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1. INTRODUCTION

This article will focus on regression based ratio estimators which are formed by taking
the ratio of mean value estimates, based on a linear regression function, at two distinct
points. Such estimators arise in the context of assessing the percentage change of the mean
value of a response variable over a specified region in the space of regressor variables, a
quantity which is nonlinear in the regression parameters. An important application, which
motivated this work, arises in a regulatory context to assess the automobile emissions pat-
tern as a function of accumulated mileage. This assessment is capsulized in the so-called
“deterioration factor” which is the ratio of two points obtained from a least squares line
fitted to emission-mileage data. McDonald (1981, 1988) discusses this problem, constructs
confidence regions for the deterioration factor using Fieller’s method (1954), and investi-
gates experimental design issues (i.e., at which mileages should emission measurements be
taken) so as to minimize the length of the resultant confidence interval. Several approxi-
mations to an optimal design criterion were derived. Within a restricted class of designs,
optimal designs were derived which quantified the tradeoff between reduced mileage accu-
mulation and increased number of emissions tests (i.e., number of data points).

In this article we provide further results on the statistical design issues, arising within
the ratio context, along a number of important lines. The problem is now specified as a
general multiple linear model thus permitting regression functions which are, perhaps,
quadratic or even spline-like. The length of the confidence interval is related to the
asymptotic variance of the regression based ratio estimator and thus is used as a basis
for constructing optimal experimental designs in the case of a simple linear model. This
methodology is extended further to the case of a potentially changing regression slope; i.e.,
inclusion of a spline knot in the design region.

Buonaccorsi and Iyer (1984) consider a related problem—that of estimating the point
at which a regression function, quadratic in one variable, achieves a maximum or minimum.
If E(y) = Bo +B1z +B222, then the parameter of interest is p = —f1 /282 and the authors
consider several methods of obtaining a confidence region for p along with optimal design
implications. In a recent article (1986) those same authors consider estimating a ratio
of two linear combinations of the vector of parameters in the general linear model and
optimizing the design with respect to the asymptotic variance of the estimator. In this
article we consider a different application and extend the optimal design considerations to
include spline type models and to include applications where only a portion of the design
points are free to be placed in an optimal fashion.



2. MATHEMATICAL FORMULATION

We assume a general linear model of the form

y; = f'(z;)B + ei, 1=1,...,n, (2.1)
where y' = (y1,...,yn) is an 1 X n vector of observations; 8 is a p X 1 vector of regression
coefficients f(z;) is a p x 1 vector of regression functions evaluated at z; € [a,b]; and
e’ = (e1,...,en)is an 1 xn vector of error terms assumed to be independent and identically

distributed with a normal distribution having mean zero and variance 2. The least squares
estimate of 7 is given by
b=(X'X)"'X"y (2.2)

where X is the n X p design matrix given by

fi(z1) fa(z1) ... fp(z1)
X= : (2.3)

filen) Fal@n) oo folzn)

It will be convenient, for later purposes, to let M = (X'X)/n denote the information
matrix per observation. The variance-covariance matrix of the estimates b is then given

by
Cov(b) = o*(X'X)™"
= (oe?/n)M, (2.4)

The variance of the error term is estimated by the usual unbiased estimator based on n—p
degrees of freedom (df); that is, by

&=n-p) (yy-b'X'y) (2.5)

Now let u; = E(y(z;)) = f'(z;)B be the mean value at two specified points with, say,
1 > z2. The usual estimates fi; = f'(z;)b, ¢ = 1,2, have a 2 X 2 variance-covariance
matrix given by

Cov(ji1, fia) = (0% /n)V, (2.6)
where

V=) = (i) ) M7 6o, KGoa)) .7

If ps # 0, the statement py/pe = 0 is equivalent to f'(z1)8 — 6f'(z2)f = 0. Thus a
hypothesis of the form
H: pi/ps =10 (2.8)

can be written as a special case of the general linear hypothesis (Searle 1971, Chap. 3);
that is,
H:\,8=0, (2.9)
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where

L= f(21) — 6f (2). (2.10)

In order to place a confidence interval on the quantity p;/p2, the F-test for the
hypothesis H is inverted. All § values that lead to acceptance of H (versus an alternative
of inequality) are placed in the confidence set. The critical region for the F-test for H is
given by

Reject H iff Q > s> Fy n—pars (2.11)

where

Q = (Ab)*[Np(X'X) 7" Ne] 7, (2.12)

and Fy n—po = F is the upper a** percentage point of a central F-variate with 1 and n—p
df. The quantity s? is given by equation (2.5). Thus, all values of # for which

Q < s’F (2.13)

are included in a 100(1 — a) percent confidence region (CR) for the ratio u;/ps.

The inequality (2.13) can be expressed conveniently in a quadratic form. Let
L=0bb' — (s?/n)FM™, (2.14)

and
0 =) = (o)) E((er), (o)
= (B s, - 2 v (2.15)
Then (2.13) reduces to
(1,-6)C (_10) <0,

92622 —20c19 +c11 < 0. (216)

Thus 6 satisfying (2.16) would comprise the 100(1 — a)% CR. for u1/p2. If cos > 0, then
the region can be expressed as an interval (CI)

or

0 € [612/622 + (6%2 — 611622)1/2/622]. (217)

The inequality co2 > 0 is
Cog = ,&g - (sz/n)szz > 0,

a3((s*/n)FI™! > g,

This will be true if either the signal to noise ratio at z, is sufficiently large or n is large.
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Further discussion of the form of the region determined from the parabola on the
left-hand side of (2.16) is given by Kendall and Stuart (1973, pp. 130-132).

The center of the CI on € can be written as

c1z/caz = [fafia — (8% /n)Fui2]/ i3 — (s*/n)Fua]
— p1/pe  as  n — oo. (2.18)

This limiting value, as expected, is simply the ratio of the response estimates at z; and
z2. In general, the center value cj2/c22 will not be fi;/fis. In fact

612/622 > ﬂ1/ﬂ2
if and only if
fi1/ 2 > vi2/vaa.

In some applications the response by + bjx is increasing so the left hand side is greater
than one while the right hand side, expressible as

V12 . 4/ V11
VV114/V22  +/V22 ’

will be less than one if v1; is no greater than ves.

vlz/vzz =

The length of the Cl is given by 2(c?, —011022)1/2 /c22. The matrix C is given in (2.15).
This expression is sufficiently complicated to warrant considering a related normalization
factor which can be used for design purposes. We choose the variance of the limiting
distribution (see Appendix A) to serve as such a factor and denote it by Var; i.e.,

Var (/) = (0* g (s, =)V (12 ) (219)

Additionally, McDonald (1988) gives conditions under which a design minimizing the ex-
pected length of the confidence interval could be determined, approximately, by choosing
a design to maximize | X'X|/[f'X'XB + 0?(1 — F)]. For large n this would be the design
minimizing the expression given in (2.19). We will refer to Var (ji1/fi2) as the asymptotic
variance.

3. SPECIAL CASE: SIMPLE LINEAR REGRESSION

In the special case where E(y) = fo + f1z then u; = Bo + f1zi,t = 1,2, and equation
(2.19) can be simplified. Using the expression (2.7) for V we find that

Var(i fs) = (o fn)(ax = 22z (=, o0 (T4, (3.)

An alternate expression, which for some purposes is more convenient, can be derived. As
noted in (2.6), (62/n)V is the variance-covariance matrix of the estimates fi; and fi;. In
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this case the matrix V is invariant under a change of basis of the regression functions (1, z).

Instead of 1 and z we use
lo(z) =(b—2z)/(b—a)

and
b(z) = (z — a)/(b—a), (3.2)

where the design variable z € [a,b]. In terms of these functions the response can be
expressed as

Bo + brz = pala(a) + usla(z),

where 11, and pp are the expected values of the response at a and b respectively. Using
(3.2) the expression (2.19) can be written as

Var(fi /fiz) = (0% [n)(z1 — z2)/p3(b — a)l* (= ps, pa) My (T:), (3.3)

where M, is calculated in the same manner as M = (X'X)/n using the regressors in (3.2).

Observations (i.e., design points in [a, b]), upon which the regression function is esti-
mated, can be chosen to minimize the expression as given in (3.1) or (3.3).

Lemma 3.1. The minimization of (3.1) or (3.3) is achieved by placing the design points
at a and b proportional to puj and u, respectively. That is, the number of observations N,
and N taken at a and b, respectively, is given by

No =npy/(pa + ps),

and (3.4)

Ny = npa/(pa + o).

The minimum value is

Var® (fi/fi2) = (0* [n)[(z1 — 22)(1a + p3)/ 3(b — @))*. (3.5)

Proof: This result can be derived from (3.1) using Elfving’s Theorem; see, for example,
Elfving (1952) or Karlin and Studden (1966). For our special case we can use the fact that
for simple linear regression it is always best to choose all the observations at the interval
endpoints, a and b. If this is done the matrix Mp in (3.3) is diagonal with diagonal elements
equal to the proportion of observations at a and b. The minimization is then easy to carry

out to obtain (3.4) and (3.5).

Remark: The result in Lemma 3.1 applies to the asymptotic variance and is locally
optimum in the sense that it depends on u, and up or By and B;. Calculations on actual
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data (next section) show that the results are accurate even for sample sizes of 10. The local
dependence is useful since prior information on the unknown parameters may be available
or a sequential adaptive type procedure may be used. In addition the minimum value in
(3.5) serves as a benchmark as to what could be attained.

Generally conditions will warrant or will require some observations to be taken in the
middle of the design interval. In this case the information matrix M in (3.1) or (3.3) can
be written in the form

1M1 + v Mo (3.6)

where v, is the proportion of the observations required or specified with corresponding
information matrix M;. The proportion v2 > 0 are free for design purposes so that now
(3.1) is minimized with respect to M,.

In the following we assume M; and M, are calculated using the regressors 4,(z) and
Zy(z) in (3.2). Let the elements of M; be denoted by

M, = (m” m”). (3.7)

ma21 M2y

In minimizing the expressions (3.1) or (3.3) with respect to M, one would expect the
resulting design to be close, in some sense, to the overall optimum given in Lemma 3.1.

Let

_ Y2k + 71 [ps(mae — m12) + pa(miz — m11)]
Yo(fta + p3)

The optimal design in this case is given in the following lemma. The proof is given in
Appendix B. An example illustrating the use of Lemma 3.1 and 3.2 is given in Section 4.

(3.8)

a

Lemma 3.2. The minimization of (3.1) or (3.3), with respect to the class of information
matrices given in (3.6), is achieved by placing the remaining proportion v, of design points
at the endpoints a and b in the proportions p, and 1 — p, where p, is given by (3.8). If
Pa > 1 (pa < 0) then all the observations are taken at a (at b).

Remark: The quantity p, in (3.8) is the proportion of the remaining observations assigned
to the endpoint a. Note that if 44 = 0 (and 42 = 1) so that all of our observations are
available for design purposes, then p, = ps/(pp + o). This is the solution given in Lemma
3.1.

Suppose that the prescribed proportion of observations 7, are assigned to z1, z3, ...,
zk in proportion &1, &2,..., £&k. The quantities my1, moe, mi2 are then given by

Déila(zi), TEly(zi), Tila(mi)ly(zs). (3.9)

An inspection of £,(z) and £3(z) in (3.2) shows that the quantities my1, mga, and mys
give a measure of the proportion of observations near a, near b, and near the middle
respectively. Note that mjs = 0 only if all the observations are at a and b. The relative
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sizes of these quantities (as well as p, and p3) will determine whether p, is greater or less
than ps/(ps + #a).-

4. AN AUTOMOTIVE EMISSIONS EXAMPLE

McDonald (1981) gives automotive emissions data on hydrocarbon (HC), carbon
monoxide (CO), and nitrogen oxides (NO,) as a function of mileage accumulated on the
vehicle. For illustrative purposes we consider here the HC emissions:

Miles HC
(in 1000’s) (gm/mi)
5.133 0.265
10.124 0.278
15.060 0.282
19.946 0.286
24.899 0.310
29.792 0.333
29.877 0.343
35.011 0.335
39.878 0.311
44.862 0.345
49.795 0.319

The regression estimates are by = .2659, b; = .00158, s = .01775, and R? = .644. Choosing,
for this application, ; = 50 and z2 = 4 we have 1; = .3451 and ji; = .2722. This selection
of 21 and z3, along with the specification of the observation interval, is motivated in the
McDonald (1981) reference. Thus f1/fio = 1.268 and, using (2.17), the upper and lower
limits for a 95% CI for p1/ps are 1.454 and 1.109 respectively.

The expression in (3.1) can be used to approximate a CI for the ratio. Based on
the eleven observations the resulting value is Var(fi;/fi2) = .00574. The corresponding
approximate interval estimate, i.e., c12/co2 & [F - var (fi1/j12)]'/? is from 1.110 to 1.453
which agrees remarkably well with 1.109 and 1.454.

Taking the observation interval to be from a = 5 to b = 50 Lemma 3.1 yields the
optimal observation placement to be 56% of the observations at a = 5 and 44% at b = 50.
For n = 11 the best allocation would be 6 observations at a and 5 observations at b.
A larger regression slope would generally require more observations at the left endpoint,
a = 5. Note that we should have N, < Nj if the slope ; is negative.

It is interesting to note that the locally optimal design given in (3.4) depends on the
values p, and pp of the regression function at the endpoints @ and b but not on the points
z1 and z2. This is due to the fact that in minimizing the right side of (3.3) the design or
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choice of observation enters through M, and hence we minimize

(o) (),

Ha

The asymptotic variance in (3.3) depends on z; and z, through the multiplier in front
involving (z1 — z2)2.

The minimal asymptotic variance, from (3.5), is approximately
Var* (ﬂ]_ //12) = 02297/n

For n = 11 this gives a standard error of .0457. This compares with a value of .0758 for the
original design. The design achieving the minimal asymptotic variance would thus yield a
CI approximately 40% shorter than that based on the original design.

Using the same data we can illustrate the design considerations if observations are
required at certain mileage values. Suppose for example that observations where required
at z = 5, z = 15, and two observations where required at the maintenance value z = 30.
Simple calculations from (3.9) show that mi; = 1/2, myy = mgy = 1/6. If a total of 11
observations were allowed as before then v; = 4/11 and 3 = 7/11. Inserting these values
together with p, = .2738 and pp = .3451 into (3.8) we find that p, = .473. In this case the
remaining 7 observations might best be allocated by placing 3 at the left endpoint a and
4 at the right endpoint 5. This allocation yields four observations at = 5; one at z = 15;
two at z = 30; and four at z = 50. For this a recalculation of the asymptotic variance in
(3.3) gives the value

Var(ﬂl /ﬁ,g) = 0305/n

For n = 11 this now gives a standard error of .0526. This value is, of course, between the
value .0763 for the original design and .0457 for the optimum unrestricted design using
Lemma 3.1.

5. LINEAR SPLINE REGRESSION

The automotive emissions applications are conducted with certain maintenance being
performed at some point, roughly midway, between a and b. Allowing the possibility that
the emission vs. mileage response function might change at the maintenance point, we
could introduce a continuous segmented line model

E(y) = Bo + frz + P2 (z — &), (5.1)

where (z — €)1 =z — £ if £ > € and equals zero if z < £. This provides for a possible slope
change at the point £, a < € < b.

To describe the corresponding design considerations, let pq, g, up denote the mean
response values at ¢ = a,§, and b respectively. Further let p, = (a — 22)/(¢ — z2) and
py = (21 —b)/(z1 — €) where we assume only that zo < £ < ;. The following lemma gives
the optimal design. The proof is sketched in Appendix C.
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Lemma 5.1. For the model (5.1) the locally optimal design minimizing the variance (2.20)
places observations at the three points a, £, and b proportional to the three quantities

w1 = |ps — pepsl, w2 = |pvpe — papsl, w3 = |pa — pepal (5.2)

respectively. The optimal value of the variance is given by

2
. n a 0?1 3
2 i=1

where p = ({ — z2)(z1 — £)/(§ — a)(b - £).

As an example of Lemma 5.1 we applied it and the model (5.1) with £ = 29.792 to the
data in Section 4. The estimates of the parameters in (5.1) are by = .2434, b; = .002922
and b, = —.00316 while s = .01246 and R? = .8439. The s value decreased slightly from its
value of .01775 in the simple regression case. The corresponding estimates of p; and ps are
fi1 = .3256 and fis = .2550. A little further calculation using (2.19) gives an asymptotic
standard error (of the ratio estimate using the spline) of .0614. The corresponding 95%
CI for pu1/pg is from 1.15 to 1.40. The interval in this case is somewhat smaller.

We can again calculate, using Lemma 5.1 the increase in accuracy if an optimal design
had been used. The design in the spline case is also of a local nature, i.e., it depends on
the parameters. The calculations below are based on the estimates of the parameters given
above.

The quantities wy, wp, ws are easily seen to be .3256, .0126, and .2453 while p =
1.0403. Using s = .01246 and ji2 = .2550 the optimal asymptotic variance in this case is

. .0135
Var(in/fi2) = ——

This value should be compared with .02297/n for the simple regression case. For n = 11,
the standard error is .0350, which, when compared with .0614 for the original design
indicates a reduction of 43% in the length of the interval.

6. SUMMARY

An important subclass of regression problems is the estimation, both point and in-
terval, of a ratio of mean values. Specifying statistical designs (i.e., the frequency and
placement of points in the design space where observations are to be taken) is challenging
and difficult due to the nonlinear nature of the function to be estimated. In this article
we have focused, primarily, on the asymptotic variance of the ratio of the least squares
estimates of mean values as a basis upon which to construct optimal designs. “Optimal”
in this context refers to minimization of a normalization factor derived as the variance of
the related asymptotic distribution.

In the case of a simple linear regression or a continuous segmented linear regression
it is possible to obtain explicit optimal designs. As in estimating the regression slope, the
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optimal design places all the mass at the interval endpoints. The proportion of observa-
tions allocated to the individual endpoints depends on the regression response at those
points and, hence, is locally optimal. Numerical calculations in a specific case (sample
size 11) suggest that while such designs are based on asymptotic variances they are, in
fact, quite good for exact interval expected length minimization based on a more complex
approach. Additionally, optimal designs are derived for the important applications where
some proportion of the observations are required to be taken in a specified fashion and the
remaining proportion are free to be allocated for design purposes.

These optimal design results further serve to indicate how efficient other designs might
be; e.g., those strategies used for the construction of automotive emission deterioration
factors. In this application these statistical measures augment other goals of such a testing
program which relate to hardware integrity. Such measures provide a scale upon which
various testing programs (including regulatory) for establishing deterioration factors can
be compared in terms of statistical estimation accuracy, number of required tests, and the
associated accumulated mileage (which translates to calendar time).
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Appendix A. We will show here that under suitable conditions the limiting distribution of
Zn =1 (”—1- — ’;—;) is normal with mean zero and variance

2

1 '[1,2

— —p1)V

#%(#2, f1) (—m)
as indicated in (2.19). We assume that gy # 0 and that n™}(X'X) = M, — M, and
that M, is positive definite. In this o = 'f(z2) — p2 in probability and we will define
Zp, = 01if iz = 0. It is well known that the least squares estimates § are such that
V(B — B) — N(0,M;"). The random variable Z, can be written as

2, =/ (p2fia — pafiz)

fiapio
=n (ﬁzﬂz)_l(#%—/Ll)(;g:g)(ﬁ —h)

In this case Z, has a limiting distribution which is normal with mean zero and variance
_ f'(z1) K2
4
— f
py (1, — p1) (f,($2) Mo(f(z1), f(z2) i

as required.

Appendix B — Proof of Lemma 3.2. It suffices to minimize R = (us, o) M, (ﬁ:) with

respect to the information matrix M, restricted to be of the form (3.6). The subscript £
denotes that we are using the basis functions from equation (3.2). It is well known that
we can restrict attention to designs on the end points a and b so that My = v My + v M,
where M, is diagonal with elements p, and 1 — p,. It can readily be shown that the
derivative of R with respect to p, is

_ 0 —1{ —Hb
— b, fha M 1 (72 )M 1( )
( b5 Ha) £ 0 — v la
Except for a positive factor of (det M,)? this is

(Bsy1ma2 + pbY2 — HbY2Pa + Hay1M21)?
— (ar1mi1 + pfa¥2pa + ,Mb’>’1m12)2

Since all the quantities are nonnegative an analysis of this factor shows the minimum of
R to be given by p, as expressed in Lemma 3.2 and equation (3.8).

Appendix C — Proof of Lemma 5.1 It suffices to minimize
f'(z1)\ , -1 12
(o1o) (o) )7 fGa) e (2
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where f(z) = (1, z, (z — €)+). As in the ordinary simple linear case we convert to a
“Lagrange” basis similar to (3.2). The basis functions are based on a, £, b and are given

by
[ St <
Ka(iv) = { §—a z 6
0 z2>¢
= T<¢
be(z) =4 ,_,
if T>¢

0 x <{
&,(ac) = -

ﬁ z>¢
Note that £,(z) has value one at £ = a and is zero at z = £ and b. Similarly for £¢(z)
and £(z). It is known, see Studden and Van Arman (1969), that the optimal design must
concentrate at a, £ and b. In this case M, ! is diagonal with diagonal elements p,, Dt Pb-
In this case the above expression to be minimized reduces to y2p, + fyg pe + v2ps where
(Yo, Y, M) = (f(:z;l),f(a:z))(_”lfl). Using Schwarz inequality the minimum is given by
Da, P¢, Pp Proportional to |va|, |ve| and |ys|. Using the fact that pu; = pele(i) + pele(z:) +
puls(zs), for ¢ = 1,2; a small amount of algebra will show that these three numbers are
proportional to wy,ws,ws given in (5.2).
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