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ABSTRACT
When using f to estimate the unknown density function f, losses of the form H,(f, ﬂ
= ([ |ff— f#|*du)=, B = L are considered. For any f and f, let Ua(f, f) = inf{L,(f, cf):
¢ > 0}. Then if f and f are densities, @ > 1, Uy = L2(1— Ly/4); Uy > 27 *L,. In general,

if Ly is small, then U, closed to L,. This implies that in the search for good density
estimators for losses of the type L,, normalization can be ignored.
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§1. Motivation

A density estimator is a sequence of measurable functions {f,: n > 1} for which f,(¢)
= fa(t; X1,Xa,...,X,) being used to estimate the unknown, common density function of
a random sample of size n, {X;,X>,...,X,}. The performance of the density estimator
{fn} is measured by a loss function L(fy, f), which reflects the goodness of fit of f, to
J. With respect to a fixed loss function L, one density estimator is to be considered as
better than the other if it has smaller expected loss EL(fy, f), or, in other words, smaller
risk. Many studies focus on how to obtain density estimators {f,} for which the risk
converges to zero, as the sample size n approaches to infinite, at very high rate. The
common used loss functions are integral square error: ISE(f,, f) = [(f.(t) — f(t))3%dt,
and the sup-norm: Loo(fr, f) = SUP_ocicoo [fn(t) — F(t)]- Other loss functions such as
La(fn, ) = [||fa(®)|= — F(£)7]*dt, for & > 1, and Ha(fn,f) = (La(fn,f))* gradually
received attentions. We deem them as appropriate for measuring the global deviation of
fr from f because, as described in page 255 of Devroye and Gyofi (1985), they shame
two nice properties: it is always finite and it is invariant under the strictly monotone
transformation.

Since being a density function, f is nonnegative and with total mass 1, i.e.

[:fMﬁ=L

it is unnatural to consider those density estimators which do not meet these two conditions.
However, some existing density estimators fall in this category. Some statisticians study
this type of density estimators because they focus their attention on the local properties
of a density function, for this situation the total mass assumption plays little role. For
others, they emphasis on obtaining higher risk convergent rates, and it is known that by
relaxing the requirements of density estimators, one might be able to improve the risk
convergent rates on those existing density estimators. To illustrate the second situation,
let us consider the performance of the kernal density estimators f, (defined as (1)) under
the integral square error loss function. The definition of the kernal density estimator {f,}
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where {h,} is a sequence of positive numbers, and the function K is called the kernal
function of the estimators. It is easy to see that in order that f, to be a density, K must
satisfy nonnegative assumption and mass 1 assumption. Parzen (1962) proved that, for
positive integer r, there are kernals K such that the risk

IMSE(n) = E / (Falt) — F(£)2dt = O(n=27/(2r+ D), (2)

However, for r > 2, the kernal K which satisfies (2) should assume some negative val-
ues. Therefore, for a bona-fide kernal density estimator, the optimal convergent rate is
IMSE(n) = 0(n—%%), while giving up the nonnegative assumption on f,, we are able to
obtain higher convergence rate. Terrell and Scott ( ), by relaxing the other requirement
(mass 1), obtained a rate, IMSE(n) = 0(n~%/°) which is again better than 0(n=%/%).
And Davis ( ), by allowing kernal violating both assumptions, even obtained the rate,
IMSE(n) = O(logn/n). (Recall the Boyd-Steel ((1978) show that the optimal rate of
IMSE(n) for any kind of density estimators could’t higher than %

From the above discussion, it is interesting to find an operation, y, on not-bona-fide
density estimators f, that will result a bona-fide density function uf, such that the risk of
ifns EL(pfr, f), converges to zero at a rate not more than that of EL(f,, f). To achieve
nonnegative assumption, we may just use |f,| or f;I to replace the original f, since many
reasonable loss functions satisfy either

(2) WS f) < L(fn, f) or
(b) L(|fxl, f) < L(fn, f).

Therefore, from now on, we may assume all the density estimators we discuss satisfy the
nonnegative assumption.

For a non-negative density estimator f,, suppose that the total mass

o0
W= [ fa)as
-0
is finite (which is true for most cases, see proposition ???), we defined

ﬂfn(t) :'Y(fn)_lfn(t): (3)
then uf,(-) is a bona-fide density function.
The main result of this paper is:

“For o« > 0, if ELo(fn,f) — 0 as n — oo, then ELy(tfn,f) — 0
as n — oo. Furthermore, if ELy(fr, f) is small, then ELy(pfn, f) is
comparable with EL,(fp, f) in the sense that

U(a; fn,f) = ELa(fnaf)/ELa(/"'fn,f)

closes to 1.”



We reach the above conclusion by letting ¢ = pf,, and studying how much improve-
ment can be if we de-normalized g. More precisely, we compare infysq Lo(Ag, f) with
La(g, f). In section 2, by a simple method establish that a lower bound of W («; f,g) =
infyso La(Ag, f)/La(g, f) is 2~%. This is good enough to establish the first part of our main
results. In section 3 by a more elaborate method, we find the value V,, = inf{W (e;g, f): ¢
and f are density functions.}. We also study Vo (k) = inf{W (e;g, f): g and f are density
functions, and L,(g, f) = h}, especially for the case h — 0. Since V,, is a crude bound for
Lo(frs )/ La(pfn, f), if Vo close to 1. The value Lo(fr, f)/La(ifn, f) is even more lost
to 1 then V,,. This establish our second part of main results.

An application of the main results in density estimator theory is: if the loss function
is Lo (or H,), we may focus our study on those density estimator performed very well
locally, then apply the normalization procedure to produce a bona-fide density estimator,
and still having very high risk convergence rate.

§2. A Crude Inequality Involving L,

Recall that if o > 0, the o-norm of a function Q is defined as ||Q|o = ([ |Q(¢) |°‘dt)%.
For nonnegative functions f and g,

La(o.f) = [ 165 (0) - 150) - £ @)%dt = ¥ - 75, @

Proposition 1: ff [ and g are density functions, X > 0, then
La(Xg, f) > 27%La(g, f)- (5)

Proof: Notice that ||g=|lq = [|f=]a = 1.

Since

(La(g, )= =lg% — f=||a

=[lg= — (M) = + (Ag) = — £ |a

<1 =2%|lg% [l + [|(Ag) F = F=]la

=[1- 2%+ [|(A)= — £ =]l (6)

and, by the triangle inequality of the norm || |4,

1A9)F — = ||ogealll(A0)* lla — 1| F % ||l
= [A= —1], (7)

therefore

(La(g, )= <2(20)* = £ o
= 2(La(Ag, )%, g.e.d. (8)
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Remark: The above proof uses the norm property of || ||, although we suspect the in-
equality infaso [|Ag— flla > 2/lg— fll«, is well known, but we couldn’t locate the reference.

An interesting application of the above inequality is:

Corollary 2: If f is a density function and {g,} s a sequence of nonnegative functions
such that Lo(frn,f) — 0 as n — oo, then

1) = [ an(t)it— asn o, (9)
and
La(//'gna f) < ZaLa(gns f) —0asn—0. (10)

Proof; Since
¥(gn)® — 11 = [lg% lla — |7% o]
< g% — £%]la
= (La(gn, )=

— 0 as n — oo, ' (11)
we prove (9). (10) is a simple consequence of (5), q.e.d.

Since most interesting density estimator f, satisfies ELy(frn,f) — 0 as n — oo,
according to the corollary 2, ¥(f,) — 0 in probability as n — oo.

§3. A Refine Inequality Involving L,

For density functions f and g, let Uy(g, f) = inf{Ls(Ag, f): A > 0}. The proposition
1 gives us a lower bound of U,(g, f)/La(g, f); that is 2. In the following, we want to
study the best possible C, such that Uy(g, f) > CaLal(g, f) for all densities f and g.

First, for the case & = 2, i.e. L, is the square of Kakutani-Hellinger distance, we have
the following:

Proposition 3: Us(g, f) = La(g, f) - §(L2(g,1))*.

Proof:

La(a ) = [ (VA0 - /et
a7 oo
=A+1- zﬁ/_z F(t)dt/g(t) F (&) dt
~ V3= [ Vawr@ay?+ - ([ Vaid?).
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a0, f)=1- ([ VeOr@a) (12)

Hence

Since

Le.n) = [ swa+ [ joa-z [ JoOrma

—2_2 /_ ” VeOT O, (13)

combining (12) and (13), we have

Uslg, /) = 1= (1= 5La(g, ))?

= Lo(0.f) ~ 7 (L2(0, 1)) g.e.d. (14)

For other value o, we need the following two lemmas.

Lemma 4: There ezists a nonnegative random variable Z such that
E(Z*) =1 (15)

and
E|Z — A\|® = La(A%g, f) for all X > 0. (16)

Proof: Suppose Y is a random variable with density function g, and m is a positive integer.
Define

Zm = {f(Y)/lg(Y) +m~]}=. (17)

It can be shown that {Z,,: m = 1,2,...} converges in L, to a random variable Z.
For this Z, (15) and (16) are true.q.e.d.

The distribution of Z* can be represented as an average of two-point, mean 1 distribution
i.e. there is a probability space (Z,X,m) such that X is an interval, ¥ is the Borel subset
of X; for each t, G; represent the distribution of a two-point, mean 1 distribution, and_

P(Z°<g) = /t _, Gelaim(a) (18)

Proof: This is a simple consequence of Freedman (1971), page 68, the Lemma (108).
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Lemma 6: Let

¢o = inf{Uqs(g, f)/Lal(9,f) : [ and g are densities},

and

do = inf{E(|W — X\|*)/E(W — 1|%) :
W 1is a two-point, mean 1 random variable with EW® =1; A > 0}.

Then ¢, = d,.

Proof: From the definition of d,, for any two-point, mean 1 random variable W,
B(W = N%) > da E(W — 1]7). (19)

Hence, for allt € X,

/ lw — A[*Gi(dw) > da/ lw — 1]%gs (dw).

We have '
L.(A\%g,f) = E|Z - A|*

=/ /|z-—A|°’Glt(za)az°"’1dzm(dt)
tex

2/ da/ |z — 1|*G1:(2*) az®~'dzm(dt)
tex

=d E|Z — 1|

= daLa(97 f)

According to the definition of ¢,
Co > dy. ' (20)

Since ¢, < d,, is trivial due to the Lemma 4, we conclude
Cq = dy.q.ed. (21)
In the following, let

U(ash) = inf{EW — A|*:
W is a two point, mean 1 random variable with
EW® =1 and E|W — 1|* = h}, (22)

and let W (p; £,7n) denote a two point random variable

PW(p;&n) =€ =p
{P(W(p;i,n)=n)=1—psq_ (23)
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Obviously,
Ca =do = il;i:)(\Il(a; h)/n). (24)

For fixed h and fixed pp let us find A* which minimize E|W — A|* for W = W (p; £, 7)
with EW* =1 and E|W — 1|* = h. Notice that

PE* +qn® =1, (25)
P(1—-¢€)*+4q(n—1)* =h, (26)
and
EW — A% = p|A — &% + gln — A|*. (27)
We may assume £ < 1 < n without loss generality. From (27), it is easy to show that
At = (qzl"ﬂ+p71’£)/(p7l;+q71") for=a—-1. (28)
Hence . . .
A —€E=qP(n—¢€)/(p? +4¢7), (29)
and .
n— A" =p¥(n—£)/(p? + q7). (30)
Therefore

inf BW(p; &,n) — A*
= (pg® + ap¥)(n — €)*(0% +¢¥)~*
pa(n — €)*(p? + q#)~?
pa((n —1) + (1 — €))%(p? +¢?) P, f=a—1. (31)

Combining (22), (24), (25), (26), and (31), we have

ca = inf{pg((n — 1) + (1 — €))% (p? + ¢#)Ph"1:
h>0,ﬂ:a—l,oﬂpﬁlapfa‘FQﬂa:l, and
P(1—€)* +g(n —1)* = h}. (32)

We are unable to provide a simple formula for ¢,. But, since for the most interesting case
is that h = E|W — 1|* being small, instead of considering ¢, (defined in (24)), we compute

. 5. Y(osh)
Co = }lli% P (33)
For fixed p, and let h — 0, from (26), we have £ — 1— and n — 1+. Since
p(1—¢€) ~q(n—1)asn —0, (34)
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and hence

h~pl1+(p/g)**'](L - €)™ as n — 0. (35)
By (31), (34) and (35), we have
inf E\W (p; €,n) — A*/h — (ﬁ +¢5)7F(p° +¢°) " as h — 0. (36)
We conclude that:
,15%&7}) = & = inf{(pP +¢7) P (PP +¢°) 7' f=0a-1,0<p<1, ¢=1-p}. (37)

In terms of Ly(g, f), we have:

Conclusion: If h = L(g, f) is small, then
A11>1f0 La(Ag, f) = éah + o(h). (39)

The constant ¢, has a lower bound

G > inf (p% +¢7)7° inf (p +¢°)7"

p+g=1
0<p<1 0<p<1
=2~ (¢-2) (40)
Numerically study shows: |

a Cao 2«
1 0.5 0.5
1.5 0.8718 0.3535
2 1 0.25
3 0.7602 0.125
4 0.4641 0.0625
5 0.2666 0.03125
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