¥ or ¥ by ¥y,...,PUr; and
Wi...,¥ry. Then

B _ (K2 +372,9)]7
P'(C) = [1+ 5 +Ef‘=1@)] , (4.21)
£©)=[1+ eigg)] (42

(These are not meant to be the same ¥, or U, in the two formulas; one generally has to

start again at the beginning for each separate calculation.)

Step 6. (Solution If a Compound Chain Erists)

First calculate K, K5,¥;,...,¥r;, and ¥,,...,¥rs as in Step 5. Now at most one
compound chain can exist, and it must be a simple chain of “Max” intervals followed by
a simple chain of “Min” intervals, or vice versa. Furthermore, the modal interval must be
at the boundary of the Max chain and the Min chain. Let a; be this boundary, and label
the simple chains to the left and right by Sz, and Sg, respectively. We present the solution
only for the compound chain being to the left of the prior mode ay; if it is to the right,

use the obvious reflection symmetry to reduce it to the left-side case.

A compound chain on the left must have Sz, being a “Max” simple chain and Sg being
a “Min” simple chain. The formulas differ slightly depending on whether a; is at the left

or right boundary of the modal interval.

Case 1: a; ts the right boundary of the modal interval

Let v < 6y be the unique solution to

(et — v)I(v) = L(v, as), | (4.23)
and define ( )
A Pt —g\v — a1
h = min {qt_H, (a: =) } , (4.24)

where ¢ equals zero if ¢ = 1 and equals ¢;—; otherwise. For fixed h:, q; < hy < h, let

L (ht) = -\-I’—a
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where ¥ is the supremum of (4.7) for the simple chain Sp; here, of course, n = ¢. The
supremum should be calculated over A in (4.6), with the slight modification that the range

for h,,_1; = h;_; be changed to

p: — ht(at - v)

gi—1 < hi_3 < —
V—ai—1

(4.25)

Also, set hy_; = h (see (4.10)) and h, = h; (the fixed value above). Note that if Sy,

consists only of the single interval I}, then oy (h;) is given by

©erL (ht) = QL(a,t_l, st) + htL(St, at). (4.26)

Similarly, optimize over the right chain Sy for fixed h;, finding
pR(ht) = l’

where W is the infimum of (4.7) for the simple chain Sg; here, of course, | =t + 1. The
infimum should be calculated over A as in (4.6), with h;_; set equal to the fixed h; and
hy = h. Note that if Sg consists only of the single interval Iy, then ¢g (ht) is given by

OR (ht) = htL(at,St+1) + _I;L(st+1,at+1). (427)
Finally,
— 'z g, AN
P'(C)= sup [1 L B2t E',T‘ L; + or( t)] (4.28)
qe <he<h K1+ 3L 9+ or(h)
e > ()]
e Ko+ ) L \Il-+<pLht}_
P*(C)= inf _|1+ =1 . 4.29
£ q: <he<h [ Ky + 3302, % + or(h) (4.29)
Case 2: a; is the left boundary of the modal interval
Let v > 0y be the unique solution to
(v — az)l(v) = L(as, v), (4.30)
and define :
h = max {qt, pt+1 - q(a't"l‘l — 'U) } , (4-31)
i (v —a1)
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where ¢ equals h* if t = k 4 1 and equals g;2 otherwise. For fixed h:, b < ht < g1, let
@ (h:) be ¥, the supremum of (4.7) for the simple chain Sz; here n = t. The supremum
should be calculated over A in (4.6), with h;_; = h and h,, equal to the fixed h;. If S,
consists only of the single interval I, then o (h:) is given by (4.26).

For fixed hi, let pg(h:) be ¥, the infimum of (4.7) for the simple chain Sg; here
! =t+1. The infimum should be calculated over A as in (4.6), with the range of h; = hy,;

being changed to
Ptr1 — hi(v — ay)
(at+1 —v)

< hiy1 < @it2, (4.32)

and with h;_; equal to the fixed h, and h, = h. If S consists only of the single interval
Iy, then pgr(hy) is given by (4.27).

Equation (4.28) or (4.29) can be used to complete the calculation.

4.2 Solution for Il and for Arbitrary Intervals C

The algorithm in section 4.1 for IT} can be modified to solve the problem for II,. Let
a* be the location of the prior mode in the interval Iy. It is easy to show that a* must
be one of the endpoints of the interval, unless the interval is the modal interval (of the
likelihood); then a* could also be at the mode of the likelihood. In the former case the
analysis is as in Section 4.1, while in the latter case the original I; can be considered to be
two intervals I* = [ax_1,a*) and I** = [a*,a;). Let p* be the prior probability assigned to
I*, so that px — p* is that assigned to I**. To ensure that the unimodality and probability

constraints are satisfied, it is easy to check that p* must satisfy

(@* — ar—1)qk—1 < P* < Pk — Qr+1(arx — a*).

Finally, let 2* be the maximum allowed prior density at a* (as before).

For specified a*, p*, and h*, one has a IT} problem with a; = a*. Hence the algorithm
in the preceding section can be applied to find P(C*) 01f P(C*) for this II5. One can then
optimize these quantities over p*. (Note that the optimizing A* will be oo, i.e. a point
mass will creep in. A reasonable practical way to deal with this is just to choose a very

large fixed h*, such as 10%qy; this will produce essentially the same answer as h* = c0.)
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The analysis above suggests the manner in which one can handle an arbitrary interval
C = [e¢1,¢3]. Simply create new intervals in each of the I; where a ¢; occurs, with each
¢; becoming an endpoint. Of course, two new parameters, p; and p; (analogous to p*),

might then be introduced, and require additional optimizations.

APPENDIX

The purpose of the appendix is to outline a proof of the results in Section 4. For

simplicity, we consider only the calculation of

P*(C) = sup Pr*(C)
2ica fI 1(0)n(0)do
P Sl 1 J, 1O (6)do
- n > iga Ji, U8)7(6)do
- [1 it Zien fI.. 1(6)m(6)do

-1

(41)

Verification of Step 1

Expression (A1) makes it clear that one wants to choose 7 to make the S 1, L(0)m(0)do

small for 7 ¢ () and large for ¢ € Q. This is the basis for the classification of an interval as

a “Max” or “Min” in Step 1.

The first key to the proof is establishing that, on each I;, the optimizing 7 should
be either a U or an S, as in Table 9. For this purpose, consider the interval (a;—1,a;),
and consider arbitrary allowable fixed values, h;_; and h;, for 7(a;—1) and w(a;). (The
allowable values must satisfy h;_; < ¢ < hy; if this is violated it is easy to see that =
cannot be unimodal.) We are done if we can show that a U or an § in the interval is
optimal for any allowable h;_; and h;. (There is the technical point here that uniform
segments violate unimodality; the uniform segments arise as the extreme point limits of

strictly unimodal priors, however, so that we can ignore the distinction.)

Consider first the case where hj_; < h; and [(0) is increasing on I;. By unimodality,
7(#) must be nondecreasing on I;. Depending on whether I is a “Max” or a “Min” interval,

we thus seek to minimize [; 1(8)7(8)df over

['={mr: =(0) is nondecreasing on I}, m(a;—;) = hi_1, 7(a;) = by, and / 7(6)d0 = p;}.
I
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It is trivial that the minimum is attained by a uniform segment on I; (since 7 () and
1(6) are both increasing); the probability constraint then implies that #() = ¢; on I,.
That the maximum is obtained by a step distribution follows from observing that as much
of the mass, p;, should be shifted towards high values of I(6) as is possible. Since I(6) is
increasing, this means that as much mass should be given to large 4 as is possible and,
correspondingly, as little mass to small 8 as is possible. This is clearly achieved, subject to
being in T, by a step density as in (4.2). Noting that the intervals I; to Iy have increasing
m(0), while those from Ir.1 to I,, have decreasing 7(f), variants of these arguments can

be used to fill in the “Increasing” and “Decreasing” Likelihood Form sections of Table 9.

The analysis for the modal interval follows by breaking up the modal interval into the
two intervals [a;_1,80) and [0o,a;). Since (i) we will either want to maximize or minimize
the relevant integrals over both intervals jointly, (ii) 7 (f) is either increasing or decreasing
over both intervals, and (iii) /() is increasing on [a;_1,00) but decreasing on [6o, a;), the
previous argument indicates that the optimizing 7 will be uniform on one interval and a
step density on the other; for illustration, suppose it is uniform with density & on [0, a;)
and is a step density on [a;_1,00), with 7(a;—1) = h;_;. But the argument of the preceding
paragraph applies to show that 7 must be of the form (on [a;_1,60))

_ hi_y if a1 <0<s
“”‘{h if s < 0 < fo,

for some point s. Hence we have that the optimizing 7 is actually a single step function

on I;, given by

_ hy_y ifa_1<0<s
“”—{h ifs<0<a, (42)

where a;_1 < s < 0.

To complete the argument for Table 9, it must be shown that, under the conditions
indicated therein, the step function in the modal interval is actually a uniform density. We
illustrate the argument in the case where I; is a “Max” interval to the left of ax (which is
consistent with our earlier choice of [y, ;) as the uniform subinterval, since 7 () is then

decreasing on [0p, a;)).
Consider the condition (from Table 9)
L(ai—1,a1) <l ai—1)(a1 — ai—1).
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A consequence of this condition is that
L(s,a1) <!(s)(a; — ) (A3)

for a;_; < s < 0 (since L(s,a;) — I(s)(a; — s) is a decreasing function of s in this range).

Now

/I 1(0)7(6)d8 = hi_1 L{ai—1, ) + hL(s,a1)
= hi—1L(ai—1, a1} + (b — hi_1)L(s, a)

L(s,
= hi_1L(ai-1, @) + (@1 — ha—1)(a1 — ai—1) (5, a1 ; (44)
(a1 = s)
the last equality following from the facts that
hi-1(s — a1—1) + k(a1 — s) = p = qi(as — ai—1).
Consider (A4) as a function of s, for fixed h;_;. Since
d L(s,a;) _ —I(s) L{s,a;)
ds(ai—s) (ai—s) (a;—s)?
= (a1 — &) 7 [~U(s) (a1 — 5) + L(s, ar)], (45)

which is negative for a;j_; < s < 6 by (A3), it follows that [ 1, L(0)m(0)d0 is decreasing in
s. The conclusion is that s = a;_; is optimal, i.e. 7 is uniform on I;. This proves the

validity of the relevant entry in Table 9.

Verification of Step 2.

We demonstrated that, for any allowable hj_q,h;, the “local” optimizing m in a U
interval, Ij, is 7(6) = ¢;. Since h;_; < ¢ < h;, this satisfies the global unimodality
condition. Furthermore, it does not depend on the particular choice of h;_; and hy, so it

must define the global optimizing 7 on I;.

Verification of Steps 3 and 4.

The key feature which greaﬂy simplifies the problem is that two intervals with ad-

joining step densities will have the steps match at the boundary. The reason for this is
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that at least one of the intervals must be a non-modal interval, and hence have monotonic
I(8) in the interval. As argued before, any such interval, if constrained at its boundaries
by values h;_; and k; for , will be optimized by a step function attaining these heights.
Thus 7 must be continuous at the boundary of two step functions. This fact verifies the

nature of chains, as described in Step 3. The formula (4.7) follows immediately.

The formula (4.12), for the boundary values when both end intervals of the chain are
non-modal, follows from the previous observation that the step heights for a non-modal
interval will always seek the extremes allowed. The possible extremes in (4.10) and (4.11)
correspond to the possibilities that an end interval of the chain is either I, Iy, Ipyq, or
I, (with corresponding extreme allowed boundary values of 0, 2*, h*, and 0), or that the
end interval adjoins to a U interval I, (with the corresponding extreme allowed boundary

value of h to be g¢,).

Cases 2 and 3 are more complex in that, if the end of a chain is a modal interval,
its outer step height need not match up with the density in the adjoining interval. As
an illustration of the argument, consider the case where the modal interval is a “Max”
interval to the left of ax; this can only occur when the modal interval is I, the rightmost

interval of the chain, and when (see Table 9)

L(an—1,8n) > l(an-1)(an — an-1). (A6)

Differentiating with respect to s shows that
L(s,an) —I(s)(a:1 — s)

is a decreasing function of s on (a,_1,00) (since () is increasing there), so that (by (A6)
and (4.16)),
L(s,an) —I(s){(a1 —s) >0

for an—1 < s < v, with the inequality reversed for s > v. Finally, using (A4) and (A5)
(with I, instead of I;), it can be concluded that |’ 1, {(0)7(0)d6 has a unique maximum
at' s = v, providing this leads to an allowable step height at the right boundary. The
correct step height, corresponding to a step at v, is f in (4.17), but (as before) the extreme

allowable height is k. This is the reason for the restriction in (4.18). (If f > &, the
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maximizing s will be the point in (a,—1,v) which results in a step height of &, but this is

automatically taken care of by the formulas.)

The arguments for Case 4 are entirely analogous, though now they lead to a determin-

istic solution (i.e., optimization over interval step heights of the chain is not necessary.)

Verification of Step 5.

This is just bookkeeping, adding up the contributions of all the separately maximized
or minimized components in (A1l). It is important to realize that the decomposition into
U intervals and chains decomposed the global problem into a set of local problems which

could be analyzed separately and then combined to yield the global solution.

Verification of Step 6.

The reason only one compound chain can exist, and that it must be of the indicated
form, follows from examining Table 9 and realizing that a chain on one side of aj can
have adjacent Max-S and Min-S intervals only if one corresponds to a modal interval.
Furthermore, on one side of this modal interval the chain must be all “Max” intervals,
and on the other side it must be all “Min” intervals. All subsequent comments about the

nature of a compound chain follow from similar examination of Table 9.

The remaining analysis in Step 6 is very similar to that in Cases 2 through 4 of Step
4, and will be omitted. The essential difference here is that the modal interval cannot
have a step height which is less than the adjoining step height. This leads to the possible
constraints on the heights h;_; in (4.25) and k¢4 in (4.32).

The Numerical Calculation in Step 4

For a simple chain {Ij, I141,...,In}, I # n, ¥ in (4.7) turns out to be a convex
function of hy,...,h,—1 if the chain is a “Min” chain, and a concave function if the chain
is a “Max” chain. To verify this, note that first and second partial derivatives of ¥ are as

follows (using (4.8) to simplify the expressions):
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I. First Order Partials: Fori=1,...,n—1,

0

ETY =¥ = (si — ai)l(s:) + (as = Si+1)l(8i+1) + L(ss, si41). (AT)

II. Second Order Partials: Fori=1,...,n—1,

aaf:?‘l' (gf’:_}z)z'() o SO} (48)

except, if Case 2 of Step 4 applies and h;_; = f, then

3 _ (ar— 81+1) ,
R e { CT] (49)

or, if Case 3 of Step 4 applies and h, = f, then

82 (Sne1 — p_1)?
7V =
hZ_, (hn—2 = hn_1)

U(sn—-1); (A10)

here I'(s) = £i(s).
III. Second Order Mized Partials: Fori=1+1,...,n—1,

o? o - (85 — ai)(as—1 —

8:) ;1 .
Phidhis . (s —h)

and
a2

hik; ———W¥ =0for |s — j| > 1.

Note: It can happen that h; = h;_; for some ¢ in a chain (i.e., the interval has
collapsed to a U interval), and this needs to be considered in a numerical program so

that formulas such as those above are not ill-defined.

Convezity or Concavity of ¥

The matrix of mixed second partial derivatives of ¥ is tri-diagonal, and an induction

argument shows that, in Case 1 of Step 4, the upper r x r) determinant of this matrix is

(r+1) Hr+ll'(3 )/ w;
D= (1) 3 |@ims {efxtrminson + dixtrcini-n}) i
t=1
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where ¢; = s; — aj, d; = aj — 841, w; = hj — hj_1, and x denotes the indicator function,
as usual. (Slightly different formulas hold in Cases 2 and 3 when h;_; = forh,=Ff but

the conclusions are identical.)

Consider the case where the simple chain is a “Max” chain to the left of ax. Then
each w; > 0. From Table 9, it further follows that /(6) must be increasing over the chain,
so that each I'(s;) > 0. Thus the sign of D, is (~1)", establishing the concavity of ¥ in

this case. All other cases are handled similarly.

The Optimization of ¥

Because of the convexity or concavity of ¥, no special problems are encountered in its
maximization or minimization (other than the reduction of dimension caused by possible
equality of adjacent h;). Almost any maximization program should work well; note the

availability of analytic derivatives in (A7) through (A10).

The maximization (or minimization) is over an n—I —1 dimensional rectangle. There
is a way to reduce the problem to almost a two dimensional optimization. The idea is to
fix {hi, hit2,-..}, and then use the deterministic relationships in Step 4 to calculate the
optimal corresponding {h;+1, hits,...}. Then consider these heights fixed, and recalculate
the {hy,hiy2,...}. Continue iterating between these two “dimensions” until convergence.
Note that one has to pay careful attention to h;_; and h, in Step 4 at each stage of the
iteration. Also, one must “fill in” a sequence from the outside in. Although this is, in
a sense, just a two-dimensional problem, the number of iterations needed may be much
larger than a good general-purpose (n — ! — 1) dimensional algorithm, unless (n—1—-1)is

quite large.
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