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1. INTRODUCTION

Suppose that X7, X>,... are the lifetimes of a sequence of machine components. We
assume that the X;’s are i.i.d. with unknown continuous c.d.f. F and cumulative hazard
function A(v) = —log{1—F(v)}. The components will be put on test one at a time and will
be replaced with a new component either upon failure or at some preplanned replacement
(or “censoring”) time, whichever comes first. The censoring time for the n** component
is allowed to depend upon observations of the previous » — 1 components. Bather (1977)
considers this situation under the assumption that replacing a failed component costs
¢y dollars, while the planned replacement of a working component costs ¢, dollars, with
¢1 > ¢2 > 0. It is intuitively plausible that the expected cost of replacement per unit time
over a long period should be minimized by a policy of replacing components whenever
they reach a certain fixed age ao. That this is so is shown by Berg (1976). However, the
- optimal age of replacement ag clearly depends upon the unknown F as well as on ¢; and c,.
Bather’s (1977) goal is to minimize long term average cost in the absence of prior knowledge
of F. Since it is necessary to have information about the tail of F in order to estimate ag
consistently, there is at each stage a conflict between the choice of trying to minimize short
term costs by replacing the current component at an estimate of ay and the choice of not
replacing the current component until it fails in order to gain information about the tail
of F, thereby making possible better estimation of ao in the future. Bather’s procedure
specifies a sequence of numbers 1 = p; > p2 > ps... such that p, | 0and Xp, = co. The
nt® component is allowed to continue on until failure with probability p,, and is otherwise
censored at a current estimate of ag. Since infinitely many components will not be subject
to replacement until they fail, a crude policy is to consistently estimate F' based only on
observations from these components and to use this estimate of F to estimate ao. This
approach discards all of the information available from the majority of components, which
are either censored or potentially censored. The sequential replacement policy actually
proposed by Bather (1977) uses data from all previous components to estimate aq, but
for technical reasons he is forced to modify the past data by imposing a “fake” censoring
scheme which does throw out some of the available information. He specifies a fixed
sequence bp > by > ..., b, | 0, and if the actual censoring age for the n** component
Was @, then he pretends that the n** component was censored instead at age b;, where
bj <a, < bj_*.]_.

It would be more natural to use the Kaplan-Meier estimator (or the asymptotically
equivalent Aalen estimator) based on all past data to estimate F. However, the peculiar
nature of the censoring here prevents the usual proofs of consistency and weak convergence
from applying. When censoring times are independent of component lifetimes, there is an
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obvious martingale structure which makes possible straightforward proofs of weak conver-
gence to a Gaussian process. (See, for example, Gill (1980).) The fact that censoring here
is allowed to depend on previous lifetimes destroys this martingale structure.

This paper will prove a weak convergence result which applies to censored renewal
processes of the above form. The proof is based on the fact that an approximation of the
Aalen estimator of A(v) has a certain orthogonal martingale structure when this approxi-
mation is viewed as a process in a two-dimensional time scale. The theorem is not the most
general possible, but generalizations in various directions (noncontinuous F’s, triangular
arrays, etc.) seem straightforward.

2. NOTATION AND THE THEOREM

In what follows, calendar time will be denoted by t and u, and age time will be denoted
by s and v. The assumption that components are necessarily put on test only one at a
time will be dropped, and it will be permitted for components to be put back on test after
having been removed from use. Repair of failed components will also be allowed, with the
assumption that the distribution of remaining time on test until the next failure is the
same as if no previous failure had occurred, i.e., past failures of repaired components do
not affect future performance. :

The situation of interest here is most easily modelled using the machinery of counting
processes. The reference is Gill (1980). Let Y;(t) be the indicator of the event that the it*
component is on test at time £. Define

Zi(t) = /0 Yi(u) du, (1)

so that Z;(t) is the length of time that component 7 has been on test by calendar time ¢.
Let N;(t) be the number of failures that component ¢ has suffered at or before time ¢. Let
#, t 2 0, be a complete, right-continuous filtration, where 7 represents knowledge at time
t. For each ¢, Y;(t) is assumed to be left-continuous and F-predictable. Thus, for each w,
Yi(t) is the indicator function of a union of disjoint intervals which are open on the left
and closed on the right. The counting processes N;(t) are assumed to be F-adapted with
right-continuous paths. They are zero at time zero, integer valued, nondecreasing, and
have jumps of size +1. The process N;(t) are connected with the continuous cumulative
hazard function A by the assumption that

M;(t) = Ni(t) — A{Z:(t)} - (2)
is an F-martingale. Independence of the different components is reflected in the assump-
tion that, with probability one, no two counting processes jump simultaneously. Let

A;(t) = A{Z;(t)} = amount of accumulated hazard to which component ¢ has been sub-
jected by time £. It follows from Theorem 2.3.1, of Gill (1980) that

(M, M;)(t) = As(8)1{s = j}- (3)
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Here, (M;, M;) is the “predictable covariation process” of M; and M;, so that the prod-
uct M;M; is a martingale for ¢ # j, i.e., M; and M, are orthogonal martingales. The
“predictable variance process” of M; is

(M;) = (M;, M;) = A, (4)

so that M? — A; is a martingale.

The Aalen estimator of A based on the data available at time ¢ is a function of the
amount of time that each component has been in use and of the ages at which failures
have occurred. Define

Ni(t, s) = /0 " 1) < s} Ni(du) | (5)

to be the number of failures suffered by component ¢ before calendar time ¢ and age s. Set
N(t,s) =" N;(t,s). Define
i

R(t,s) = Y 1{Z(t) > s} (6)

1

to be the number of components which have been on test for at least s units of time by
calendar time ¢. Thus, R(¢,s) is the size of the “risk set” at age s and time £. The Aalen
estimator of A(s) based on data available at time ¢ is defined by

® N(t,dv)

A(t,s) = TR

(7)

(Interpret 3 as 0.)

Note that N;(t,s) is, as a function of ¢ for fixed s, simply a stopped version of N; (¢)
and is therefore itself a counting process. Define

Ai(t,s) = M{Z:(t) A s} and  Alt,s) =) Ailt,s),

so that A;(t,s) is the amount of accumulated hazard to which component 7 has been
exposed before age s and time t. Then

M;(t,s) = Ni(t,s) — Ai(t, ) (8)

is, as a function of ¢ for fixed s, a stopped version of M;(t) and therefore also an %-
martingale. It follows from (3) and (8) that for 0 < s; < s,

(M(: 81), M; (- 82)) (t) = As(t, s1)1{i = j}. (9)
If we define
M(t,s) = E M;(t,s) = N(t,s) — A(t,s),
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then it follows from (9) that

(M(-,51), M-, 52)) () = A(¢, 51 A 82). (10)
and that, for 0 < s; < 83 < s3

(M(-;81), M(-,85) — M(-,52))(t) = O. (11)

Thus, M(t,s;) and M(t,ss) — M(t,sz2) are orthogonal #-martingales. This orthogonality
structure of M(¢,s) will play only a minor direct role in the next section. However, a
related two-dimensional process L(t,s) will turn out to have the same sort of orthogonal
martingale structure as M(t,s), and this will be central to the proof of the following
theorem.

THEOREM. Let r: [0,a] — (0,00) be a fized, left-continuous, nonincreasing function.

Suppose that

R(t,s) (i’ s) P, r(s) | (12)

as t — oo, for continusty points s of r, and for s = 0 and s = a. Assume also that the
cumulative hazard function A is continuous on [0,a] and that A(a) < co. Then ast — oo,

1.4 w ¢) v
(A, ) - A()} % B( / Al ’), (13)

r(v)

where B is standard Brownian motion and the weak convergence is in the space of functions
D[0,a| with the Skorokhod topology.
3. PROOF OF THE THEOREM

I will assume for convenience that for each ¢ under consideration, R(t,0) (and therefore
R(t,s), 0 < s < a) is bounded above by 2r(0)t, a.s. Condition (12) does not imply this,
but the general case is easily reduced to this one by a trivial localization argument.

Note that
A(t,dv) = R(t,v)A(dv). (14)

If R(t,s) > 0, it follows from (14) that

t5{A(t,s) — A(s)} = ¢} /08 N(t’dg(;S(t,dv)

=1 /0 ) {t/R(t,v)} M(t,dv). (15)

Define .
L(t,s) = /0 {r(v)}~" M(t,dv). (16)
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Assumption (12) in the Theorem makes it plausible that (15) should, with high probability,
be approximately equal to _%L(t, s) for all s € [0,a] when ¢ is large. The proof that
this is so is postponed until the end of this section. Modulo this asymptotic equivalence,
it suffices to show that

0
3 L(t,) % B /0 r(v)~1 A(dv)} (17)

as ¢ — oo. The proof of convergence of finite dimensional distributions in (17) depends
upon the orthogonal martingale structure alluded to in the previous section.

LEMMA 1. For each fixed s € [0,a], L(t,s) is a square integrable %-martingale,
and for0<s; <s3<a

(L(v81), L(-»2)) (t) = /O N }fﬁt(v';) A(dv).

Proof of Lemma 1.

Lit,s) =Y /0 " (0)" Mi(t, dv)

2> /0 r{Z:(u)}~! Mi(du, )

(This last equality is “obvious”, but its proof is a bit tedious and therefore omitted.) Since
the integrands r{Z;(u)}~! are bounded and predictable, it follows from Gill (1980), page
10, that L(t, s) is a square-integrable martingale in ¢, and that for 0 < s; < 55 < a

(ECon) (o) = 3 /0 r{Zi(w)}? Ai(du, s1)
= Z /:1 r(v)~2 A;(t,dv) (“obvious”)

_ /0 Y ) Alt,dv).

Now use (14). O

The convergence of finite dimensional distributions in (17) is an immediate conse-
quence of Lemma 2.

a5

LEMMA 2. Fix 0 = 5o < §; < ... < s = a, and set ¢; = J r(v)7'A(dv). Let

8i—1
By,...,Bg be independent standard Brownian motions, and let
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W (u) = [e1B1(u), ...,ckBxk(u)] be a k-dimensional diffusion. For each t, let W*(u) be
the k-dimensional stochastic process with time index u and with ¢** coordinate function

WE(u) = t~2{L(tu, s;) — L(tu,s;_1)}. - (18)

Then as t — oo, W - W in the Skorokhod topology on (D[0, 00))*.

Proof of Lemma 2. By Lemma 1,

wwhw =1i=3) [~ e aa), (19)

so that by (12),
WEWH () = 1i = j}ei (20)
as t — oo for each 4, ,u. Also, the jumps of W} are bounded in size by t~%r(a)~. The

claim follows from the martingale central limit theorem 2.4.1. of Gill (1980). O

Tightness in (17) will be proven using the tightness criterion (12.51) of Billingsley
(1968). This tightness criterion only applies to continuous random elements in DJo0, a],
however, so it will be necessary to define a continuous (in s) modification L(u,s) of L(u, s).
The criterion (12.51) will be verified for t—% L(¢, s}, and then we’ll see that

sup t~%|L(¢,s) — L(t,s)| = o.
0<s<a

In order to conform with Billingsley’s notation, define
F(s) = / r(©)~" A(dv).
0

Now fix ¢, and partition [0, @] into k = k; = [t%] pieces with partition points 0 = vy < v; <
.. < vk = a so that

273 F(a)t~% < F(vigq) — F(v;) < 2F(a)t~3. (21)

F(s) — F(v)
F(vipq) — F(vy)

{L(v,vi+1) — L(w,vi)}. | (22)

LEMMA 3.
E[{t~3 L(t,s3) —t™% L(t, 1)} < C{F(s3) — F(s1)} (23)
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for 0 < s1 < s2 < a, C a suitable constant not depending on ¢, and ¢ sufficiently large.

(28) is a version of the tightness criterion (12.51) in Billingsley (1968). The tool used
to prove Lemma 3 will be the Burkholder-Davis-Gundy inequality for continuous-time
martingales quoted in the Appendix.

Proof of Lemma 3. Tt follows from Lemma 1 that if v; < s; < vit1 < v; < 52 < Uj41,
then

(i(.,sz) — f’("sl)>(t) _ /v”.v Iigt(:;;)

F(sa) = Fupy |° [+ R(t,) v

T {F(”JH) - (v,)} /v,- r2(v) A(dv)
F(viy1) — F(s1) o R(t,v) v

+ {ﬁ‘(‘vi+1) - F(’U,‘) } /t:._ 7'2(1)) A(d )

The assumption that R(¢,0) < 2r(0)¢ implies

A(dv) | (24)

¥ Ee) ()
[ e <2 1~ Fe.

Applying this to (24) yields

(E(-y52) — (a»m<m§%ﬂm F(s1)). (25)

A very similar calculation shows that (25) also holds if v; < 83 < s < Vit
In order to apply the Burkholder-Davis-Gundy inequality; we need to get a bound on
the jumps of the martingale (in u)

t=3 {L(u,s2) — L({u,s1)}. | (26)

CLAIM: The jumps of (26) are bounded in size by {ﬁ'(sg) — ﬁ‘(sl)}i‘ for ¢ sufficiently
large.

Proof of the Claim: The jumps of (26) are always bounded by ¢~ % r(a)~1. This is
more than enough if F(sz)—F(s;) > t~%. If F(sp)—F(s1) <t~ % and v; < 81 < 52 < viy1,
then the interpolation used in the definition of L(x, s) reduces the bound to

1 F(s2) — F(s1) Lo(a)-! £(s) — Fi(s
3r(a) F(o) —F(o )<2t (@)™ {F(s2) — F(s1)}- (27)




(The inequality follows from (21).) The right-hand side of (27) is less than {F(sg)—F(s1)}%
if F'(sg)—F(s1) < t—% and tis sufficiently large. If F(s2) — F(s1) < t~%Tands; <wv; < 82,
then a similar argument applies. O

By the Burkholder-Davis-Gundy inequality, (25) and the Claim imply that Lemma 3
1 4
holds with C = ¢q [{2:(2 }2 + 1] for t large enough. U

LEMMA 4. Ast — oo,

sup t%|L(t,s) — L(t,s)| == 0.
0<s<a

Proof of Lemma 4: For any ¢,

@) = 2o = [ Et) aga

<2+ r(0) {F(vig1) — F(v)}

r(a)
<a”Q4
~ r(a)
By Freedman’s (1975) tail inequality for bounded-jump martingales (quoted in the Ap-
pendix),
—t5
2{r(a)~1t% + 4r(0)¢5 /r(a)}

P{|L(t,vi+1) — L(t,v:)| > t%} <2exp [

(Teke a = t%, b = 4r(0)t5 /r(a), and K = r(a)~! in Freedman’s theorem.) Since t3 times
the bound on the right-hand side goes to 0 as ¢ — oo, we have

P{ sup |L(t,viy1) — L(t,v;)| <t¥} — 1 (28)
1<i<[t3]

as t — oo. Since for v; < s < wv;4q,

L(t,s) — L(t,v;) = / " (o)1 M(t, dv)

)
8

=/: r(v)‘lN(t,dv)—/ r(v) T R(t, v)A(dv),

i vi

L(t,s) — L(t,v;) is bounded below by the negative of

/ )R, 0)A ) < 2 ¢ r(0){F(vir1) — F(vi)}

i

<4r(0)t3, by (21).
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If the event in (28) holds, then

Vi4

/uviﬂ r(v) ' N(t,dv) = L(t,vi41) — L(t,v;) + / 1 r(v) " R(t, v)A(dv)

i v

< t¥ + 4r(0)¢5. (29)

Since the left-hand side of (29) is an upper bound for L(t,s) —L(t,v;), v; < s < v;41, this
implies that ‘

sup t~%|L(s,t) — L(s,t)| < 2t~ 2{t¥ + 4 r(0)t5}
0<s<a

whenever the event in (28) holds. This proves Lemma 4. O

Lemma 4 and Lemma 2 jimply the convergence of finite dimensional distributions in
L~ w )
=3E(e,) - BY / r(v) " A(dv)}, (30)
0

and Lemma 3 implies tightness. Together, (30) and Lemma 4 imply (17).

It remains to prove

LEMMA 5. Ast — oo,

sup [t"%L(t,s) —t3{A(t,s) — A(s)} L 0.
0<e<a

Proof of Lemma 5. Tt follows from (16) and (17) that

O]
EM() 2 B{[ r(o)a(@) (31)

on D0, a]. Alternatively, this can be proven by repeating the previous arguments of this
section, with M(t,s) in place of L(t,s) and with formula (10) taking the place of Lemma
1.

Define, for 0 < s < a,
G(s) = r(s)_l, Gi(s) =t/R(t,s), and ét(s) = t_’i'M(t, s).

If R(t,a) > 0, it follows from (15) and (16) that
t=%L(t,s) —t3{A(t,s) — A(s)} = /0 ) {r(v)~! — t/R(t,v) }t~ 5 M(2,dv)
= /OS{G('U) — G+(v)}Bi(dv). (33)
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The salient properties of G, G, and B, needed to prove Lemma 5 are:

(a) G is an increasing, left-continuous function with 0 < G(0) < G(a) = r(a)~!.

(b) G is a non-negative, left-continuous random function for which
P{Gy(a) < 2r(a)”'} — 1ast — oo, (34)

and
Gi(s) i G(s) ast — oo (35)
for continuity points s of G, and for s =0, § = a.

(c) Foreacht, E’t() is a right-continuous process of almost surely bounded variation. Let

we(6) = sup |ﬁt(sz) — ét(sl)l
|az—81|<é

be the modulus of continuity of B;. Then by (31), for each £ > 0, there exists ¢, and
6 > 0 such that ¢ >ty implies

P{w(6) > e} <e. (36)

Let € > 0. Choose t; and 6 so that (36) holds. Then choose continuity points
81y...,8k—1 of G so that

O0=s5<s81<...<8,=a and Siy1 — 8; < 6.
By (35) and (34), t > to will imply

P{ sup |Gi(s) ~ G(sJ)] 2 1/k} < (37)

and
P{Gi(a) <2r(a)" '} <e (38)
if ¢o is made sufficiently larger. Note that the event in (38) implies R(¢,a) > O.

Assume that the events in (36), (37), and (38) hold. (This is obviously true with
probability > 1 — 3¢ for ¢ > ¢5). A bound for the absolute value of (33) will now be found.
Fix s € [0,a], and let s; < s < sj41. Rewrite (33) as

Jj—1

> / (G (o) = Gu(0)}a{Ba(v) — Bu(si)} + / f{G(v)—Gt(v)}d{ét(”)‘Et(si)}' (39)

1= i
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The events in (36) and (37) imply that (40) is bounded in absolute value by

j—1

S e/k+3{G(a) + Gi(a)}e

i=0
which by (38) is bounded by e+9r(a)~'e. Since this bound is valid for all s with probability
> 1 — 3¢ whenever t > ty, Lemma 5 follows. O

APPENDIX

The following Burkholder-Davis-Gundy inequality for continuous-time martingales
can be found in Lenglart, Lepingle, and Pratelli (1980).

Burkholder-Davis-Gundy Inequality

Let ¢ > 0, be a continuous-time, square integrable martingale satisfying M(0) = 0
and with predictable variance process (M)(t). Suppose the jumps of M are bounded in
size by a real number K > 0, and let M*(t) = sup [M(u)|. Then there exists a universal

u<t ’

constant ¢g such that

E[{M*(c0)}*] < eo E[{(M)(_OO)% + K}.

The following result is a continuous-time version of Freedman’s (1975) tail inequal-
ity for martingales (Proposition 2.1). Although Freedman only considers discrete-time
martingales, his proof is easily adapted to the continuous-time case.

Tail Inequality for Bounded-jump Martingales

Suppose M (t), t > 0, is a locally square integrable martingale with jumps bounded in
size by K. Then for all positive real numbers a and b,

2

P{{M(t)]>e and (M)(t)<b forsome ¢>0}<2exp [—Z(TZ—Fb—)] .
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