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Abstract

Consider a multinomial population with k(> 2) cells and the associated probability
vector p = (p1,...,Pr). Let pp) = 11%1?5}% pi- A cell associated with pyz; is called the most
probable event. We are interested in selecting the most probable event. Let ¢ denote
the index of the selected cell. Under the loss function L(p,4) = ppx) — pi, this statistical
selection problem is studied via a parametric empirical Bayes approach. Two empirical
Bayes selection rules are proposed. They are shown to be asymptotically optimal at least
of order 0(exp(-c;n)) for some positive constants c;, 2 = 1,2, where n is the number of
accumulated past experiences (observations) at hand. Finally, for the problem of selecting
the least probable event associated with pj;) under the loss p; — pp}, two empirical Bayes
selection rules are also proposed. The corresponding rates of convergence are found to be

at least of order O(exp(—c¢;n)) for some positive constants ¢;, 7 = 3, 4.
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1. Introduction

Consider a multinomial population with k& > 2 cells and the associated probability

vector p = (p1,...,pr) where zk:lpz- = 1. Let p;) < ... < ppx) denote the ordered values
i=

of the parameters p;,...,pg. It is assumed that the exact pairing between the ordered
and the unordered parameters is unknown. Any event associated with pp) is considered
as the most probable event. A number of statistical procedures based on single samples or
sequential sampling rules have been considered in the literature in the classical framework
for selecting the most probable event. Bechhofer, Elmaghraby and Morse (1959) have
considered a fixed sample procedure through the indifference zone approach. Gupta and
Nagel (1967), Panchapakesan (1971) and, Gupta and Huang (1975) have studied this
selection problem using a subset selection approach. Cacoullos and Sobel (1966), Alam

(1971), Alam, Seo and Thompson (1971), Ramey and Alam (1979, 1980) and Bechhofer

and Kulkarni (1984) have considered sequential selection procedures.

We now consider a situation in which one repeatedly deals with the same selection
problem independently. In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect to an unknown (or
partially known) prior distribution on the parameter space, and then, use the accumu-
lated observations to improve the decision rule at each stage. This is the empirical Bayes

approach due to Robbins (1956, 1964 and 1983).

Empirical Bayes rules have been derived for subset selection goals by Deely (1965).
Recently, Gupta and Hsiao (1983) and Gupta and Leu (1988) have studied empirical
Bayes rules for selecting good populations with respect to a standard or a control with the
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underlying populations being uniformly distributed. Gupta and Liang (1986, 1988) have
studied empirical Bayes rules for the problem of selecting the best binomial population
or selecting good binomial populations. Many such empirical Bayes procedures have been
shown to be asymptotically optimal in the sense that the risk for the nth decision problem
converges to the optimal Bayes risk which could have been obtained if the prior distribution

was fully known and the Bayes procedure with respect to this prior distribution was used.

Note that the above mentioned empirical Bayes rules use the so-called nonparametric
empirical Bayes approach. That is, one assumés that the form of the prior distribution
is unknown. However, in many cases, an experimenter may have some prior information
about the parameters of interest, and he would like to use this information to make ap-
propriate decisions. Usually, it is suggested (for example, see Robbins (1964)), that the
prior information be quantified through a class of subjectively plausible priors. In view of
this situation, in this paper, it is assumed that the parameters of interest in a multino-
mial distribution follow some conjugate prior distribution with unknown hyperparameters.
Under this statistical framework, two empirical Bayes selection rules are proposed. They
are shown to be asymptotically optimal at least of order O(exp(—e¢;n)) for some positive
constants ¢;, ¢ = 1,2, where n is the number of accumulated past experiences (observa-
tions) at hand. Finally, for the problem of selecting the least probable event associated
with ppy) under the loss p; — ppij, two empirical Bayes selection rules are also proposed.
The corresponding rates of convergence are found to be at least of order 0(exp(—c;n)) for

some positive constants ¢;, ¢ = 3,4.



2. Formulation of the Problem under the Empirical Bayes Approach

Consider a multinomial population with k(> 2) cells, where the cell 7; has probability
pi, ¢ =1,...,k. Let X; denote the observations that arise in the cell 7; based on N(> 2)
independent trials. Thus, for given p = (p1,...,pz), X = (X1,...,Xk) has the probability
function

k
(2.1) falp) = T »%,
[ (z:1) =

k
where, z; =0,1,...,N and ) z; = N.

i=1
For each p, let pj;) < ... < ppx) denote the ordered parameters pi, ..., px. It is assumed
that there is no apriori knowledge about the exact pairing between the ordered and the
unordered parameters. Any cell 7; associated with pjz) is considered as the most probable

event. Our goal is to derive empirical Bayes rules to select the most probable event.

k
Let @ = {p|lp = (p1,...,pr), 0 < pi <1l and ) p; =1} be the parameter space. It is
=1
assumed that p has a Dirichlet prior distribution G with hyperparameters o = (az,. .., o),

where all a; are positive but unknown. That is, p has a probability density function of the

form

P(ao) : oy —1 :
(2.2) g(p) = ——— [ " 0<pi<1, ) pi=1,

[T (o) i=1 i=1
i=1

k
where ag = Y .
=1

Let A= {:]¢ = 1,...,k} be the action space. When action 7 is taken, it means that
the cell m; is selected as the most probable event. For the parameter p and action i, the
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loss function L(p,%) is defined as

(2.3) L(p,i) = px) — pi>
the difference between the most probable and the selected event.

Let X be the sample space of X = (Xi,...,Xz). A selection ruled = (dy,...,d;) is a
mapping from X into [0, 1]¥ such that for each zeX, the function d(z) = (d1(z), ... ,dr(z))
k
is such that 0 < di(z) <1, ¢ =1,...,k,and ), di(z) = 1. Note that di(z), i =1,...,k is
=1

the probability of selecting cell 7; as the most probable event given X = z.

Let D be the class of all selection rules as defined above. For each deD, let r(G, d)

denote the associated Bayes risk. Then r(G) = gng r(G,d) is the minimum Bayes risk.
€

For each zeX, let

2.4 = {z|z; i = ; i)
(2.4) Alz) = {ilei + 0; = max (v; + )}
Consider the selection rule dg = (dig,- - . ,drg) defined below: for each i =1,...,k,
gz = 4 JA@ITT i ieA(2),
(2:5) dic = dio(z) = { 0 otherwise,

where |A| denotes the cardinality of the set A.

It should be noted that in (2.4) any selection rule d = (di,...,d) satisfying the

condition ), di(z) =1 is a Bayes selection rule.
i€A(T)

A straightforward computation shows that the selection rule dg is a randomized Bayes
selection rule in the class D. Since the values of the hyperparameters (aq,...,a) are
unknown, it is impossible to apply this Bayes selection rule dg for the selection problem
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at hand. As we mentioned above, we study this selection problem via empirical Bayes

approach.

Foreach j =1,2,...,let X; = (Xij,...,X;) denote the random observations arising
from N independent trials at stage j. Let P; = (Pyj,...,Pr;) denote the (random)
parameters at stage j. Conditional on Pj, X; has a probability function of the form of
(2.1). It is assumed that independent observations Xy,..., X, are available, and P;, 1 <
j < n, have the same prior probability density function of the form (2.2), though not

observable. We also let Xn41 = X = (X1,...,X) denote the present observations.

Two empirical Bayes selection rules are proposed depending on whether the value of
the parameter o is known or unknown. Note that «g is the sum of all the parameters
oa;, 1 < i < k. In the case that ag is known, the individual values of a;, 1 < ¢ < k, are

still unknown.
First, for each 2 =1,...,k, and eachn = 1,2,..., we let

v | KM=} ¥ Xij, Mi(n) = —; X2, Zi(n) = [N Xi(n) — Mi(n)]| Xi(n),

¥i(n) = [(Mi(n) = Zi(m)}V — (N = D(Xi(m)*.

When «aq is known, let

(27) é\f'm = aOXi(n)N—l)
and let
(2.8) An(z) = filei + Gin = max (z; + &jn)}-
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We then define an empirical Bayes selection rule ci,, = (Jln, ceny Jkn) as follows: for

eacht=1,...,k, zeX,

(2.9) G = { @7 ),

otherwise.

Let pi1 = E[X;(n)] and pip = E[M;(n)]. Then, following a direct computation, we
have u;; = Naiao_l, Wiz = Noz,-ozo—1 + (N? — N)a;(a; + l)ao_l(ao +1)7!. Hence, a; =
LiaLy', where Liy = (Npiy — pia)pir, Liz = (piz — pia)N — (N — 1)p% . Thus, Zi(n), ¥;(n),
and Z;(n)/Yi(n) are moment estimators of L;1, L2, and a; = Lj; Lz-_zl, respectively. Note
that L;; and L;; are both positive, which can be verified directly by the definition of p;
and ;2. Also, Z;(n) > 0. However, it is possible that Y;(n) < 0. Hence, for the case when

ag 1s unknown, we first let

(2-10) Am(wz) _ )T + Z,(n)/Yz(n) if Y,(n) > 0,
z; otherwise.
Also, let
(2.11) An(z) = {ilAin(w:) = max Ajn(z;)}
We then define an empirical Bayes selection rule d}, = (di,,...,ds,) as follows: for

eachi=1,...,k, zek,

(2.12) dt () = {1;‘1’:1(:5)|‘1 if ieds(z),

otherwise.

In the next section, we will study the optimality of the two sequences of empirical

Bayes selection rules {d,} and {d*}.



3. Asymptotic Optimality of Selection Rules {d,} and {d*}

Consider an empirical Bayes selection rule dn(z). Let r(G,dy,) be the Bayes risk
associated with the selection rule d,(z). Then r(G,d,) — r(G) > 0, since 7(G) is the
minimum Bayes risk. The nonnegative difference is always used as a measure of optimality

of the selection rule d,,.

Definition 3.1. A sequence of empirical Bayes rules {d,}52, is said to be asymptot-
ically optimal at least of order 8, relative to the prior distribution G if (G, d,) — r(G) <

0(Br) as n — oo, where {f,} is a sequence of positive values satisfying lim B, = 0.
n—oo

3.1. Asymptotic Optimality of {d,}.

We first consider the case where ag is known. Note that &;, is an unbiased estimator

k
of a;; also Y &ip = ag foreachn =1,2,....
=1

For each zeX', let A(z) be as defined in (2.4) and let B(z) = {1,2,...,k}\A(z). Thus,
for each zeX, icA(z), jeB(z), =i+ o; > zj+ aj. Following straightforward computation,

we can show

0 <G, dy) —r(Q)

(3.1) < Z Z Z P{:l:i—|-6éin Smj‘l'&jn}-

ZTeX ic A(T) jeB(T)

Now, for ieA(z), jeB(z),

P{z; + din < zj + Gjn }

= P D [ (Xim — Xm) =~ — a3)] < ~(a: + 23 — 2, — a5)a5 )



32) < P{% > [%(Xim — Xjm) — aio(ai — a;)] < —ei5}
m=1

< exp{—n27'e};

< exp{—nec1},

where
€ij = gnlxn{l:v., +a; —zj —ajlegt], ziz;=0,1,...,N,0<z; +z; <N,
DEE]

(3.3) mi-l—ai—mj—aj;éO}

>0 since N 1is a finite number .
and
(3.4) c1=27"min {e}]i,j =1,...,k, 1 #j} > 0.

In (3.2), the second inequality is obtained using the fact that

1

B[ (Xim — Xjm) = (o — )] =0,

1 1 1 1
— 1= oole = 0y) < H(Xim — Xjm) = (i — @) <1 g (6 — @)

and then making use of Theorem 2 of Hoeffding (1963).

By noting that X is a finite space, from (3.1) and (3.2), we have the following theorem.

Theorem 3.1. Let {d,} be the sequence of empirical Bayes selection rules defined

in (2.9). Then r(G,d,) — r(G) < 0(exp (—e1n)) for some positive constant c;.



3.2. Asymptotic Optimality of {d}}.

For each zeX, let A(z) and B(z) be as defined in the previous sections. For the

selection rule d},, one can obtain the following result
0<r(G,dy) —(G)

(3:5) <Y D > PlAi(e) < Ajals))}:

TeX icA(T) jeB(T)
Since X is finite, we only need to consider the behavior of P{A;,(z;) < Aj,(z;)} for

each zeX. Now
P{Ain(z:) < Ajn(z;)}
(3.6) = P{A;n(z:) < Ajn(z;) and (Zi(n) < 0 or Zj(n) <0 or Yj(n) <0 or Y;(n) <0)}
+ P{A;n(z:) < Aju(z;) and (Z;(n) > 0,Z;(n) > 0,Y;(n) > 0 and Y;(n) > 0)}.
Before we go further to study the associated asymptotic behaviors of the above prob-
abilities appearing on the right hand side of (3.6), we need the following lemma.
Lemma 3.1. Let b > 0 be a constant. Then,
a) P{Zi(n) — Ly < —b} < 0(exp(—b;n)); b) P{Z;(n) — Ly > b} < 0(exp(—b;n));
¢) P{Y;(n) — Ly < —b} < 0(exp(—bin)); d) P{Yi(n) — Liz > b} < 0(exp(—b;n));
where b; = B*[2N4(N + pi1)?]™* > 0.
Proof: The techniques used to prove these four inequalities are similar. Here, we give the
proof of part a) only.

Note that Z;(n) = [NX;(n) — Mi(n)]Xi(n) > 0. Hence, P{Z;(n) — Li; < —b} =0 if

L;; — b < 0. So, we assume that b > 0 is small enough so that L;; — b > 0. Then,
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P{Zi(n) — Ly < —b}
= P{N[(Xi(n))* - p&1] — [Mi(n)Xi(n) — piapir] < ~b}
< P{Xi(n) — pir < —b2N(N + uir))™'}
(3.7) + P{Xi(n) — pi1 > b((AN?)"'} + P{M;(n) — piz > b(4pir) "}
< exp{—nb [2N*(N + ps)?] 7}
+ exp{—nb?[8N*]7'} + exp{—nb’[8N*ui]™"}

< O(exp(—nb;)).

Note that in (3.7), the first inequality is obtained from the fact that 0 < Xz(n) <N,0<
M;(n) < N? and an application of Bonferroni’s inequality; the second inequality follows
from an application of Theorem 2 of Hoeffding (1963) and the last inequality is obtained

from the definition of b;.

Hence, the proof of part a) is complete.
By the positivity of L;; and L;s, and by Lemma 3.1,

P{Ain(z;) < Ajn(z;) and (Zi(n) <0 or Zj(n) <0 or Yj(n) <0 or Yj(n) <0)}
(3.8) < 0(exp(—n min(b;, b;)))

= O(exp(—nb;j)), where b;; = min (b;, b;).

Therefore, we then only need to consider the asymptotic behavior of P{A;,(z;) <
Ajn(z;) and (Z;(n) > 0,Z;(n) > 0,Y;(n) > 0 and Y;(n) > 0)}.
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Let Qz‘j = (:1:z — :I:j)Lizsz + LiaLj — L,‘ngl. Then Qij > 0 if ieA(:f) and ]6B(:§)

Therefore,

P{Ain(z;:) < Ajp(z;) and (Z;(n) > 0,Zj(n) > 0,Y;(n) > 0 and Y;(n) > 0)}
(3.9) < P{(2; — z;)[Yi(n)Yj(n) — LizLj2] < —Qi;/3}
+ P{Z;(n)Yj(n) — Li1Ljs < —Qi;/3}

+ P{Y;(n)Zj(n) — LizLj1 > Qi;/3}.

With repeated applications of Bonferroni’s inequality, we have the following inequali-

ties:

P{(z; — 2;)[Yi(n)Y;(n) — LiaLj2] < —Qi;/3}
(3.10.a) < P{Yi(n) — Lis < —Q;i;(6N*)™1} + P{Y;(n) — Ljz < —Q;;(6NLi2)™'}

if z; > z5;

P{(zi — z;)[Yi(n)Y;(n) — Li2Lj2] < —Qi;/3}
(3.10.0) < P{Yi(n) — Liz > Qi;(6N*)"'} + P{Y;(n) — Lj2 > Q:;(6NLi)™ "}

if z; < zj;

(3.10.¢) P{(z; — z;)[Yi(n)Y;(n) — Li2sLj2] < —Qi;/3} =0 if z; = z;

P{Z;(n)Y;(n) — LiyLjs < —Q:j/3}

(3.11) < P{Zi(n) — Lir < —Qij(6N*)"'} + P{Yj(n) — Ljz < —Q:;(6Li1) " };
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and

P{Yi(n)Z;j(n) — Li2Lj1 > Qi;/3}

(3.12) < P{Yi(n) — Liz > Qi;(6N°)"'} + P{Z;(n) — Lj1 > Qi;(6Liz) ™"}

Then, by Lemma 3.1 and from Equations (3.9) through (3.12), we conclude that
P{Ain(z:i) < Ajn(z;) and (Z;(n) > 0, Z;(n) > 0,Y;(n) > 0 and Y;(n) > 0)}

(3.13) < 0(exp(—na;j;)) for some a;; > 0.

Now, from (3.6), (3.8) and (3.13), for each zeX’, ieA(z) and jeB(z),
(3.14) P{Ain(zi) < Ajn(z;)} < 0(exp(—n min(bij, ai;)))-

Now, let ¢2 = n;jn{min(bij,aij)}. Then c; > 0.

i#]
Based on the preceding, we have the following result.

Theorem 3.2. Let {d}} be the sequence of empirical Bayes selection rules defined

in (2.12). Then r(G,d},) — r(G) < 0(exp(—czn)) for some positive constant c,.

Remark: Another selection problem related to the multinomial distribution is to select
the least probable event; that is, to select the cell associated with pp). If we consider the

loss function

(3.15) L(p,1) = pi — ppj
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the difference between the selected and the least probable event, then under the sta-
tistical model described in Section 2, a uniformly randomized Bayes selection rule is

dg = (dig,-..,dra), where, for each i =1,...,k,

_ A(z)|™! if ieA(z)
.1 dl = dz = l ~ ~/?
(3.16) ¢ G(g) { 0 otherwise,
and

(3.17) Az) = {ilei + oi = min (o +2;)}.

Let &in,Ain(z;) be defined as in (2.7) and (2.10), respectively. When «q is known,

we let
- (3.18) An(z) = {ilei + din = min (2 +&5n)},
and define a randomized selection rule Jn(:g) = (czln(g:), - ,Jkn(:f)) as follows:
(3.19) din(2) = { An(@)| 7t if iedn(z),
~ 0 otherwise.
When «aq is unknown, we let
(3.20) A3(2) = ilAin(e) = min, Ajn(z;)),
and define a randomized selection rule dy,(z) = (df,(),...,d;,(z)) as follows:
(3.21) & (z) = { A5 @) i iedy(2),
~ 0 otherwise.
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Following a discussion analogous to that given earlier for the most probable event,
we can see that {Jn} and {d%} are both asymptotically optimal and have the following

convergence rates:

0< T(G, Cz"n) - T(G) < O(exp(—c;:,n)),

0 < r(G,d3) — r(G) < 0(exp(—can)),

for some positive constants ¢z and c4, where r(G) now denotes the minimum Bayes risk

with respect to the loss function (3.15).
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We are interested in selecting the most
Under the Tloss function

Two empirical Bayes selection rules are proposed. They
11y optimal at least of order Q(exp(-cin)) for some

probable event.

is studied via a parametric
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positive constants Cis i =1,2, where n is the number of-

accumulated past experiences (observations) at hand. Finally, for the
problem of selecting the least probable event associated with;p[1] under
- the 1oss_p1 - P[l]’ two empirical Bayes seTecFion.ru1es are also proposed.
‘The corresponding rates of convergence are found to be at least of order
O(exp(-cin)) for some positive constants Cis i=3, 4.
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