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Abstract

Selection and ranking problems have been studied over the last thirty years, generally
under one of two formulations: Bechhofer’s indifference -zone approach and Gupta’s subset
selection approach. This paper deals with subset selection. Subset selection procedures in
multivariate models are briefly reviewed. These include: (1) Procedures for selecting the
best component in a multivariate normal population in terms of the component means
as well as the component variances (Section 2), (2) Procedures for selecting the best
from several multivariate normal populations in terms of (i) the Mahalanobis distance,
(ii) the generalized variance, and (iii) the multiple correlation coefficient (Section 3), (3)
Procedures (fixed sample size as well as inverse sampling) for selecting the most (least)
probable cell in a multinomial distribution (Section 4), (4) Procedures for selecting the best
from several multinomial populations in terms of the Shannon entropy function (Section
5), and (5) Procedures for choosing the best subset of the predictor variables in a linear
regression model (Section 6).

Key Words and Phrases: subset selection, multivariate normal populations, Mahalanobis
distance, generalized variance, multiple correlation coefficient, multinomial, Shannon en-
tropy, linear regression, important predictor variables.

* Research supported by the Office of Naval Research Contract N00014-84-C-0167 at
Purdue University. Reproduction in whole or part is permitted for any purpose of the
United States Government.



Shanti S. Gupta and S. Panchapakesan

STATISTICAL SELECTION PROCEDURES IN
MULTIVARIATE MODELS '

1. INTRODUCTION

Since sta.tlstlca.l inference problems were first posed in the now-famlllar :
“selection and ranking” framework over three decades ago, these prob-

lems have been studied from several points of view using various-goals .

and formulations. However, selection from multivariate populations
is an important topic that has not been a.dequately studied in the
literature.  Our interest here is to briefly review developments per- -
taining to selection from multivariate models. In doing so, we con-
sider: (1) selection from a single multivariate normal popula.tlon (2) -
selection from several multivariate normal populations, (3) selection

from a multinomial population, (4) selection from several multinomial

popula.tlons and (5) selection from a set of predictor va.rlables in a

regression model.

For ranking multivariate populations, usua.lly a scala.r function
of the unknown parameters has been chosen in all the investigations.
This permits a complete order of the populations. The choice of
the ranking measure depends, of course, on the specific situations.
The selection procedure in these cases depends on a suitably chosen
statistic which has a univariate distribution. ,

Let us consider k independent populatlons 7r1, ., Tk, Where
m; has the underlying distribution function Fy,; ¢ = 1 ,k. The
0; are unknown real-valued parameters; these represent the va.lues of .
a certain quality characteristic § for the & populations. The popu-
lations are ranked according to their #-values. To be specific, 7; is-

defined to be better than =; if 6; > 0;. The ordered 6; are denoted-'»_ 3

by Oy < -+ < O It is assumed tha,t there is no prior knowledge

regarding the correct pairing of the ordered and the unordered 6;. Se- E
lection problems have been generally studied under one of two formu-

lations, namely, (1) the mdzﬁerence-zone and (2) the subset selection -

formulations.:
Considering the basic problem of selecting thc best populatzon
(i.e. the population associated with ﬂ[k]) the indifference-zone formu-

lation of Bechhofer (1954) requires that one of the k populatlons be



chosen as the best. A correct selection (CS) is said to occur when
any population associated with Ok is selected. Any walid procedure -
R must guarantee a specified minimum probability of a correct: se-
lection (PCS) whenever the best and the next best populations are -
sufficiently (to be specified) apart. Let 6 (0ix)> Ojx—1)) denote an ap-
propriately chosen measure of the separation between the best and
the next best populations, and P(CS|R) denote the PCS using the
rule R. Further, let : : o '

Qs = {010 = (015--+,0%),6(Opi), Opk—1)) = 6* >0} (1)
Any valid rule R should satisfy - |
P(CS|R) > P* whenever§e Q. (2)

Both 6* and P*¢(1/k, 1) are specified by the experimenter in ad-
vance. Suppose R is based on samples of size n from each population.
Then the problem is to determine the smallest » for which the require-
ment (2) is satisfied. It should be noted that there is no guarantee to
be met when § belongs to 1§., the complement of Qs«. The region

1%, is the “indifference-zone” lending its name to the formulation.

In the subset selection formulation studied extensively begin- =

ning with the pioneering work of Gupta (1956, 1965), the basic prob-
lem is to select a nonempty subset of the k& populations so that the
best population is included in the selected subset with a specified min-
imum PCS. The size of S, the selected subset, is not determined in "
advance but by data themselves. Selection of any subset that includes -
the best population results in a correct selection. Letting Q denote
the entire parameter space, any valid rule R should satisfy

P(CS|R) > P* for all g et ' _ (3)

This requirement (3) is called the basic probabslity requirement, or the
P*-condition. Any configuration § which yields the infimum of PCS
over {1 is called a least favorable configuration (LFC). o
 The expected value of | S|, the size of S, is a reasonable measure
of the performance of a valid rule and has been generally used. Some
other possible measures (considered by a few authors) are 3
E(|S|)/P(CS|R) and E(|S|)—P(CS|R), the latter being the expected .
number of non-best populations included in S. o
There are many variations and generalizations of the basic for-
mulation using either of the two approaches described above. There
are also related problems such as selecting populations that are better
than a standard or a control. A comprehensive survey of the develop-



ments encompassing all these aspects with an extensive bibliography - -
is given by Gupta and Panchapakesan (1979). Recently, Gupta and’

Panchapakesan (1985) have provided a critical review of developments -

in the subset selection theory with historical perspectives. For a cat-
egorized bibliography, see Dudewicz and Koo (1982). .
In the present paper, we are concerned with subset select1on, '

procedures for multivariate populat1ons In Section 2, we discuss se-.

lection of the best component in a multivariate norma.l population in

terms of the means as well as the variances. Selection from several =

multivariate normal populations is discussed in Section 3 using d1f—,v
ferent criteria such as the Mahalanobis distance, the generalized vari- -
ance, and the multiple correlation coefficient. Sect1on 4 deals with
selecting the most probable and the least probable cells in a multino-
mial distribution. Selection from several multinomial popula.t1ons is
discussed in Section 5 using the Shannon entropy function for compar-

ison of the populations. Finally, Section 6 describes subset selection .

procedures for choosing a best set of predictor variables in a l1nea.r ,
regression model. :

2. SELECTION FROM A SINGLE MULTIVARIATE NORMAL
POPULATION.

Consider a p-variate normal population N,(y, X) with mean vector
#' = (p1,...,mp) and covariance matrix ¥ = (o), which is
assumed to be positive definite. In this section, we consider ranking
the p components according to their means p,,, and according to their

- variances 0.
2.1. Selection in Terms of the Means

Let X' = (Xi,...,X,) be the sample mean based on n independent

(vector) observations from the population. We first consider the case
of known ¥ and assume, without loss of generality, that o;; = 1 for
= 1,...,p. For selecting the component associated with K(p]> the

largest pi, Gnanadesikan (1966) considered the procedure
dy

Ry : Select the 7th component if and only if X; > X [p] —

@

where X[;] <...< X|p denote the ordered X, and d1 = ;
di(n,p,X) > 0 is the smallest number such that the P*—cond1t10n is



satisfied. It is easily shown that ‘ ‘
ing(CS|R1) =Pr{Y; > Y;—di, j=1,...,p— 1}, (8

where Y; = \/_ (X(,) - ,u,[,]) X(iy is the component sample mean -
associated with p[;, and Q@ = {g: —oco<u; <oo0, 7 = 1,...,p}.

For evaluating d; for which the right-hand side of (5 g ) equals P* we
need to know A = (a;;), the covariance matrix of ¥ (Y1,..., Yp) |
Even though ¥ is known, we do not know the correspondence between'

the o; and the a;; except when p = 2. For p = 2, the right-hand side - :

of (5) equals ®[d1/+/2(1 — 012 ] where ®(-) is the cdf of a standard

normal random variable; this glves

dl = d n 2 2) \/2(1—0'12 @ 1(P (6)

For p > 2, Gnanadesikan (1966) obtain two different lower boun‘dsr..
for the infimum of PCS. Letting do; = min{d;/1/2(1 — Qpg)s § =
1,...,p— 1}, one gets 7

ing(CSlRl) > Pr{Z; < dos, j=1,...,p— 1} (7)

where Z' = (Z1,...,2Z,—1) has Np_;(0, B) distribution and B has a
known structure with elements being 0, or [2(1 — a;,)] "%, or —[2(1—

a;p)]"%, 7 =1,...,p— 1. One lower bound for the right-hand side

of (7) obtained by Gnanadesikan (1966) is ®P~1(do;) based on an
inequality due to Slepian (1962). The other lower bound is (2 — p) +
(p — 1)®(do1) obtained by using a Bonferroni inequality. For p = 2,
the two bounds coincide. While do;, using either lower bound, is a
conservative value for d;, the computations of Gnanadesikan (1966)‘
show that dgy in the former case (Slepian inequality) is closer to the =
exact value. However, the difference between the two approximate
values decreases as P* increases and is very small for P* > .90.
The determination of the constant d becomes easier when O =
p >0, ¢ # 3. In this case, we get B

o0
d
. . p—l
%fP(C'SIRl)—/_oo@ (z+ =

and H = d/+/2(1 — p) are tabulated by Gupta (1963a) and by Gupta,
Nagel and Panchapakesan (1973) who have also considered the selec-

Jid(z)  (8)




tion problem in this spec1al case.

When the covariance matrix ¥ is unknown, let us a.ssume e that
o;; =02 fori=1,...,p, and let s2 denote an estimator of 62 on v
degrees of freedom, statlstma.lly mdependent of the X;. In this case,
Gnanadesikan (1966) proposed the procedure :

where dy = da(v,p, P*) > 0 is the smallest number for which the
pP* -cond1t1on is satisfied. For this procedure, _ , ‘

Ry : Select the ith component if and only if X; > X[p] -

inf P(CS|R,) > Prft; < doy, i = 1,...,p—1}

p—1 ’
>1- Z Pr{t; > do1} (10)
1=1 -
where t; = Z;/s,, Z' = (Z1,...,Zp—1) has the same distribution as in

the known X case, vs2 /02 has a ch1—square distribution with v degrees

of freedom, do; is defined as before, and 0 = {(g, ¥)}. Equating the -
last member of the inequalities in (10) to P*, an a.pprox1mate value
of d01 is given by

(2—p)+(p—1)Gu(do) = P* , (11)_'»

where G, (-) is the cdf of a Student’s t variable w1th v degrees of -

freedom. In the special case of 0;; = po?, p > 0, do; can be evaluated -
as an equicoordinate percentage point of a multlva,nate t distribution.
The do; values are tabulated by Gupta and Sobel (1957), Krishnaiah
and Armitage (1966), and Gupta, Panchapakesan and Sohn (1985).

2.2. Selection in Terms of the Variances
We now define the best component as the one associated with the

smallest 0;;. A natural procedure is analogous to that of Gupta and :
Sobel (1962a) in the uncorrela.ted case. This procedure is ' ‘

Rz : Select the ith component if s;; < — min s] j (12)
1<]<p :

where ¢ = ¢(p,n, P*) € (0,1) is the largest number for Whlch the P*-
condition is satisfied, and § = (s;;) is the sample covariance matrix



based on n independent (vector) observations from the population.
This procedure has been considered by Frischtak (1973), who has -
shown that, for p = 2, the infimum of PCS is attained when 011 = 023
and 012 = 0. Thus ¢ can be obtained from the tables of Gupta and
Sobel (1962b). | | -

For p >3, Frischtak (1973) obtained only an asymptotic (n — .
oo) solution, using the asymptotic normality of log-(s%l)-/s%j)'), g =
2,...,p, after suitable normalization; here s%i) is the s;; associated
with the sth smallest 0;;. The asymptotic solution c is given by

P'r{YjS\/n;llogc, j=2,...,p}=.P* . (13)

where the Y; are standard normal random variables with equal correQ

lation 0.5, and can be obtained from the tables of Gupta (1963a) and"
Gupta, Nagel and Panchapakesan (1973). _

3. SELECTION FROM SEVERAL MULTIVARIATE NORMAL
POPULATIONS S

Let my,...,m, be k p-variate normal populations, Ny,(u;,Z;), ¢ =
1,...,k, where the y; are the mean vectors and the %; are posi-
tive definite covariance matrices. For defining the best population,
several measures have been used such as the generalized variance,
Mahalanobis distance, and the multiple correlation coefficient. Also, .
comparison with a control has been studied using as criteria linear
combinations of the elements of the mean vector and those of the
covariance matrix. We now discuss these briefly. -

3.1. Selection in Terms of Mahalanobis Distance

Let A\; = yiX; l,g,,-, the Mahalanobis distance of 7; from the origin. We

first assume that the X; are known. Let X;;, j =1,...,n, denote n .

(vector) observations from m;, ¢ = 1,...,k. Define Y;; = X:.J-Ei_l)jijg .
n
and Y; = ) V;;. For selecting a subset containing the population
=1 ' : '

associated with A[z), Gupta (1966) proposed the procedur

R, : Select 7; if and only if Y; > APE (14)

where 0 < ¢4 = c4(k,p,n, P*) < 1 is to be chosen suitably to meet



the P*-condition. It has been shown [Gupta (1966) and Gupta and _
Studden (1970)] that the infimum of PCS occurs when Ay = +-- =
Ar = 0. Thus the constant ¢4 is given by

[ e G- s

where G, (z) is the cdf of a standardized (i.e unit scale parameter)
gamma variable with v = np/2 degrees of freedom. The values of ¢
are tabulated by Gupta (1963b) and Armitage and Krishnaiah (1964).

- An analogous procedure can be defined for selecting the popula-
tion with the smallest A;. In this case, the appropriate constant can be
obtained from the tables of Gupta and Sobel (1962b) and Krishnaiah
and Armitage (1964). -

It should be noted that the procedure Ry is based on the statis-

tics V; = Z ”] IX,_,, rather than Z; = X X, 1X,, Where X; de-

note the sample mean vector from ;. If we use Z; instead of Y;
in R4, the infimum of PCS and hence the constant ¢y do not de-
- pend on n. This makes the procedure unsatisfactory. One can, of
course, use a different type of procedure. For example, we can define
R': Select 7; if and only if Z; > Zjx) — d, d > 0. Such a procedure
has not been investigated.

When the X; are unknown and not necessarily equal, Gupta and
Studden (1970) proposed and studied the rule

Rs : Select m; if and only if T; > c5T[x) (16)

where T; = X S, 1X i, Si is the usual sample covariance matrix with

(n—1) as the d1v1sor, and 0 < ¢5 = ¢5(k,n,p, P*) < 1 is chosen .
suitably to satisfy the P*-condition. It has been shown by Gupta and
Studden (1970) that

ing(ciss)% /0 Byt (D)dFpny(e) (1)

where Fy ,,_p(z) is the cdf of a central F-variable with p and n — p

degrees of freedom. The values of ¢s for which the right-hand side

of (17) equals P* have been tabulated by Gupta and Pa.nchapakesan
(1969) for various values of k, P*, p, and n. -
Gupta and Studden (1970) also studied the problem of selecting



the population associated with the smallest A;. Their rule .is
Rf : Select m; if and only if T} < cl,Tm ' (18)
5 : -

where 0 < ¢ = c¢t(k,n,p, P*) < 1 is to be chosen sﬁita.bly. In this
case,

it POSIEY) = [ 1= Foey ()R pl). (19)

The constant ¢z for which the right-hand side of (19) equals P* has

been tabulated by Gupta and Panchapakesan (1969) for several com-

binations of k, P*,p, and n. ‘ o S
When £, = --- =X = ¥ and X is unknown, one would define

a procedure with T; = X:'S —1X; in Rs, where S is the usual pooled
estimator of ¥. This procedure was proposed by Gupta and Studden
(1970) and studied later by Chattopadhyay (1981). He has discussed
evaluation of the constant in an approximate sense, i.e. the infimum
of PCS is approximately P* but can be on either side of it.

3.2. Sélection in Terms of the Generalized Variance

It is meaningful to rank multivariate normal populations according
to the amounts of dispersion in them. A frequently used measure
of dispersion is the generalized variance which is the determinant of
the covariance matrix. Let 6; = |X;|, ¢ = 1,...,k. We define the
best population as the one associated with the smallest ;. Let S; be
the sample covariance matrix based on a sample of size n from m;,
¢ =1,...,k. Gnanadesikan and Gupta (1970) proposed the rule

: 1
Rg: Select «; if and only if W; < c—W[1] (20)
6 . .-

where W; = |S;|, and 0 < ¢g = cg(k,n,p, P*) < 1 is to be chosen’
suitably to satisfy the P*-condition. It has been shown that

1 .
inf P(CS|Re) = Pr{¥1 < —Yj, 7 =2,....k} -~ (21)
6 o }

where Y7,...,Y; are independent and identically distributed, each
being the product of p independent factors, the rth factor having a
chi-square distribution with (n — r) degrees of freedom. An exact -



solution for cg is obtained in the case of p = 2, using the fact that

2(n — 1)?/2(W;/6;)% is then distributed as a chi-square variable with
2(n — 2) degrees of freedom. The constant c¢g in this case can be -
obtained from the tables of Gupta and Sobel (1962b) and Krishnaiah
and Armitage (1964). ' o
When p > 2, one can use Hoel’s approximation of the distribu-

tion of 'Yill P by a gamma distribution with scale parameter 61 and
shape parameter m, where 2m = p(n — p) and 20 = p[1 — (2rn)~(p —
1)(p - 2)]/P. Another approximation is that of p~! log ¥; using the .-
normal approximation of logx?. Gnanadesikan and Gupta (1970)
have studied these approximations. ' '

Some alternative procedures have been proposed by Regier
(1976). These procedures are R : Select ; if and only if W; <

k k ’

a( ] W;)¥/* and RY : Select ; if and only if W; < b} W; k.
j=1 =1
Again, the evaluation of the constants @ and b are based on normal
approximation to log x? and the asymptotic distribution of the sam-
ple variance, respectively. Regier (1976) has given some numerical
comparisons of the three procedures. . ' '

3.3. Selection in Terms of Multiple Correlation Coefficient

We now assume that the y; and X; are unknown. Let p; denote the
multiple correlation coefficient between the first variable and the rest
in m;. It is a measure of dependence between the two partitioned -
sets. Gupta and Panchapakesan (1969) investigated the problem of
selecting a subset containing the population associated with IRLNE

Let R; denote the multiple correlation coefficient between the first
variable and the rest from the sample X;;, 7 = 1,...,n. Two cases

arise: (1) the conditional case in which the variables 2 to p are fixed,
and (2) the unconditional case in which all variables are random. Let

R = R?/(1 - R?), = 1,...,k. Gupta and Panchapakesan (1969)
proposed the rule o
Ry : Select m; if and only if R} > > c7'R[*k2] (22)

for selecting the population associated with P[x], and the rule

R} : Select 7; if and only if B} < ci,R[*:] (23)
7 ,



for selecting the population associated with p[3), where 0 < ¢7 =
e7(k,p,n —p,P*) <1 and 0 < ¢, =c4(k,p,n — p, P*) < 1 are chosen
suitably to meet the P*-condition. The procedures proposed are the
same for the conditional as well as the unconditional case. When
p; # 0, the distribution of R* is different in these two cases. However,
the 1nﬁmum of PCS occurs in either case when p; = --- = pr = 0.

The distribution of R;-" is the same in either case When p; = 0. Thus,
in either case, the constants C7 and ¢, are given by '

/0 F2q,2m( )dFZq 2’"(3:) o h (24')

and
/o [1 ~ Faq2m(c72)]* " dFaq,2m(2) = P* (25)

where ¢ = (p —1)/2, m = (n — p)/2, and Fpq2m(z) is the cdf of -
an F-variable with 2¢ and 2m degrees of freedom. The values of ¢z
for selected values of k, P*,m, and ¢ are tabulated by Gupta and
Panchapakesan (1969) The values of ¢7 can be obtained from the
same tables because ¢%(p, ¢, m, P*) = ¢7(p, m, g, P*).

3.4. Selection in Terms of Other Measures

Suppose the p variables under consideration are partitioned into two
sets consisting of ¢; and ¢(g; + g2 = p) variables. Let the correspond-
ing partition of ¥; be denoted by

5 2

Y= . ) ,i=1,...,k.
25 =5

Selection in terms of the conditional generalized variance of the ga-set -
given the q;-set has been considered by Gupta and Panchapakesan
(1969). Frischtak (1973) discussed selection in terms v7 = E;'%“g;rl

11 22
but has obtained only an asymptotic solution.

For the problem of selecting populations that are better than a
control, Krishnaiah (1967) used linear combinations of the elements
of the covariance matrices for making comparisons. Krishnaiah and
Rizvi (1966) used several linear combinations of the elements of the
mean vectors for comparison and studied procedures to select a subset



containing good populations (defined through comparison with the
control). For more details, reference can also be made to Gupta and
Panchapakesan (1979).

4. SELECTION FROM A MULTINOMIAL POPULATION

Let pi,...,pr denote the unknown cell probabilities of a k-cell multi-
nomial distribution. The ordered cell probabilities are ‘denoted by
P < -+ < p. Gupta and Nagel (1967) proposed and studied
procedures for selecting the most (least) probable cell based on a sin- -
gle sample of size n. Let Xi,..., X} denote the cell counts. Their
procedure for selecting the most probable cell is ‘ N

Rg : Select the sth cell if and only if X; > Xk — D (26)
and the procedure for selecting the least probable cell is | |
Rj: Select the ith cell if and only if X; < X5+ C  (27)

where D = D(k,n, P*) and C = C(k,n,P*) are the smallest nonneg-
ative integers for which the P*-condition is satisfied in each case.

An intereting point about Rg and R} is that, unlike similar.
analogous rules for normal means, normal variances, etc., the analyses
in the maximum and minimum cases do not run parallel. The LFC
for either procedure is completely known only when k£ = 2. In this
case, it is given by p; = py = 21,- For k > 2, the LFC (in terms of the
ordered p;) is of the type (0,...,0,s,p,...,p), s < p, in the case of Rg
and is of the type (p,...,p,q), p < ¢, in the case of R;. An alternative
to Rg is the inverse sampling selection rule of Panchapakesan (1971,
1973). Observations are made one at a time until the cell count reaches
a predetermined integer M in one of the cells. At termination, let
X1,..., X be the cell counts (one of them is M). The selection rule
is '

Ry : Select the ith cell if and only if X; > M —D = (28)

where D(0 < D < M) is the smallest nonnegative integer for which
the P*-condition is satisfied. For Ry, the infimum of PCS occurs when
all the cell probabilities are equal. ‘

Again, for selecting the most probable cell, Gupta and Huang
(1975) proposed the rule

Ryio: Select the sth cell if and only if X; + 1 > ¢ X[y (29)



where ¢ = ¢(k, N, P*)e(0,1) is the largest number for which the P*-
condition is met. The motivation for the rule Rio comes from their
conditional selection rules for Poisson populations. A conservative
value of ¢ can be obtained from their results for Poisson populations.

Recently, Chen (1985) considered an inverse sampling selection
rule for selecting a subset containing the least probable cell. For his
procedure R;; the observations are made one at a time until esther
(1) the count in any cell reaches r, or (2) (k — 1) cells reach count
of at least /(1 < v/ < r+1). If (1) occurs before (2), the rule Ry;
selects the cells with counts X; < »’. If (2) occurs before (1), then
Ry selects the cell with count X; < »/. The constants r and ' are
to be chosen so as to satisfy the P*-condition. It has been shown by
Chen (1985) that the infimum of P(CS|Ry;1) occurs when all the cell
probabilities are equal. ) :

Minimax subset selection rules have been investigated by Berger
(1979) and Berger and Gupta (1980). For selecting the least probable
cell, Berger (1980) investigated a minimax subset selection rule taking
as loss the size of the selected subset or the number of non-best cells
selected. In another paper, Berger (1982) investigated minimax and
admissible subset selection rules for the least probable cell taking as
the loss the number of non-best cells selected. His rule, however,
satisfies the P*-condition only if P* is sufficiently large. For the
corresponding procedure for the most probable cell, the P*-condition
has been verified only in certain special cases.

The importance of multinomial selection rules is accented by o

the fact that they provide distribution-free procedures. Suppose that
T1,..., Tk have continuous distributions Fy,, 7 = 1,...,k. We assume
that {Fy} is a stochastically increasing family in 8. Let p; denote the
probability that in a set of k observations, one from each distribu-
tion, the observation from =; is the largest, 7+ = 1,...,k. Selecting
the stochastically largest (smallest) population is then equivalent to
selecting the population associated with the largest (smallest) p;. If
we take observations a vector at a time and note which population
yielded the largest observation, the problem can be converted to the
multinomial cell problem. '

5. SELECTION FROM SEVERAL MULTINOMIAL
POPULATIONS

Let m1,...,7% be k multinomial populations each with m cells and let

the unknown cell probabilities of 7; be p;1,...,Pim, 2 =1,...,k. Let
: m

H; = H(pi1,...,Pim) = — D Pij logp;;, the Shannon entropy func-
=1



tion associated with ;. The function is a measure of the uncertainty
with regard to the nature of the outcomes from m;. We want to select
the population associated with the largest H;. For m =2, the prob-
lem reduces to that of selecting the binomial population associated
with the largest ¢(0;) = —0;log8; — (1 —0;) log(1—6;), where 6; is the
success probability. In this case, Gupta and Huang (1976) proposed
the rule '

. X v '
Ry2: Select 7; if and only if @b(—i%) > 1Iéla§k¢(7]) —diz  (30)
<5<

where X; is the number of successes in n trials associated with =,
and dy3 = d;2(k,n, P*) is the smallest nonnegative constant such that
0 < d < ([n/2]/n) for which the P*-condition is satisfied. Here [n/2]
denotes the largest integer < n/2. The infimum of P(CS|R,3) takes.
place when §; = - .. = ), = §. However, the common value 8 for which
the infimum takes place is not known. Gupta and Huang (1976) have
obtained a conservative value of d using the approach of Gupta, Huang
and Huang (1975), who used this approach to obtain a conservative
value for the constant defining the procedure of Gupta and Sobel
(1960) for selecting the binomial population with the largest success
probability. For more details on this, see Gupta and Panchapakesan .
(1979, 1985). - |
To discuss the selection procedure of Gupta and Wong (1977) in
m

the case of m > 2, let ¢ = (ay,...,a,) and 4, = 3 af;], where a[y) <

t=r
* < @) are the ordered components. Vector ¢ = (a1,...,as)
is said to majorize vector b = (by,...,b,,) of the same dimension

(written ¢ > §) if A, > B, for r = 2,...,m, and A; = B;. Further,
a fungtion f is said to be Schur-concave if f(z) < f(z') whenever
T>z. '

In our selection problem, we assume that there is a population
whose associated vector of cell probabilities is majorized by the as-
sociated vector of cell probabilities of any other population. Such a

population will have the largest H; because the entropy function is
Schur-concave. Let p; = go(%, cees )—(;*L—"l), where @ is a Schur-concave
function, and X;,..., X;,, are the cell counts based on n independent
observations from 7;, ¢ = 1,...,k. Gupta and Wong (1977) proposed

the rule

Ri3: Select m; if and only if p; > max ©; — di3 (31)
1<5;<k .

where dy3 = dy3(k,m,n,P*) is the smallest positive constant for



which the P*-condition is satisfied. Gupta and Wong obtained a
conservative value of d using the idea of conditioning as in the paper
of Gupta and Huang (1976).

6. SELECTION OF VARIABLES IN LINEAR REGRESSION

In applying regression analysis in practical situations for prediction
purposes, we are often faced with a large number of independent vari-
ables. In such situations, it may be sufficient to consider a subset of
these predictor variables for “adequate” prediction. There arises then
a problem of choosing a “good” subset of these variables. Hocking
(1976) and Thompson (1978a,b) have reviewed several criteria and
techniques that have been used in practice. However, these are ad
hoc procedures and are not designed to control the probability of se-
lecting the important variables. McCabe and Arvesen (1974), and
Arvesen and McCabe (1975) were the first to formulate this problem
in the framework of Gupta-type subset selection.
Consider the standard linear model

Y=Xg+¢ | (32)

where X is an N X p known matrix of rank p < N, 3 is a px 1 parameter
vector, and ¢ ~ N(0,021 N). This model with p independent variables
is considered as the “true” model. Now, consider all reduced models
that are formed by taking all possible subsets of size t(< p) from the
p independent variables. These models are described by

y:x,-g,-+§,-,z':1,...,k:(f), (33)
where X; is an N X ¢ matrix (of rank t), 8; is a t X 1 parameter
vector, and ¢; ~ N(0,02Iy). It should be noted that the models
in 333) are considered for prediction purposes and must be compared
under the true model assumptions. The expectations of residual mean
squares in the corresponding ANOVA evaluated under the true model
assumption are 02, ¢ = 1,...,k. For the goal of selecting the design
X; (or the corresponding set of independent variables) associated with
aﬁ.], Arvesen and McCabe (1975) proposed the rule

1
R;4: Select the design X; if and only if SS; < Z—SS[” (34)
14



where S S; is the residual sum of squares in the ANOVA corresponding
to the design X;, and 0 < ¢14 = c14(p, ¢, N, P*) < 1 is to be chosen to
satisfy the P*-condition. An exact evaluation of the constant ci4 is
difficult. Arvesen and McCabe showed that the PCS is asymptotically
(N — oo) minimized when § = Q. The evaluation of ¢i4 is not easy
even under this asymptotic LFC. An algorithm has been given by
McCabe and Arvesen (1974) for determining ¢14 under the asymptotic
LFC for given P* and X, using Monte Carlo methods. '

In the above formulation, the size ¢ is arbitrarily fixed. Huang
and Panchapakesan (1982) considered a different formulation taking
into consideration all possible reduced models. They considered the .
regression model with 8’ = (Bo,...,Bp), and X = (1z1..-Zp-1),
where 1’ = (1,...,1) and g} = (zi1,...,2zin), ¢ = 1,...,p — 1. For.
fixed ae{0,1,...,p — 1}, consider all the (p'a'l) subsets of the set

of predictor variables {zi,...,Z,—1} and the corresponding reduced
models obtained from (32). Associated with these reduced models
are the multiple correlation coefficients R;o, 2 = 1,2,..., (P ;1) Let

0i,a = E(1 — R2). Any reduced model with the associated parame-
ter 0; . is said to be inferior if 0;, 1 < 6*0; o, where 6*¢(0,1) is'a
specified constant. (The parameter 6y ;,_; is associated with the true
model). Huang and Panchapakesan (1982) considered the problem of
eliminating all inferior models. A correct decision (CD) is selection
of any subset of the models such that all inferior models are excluded
from the selected subset. They proposed and studied the procedure

‘R15 : Exclude a model if and only if 5,-,a > %fél,p_l (35)

where 6; o, =1 — Riz’a, and the constant ¢;5 = ¢15(NV,p, P*) > 6* is
determined such that the P*-condition is satisfied.

The LFC for the rule R;5 has been established only in the
asymptotic (N — oo) sense. For evaluating the constant under the
asymptotic LFC(8 = 0), Huang and Panchapakesan (1982) used an
algorithm similar to that of McCabe and Arvesen (1974).

Hsu and Huang (1982) considered the goal of selecting a subset
of the models that contains all the superior models, namely, all models
for which 0? < Ac?, where A > 1 is a specified constant. For this
problem, they investigated a sequential procedure.

Gupta, Huang and Chang (1984) studied the problem of elimi-
nating inferior models, using the expected mean squares as the crite-
rion for comparing any model with the true model. Their approach is
different from those of the earlier papers in that they use simultaneous



tests of a family of hypotheses in constructing their procedure
Now, for any reduced model, it is known thatSS; /02 has (under
the full assumptlon model) a noncentral chi-square distribution with
1/ = N — p + 1 degrees of freedom and a noncentrality parameter
= (X8)'Qi(XB)/208, where Q; = Iy — X;(X[X;)"'X}, and o}
is the error variance in the full model. Recently, Gupta and Huang
(1986) have considered the problem of eliminating inferior models,
namely, those for which A; > A > 0, where A is specified in advance.
For this problem, they have proposed and investigated a two-stage
procedure.

7. CONCLUSION

As we have seen, multivariate selection problems have wider appli-
cations. However, in many cases, the existing procedures have not
been fully examined in terms of their performances as well as thé de-
termination of the LFC. Even the multinomial problems have to be
studied more satisfactorily. Also, the criterion employed for ranking
multivariate populations usually induce a complete ordering in the
space of distributions. However, in many practical problems, there
is a need to consider a partial ordering. There has been practically
no development in this direction. Also, there has been no work done
for distributions other than multivariate normal populations. It will
be interesting to consider reliability related models such as increasing
failure rate distributions in two or more dimensions.
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