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ABSTRACT

Stochastic search strategies are proposed for finding a possibly mobile target within
a convex region of the plane. The strategies are asymptotically minimax as ¢ — 0 with

respect to the time reQuired to get within ¢ of the target.
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1. Introduction

“Princess and Monster” (1) is a zero-sum two-person game with two players restricted
to a bounded, connected, two-dimensional region Q2. The Monster (M) has maximum speed
1, the Princess (P) has maximum speed v < 1. Neither player obtains any information
about the position of the other until the distance between the two is < g; at which time

M captures P and the game ends. The payoff to P is the time elapsed before capture.

This game is a crude model for a surface ship M attempting to locate a submarine.

Here the parameter 2¢ (the sweep width) is typically small relative to the dimensions of

Q.

The P and M game is too complex to admit simple minimax strategies. Even if the
continuum 1 is replaced by a finite set of points, and even if P’s strategy is known to M,
M’s optimal strategy can only be determined approximately, by a dynamic programming
algorithm (2). Nevertheless, for convex @ Gal (3,4) and Fitzgerald (5) have exhibited
strategies for both players that are asymptotically minimax as € — 0, in the sense that
the ratio of the expected payoff to the minimax value approaches 1 uniformly over the

opponents’ strategies. They have also shown that the minimax value V' (€) satisfies
lim 2e V(e) =0},
e—0

where || denotes the area of f2.
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P’s strategy is easily described. Let @1, Q2,... be an i.i.d. sequence of random points
uniformly distributed in £. P starts at A,, stays there T time units, moves to Q, at full
speed, stays there T time units, and so on. The parameter T — o as € — 0, but €T — 0
(e.g., T = e~/2). It is not difficult to show that, no matter what strategy M uses, the

expected time to capture is at least |02]/2¢ (approximately) when ¢ is small.

M’s strategy is more complicated. The region 1 is partitioned into long, narrow (width
'/2) rectangles. M searches in one of these rectangles for a long time T (e.g., T = £~1/3),
then moves to another and searches in it for a time T, and so on (cf. Fitzgerald (4) or Gal

(5) for details).

Despite its asymptotically minimax character, this strategy for M has a defect: when
€ is small, M is confined to small subregions of Q for very long periods of time. If the
rules of the game were changed to allow P a small amount of partial informat‘ion, eg.,if P
~ were informed of the monster’s position about once every £€~!/2 time units, then she could
elude it indefinitely. Thus, the Gal-Fitzgerald strategy for M is not robust to changes in

the rules which might be relevant in naval operations.

In sections 2 and 3 below, we describe alternative strategies for M that are independent
of €, asymptotically minimax as € — 0, and are robust to changes in the rules allowing P

occasional partial information.

The proofs of the main results will be published elsewhere. They depend on new
methods for studying first passages to time-dependent boundaries by certain semi-Markov
processes. The results of section 2 generalize results for search in a circle obtained by

Lalley and Robbins (6).

2. Search in a Convex Region

Intuition suggests that a good strategy for M should produce random trajectories that

are uniformly distributed in 2, for if this were not the case, P could gain an advantage by
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hiding in the parts of Q less frequently visited by M.

Let Q1 be a bounded, convex region in R? with smooth boundary 91, and let v be
the normalized arc-length measure on 89, [ sq dv = 1. Let ©3,03,... be i.i.d. random
variables such that

P(©; sdﬂ)—%smﬂdﬂ 0<8<m.

Define a sequence of (random) points Py, Py, Ps,... on 81 as follows: Let Py have distri-
bution v. Having defined P;, draw the chord in ) from P; that makes an angle ©,,; with
the tangent to 012 at P; and define P;.; to be the second point of intersection of the chord
with 91).

Proposition 1. The stochastic process Py, Py, Ps,... is a stationary, Harris-recurrent

Markov chain on 90 with stationary distribution v.

See Revuz (7) for the definition of Harris-recurrence.

The trajectory of M is obtained by following the chords PyP;, Py P,,... in succession

at unit speed. Let X () denote the position of M at time ¢ > 0.

Proposition 2. The stochastic process X (t),t > 0, is an ergodic semi-Markov process
on ) whose stationary distribution is the uniform distribution on 1. In particular, if

f: 2 — R is any continuous function, then

hmt 1/ (X )ds=/ﬂf(:§) dz/|Q| as.

and

Jim E(F(X(0)IX(0), 01) = [ 1) dg/a] s



Let 01° denote the interior of . For any Qe{l define

Te = 7:(Q) = inf{t > 0: dist (X(¢),Q) < e}

Proposition 3. Ase— 0,

2¢|Q|7E 7.(Q) — 1

and

2¢|Q|17.(Q) -2, exponential with mean 1,

uniformly for Q in any compact subset of Q°.

If P’s strategy were to stay at a randomly chosen point of 2, and if this were known
to M, then M could do considerably better. By following an e-dense path through Q of
approximate length [(1|/2¢, M could assure capture by time |Q|/2¢ (approximately) and
the expected capture time would be (approximately) |Q2|/4e. Thus our plan is only 50%

efficient for locating an immobile target.

For 6 > 0 let #5 denote the set of continuous, piecewise continuously differentiable
functions y(t),t > 0, valued in () and such that |y(¢t)| < v < 1 at all ¢ where the derivative

exists and dist (y(¢),d0) > é for all t. For ye¥; define

Te(y) = inf{t > 0: dist (X(¢),y(¢)) < €}.

Proposition 4. Forany § >0,as e — 0

sup 2¢|Q| 7 Er.(y) — 1.
ye7Fs

This shows that our strategy of following the random trajectory X|(¢) is almost asymp-

totically minimax. Since, according to the rules of the game, P is not required to stay at

4



least § away from 92, M should actually follow the trajectory X(t) for a convex region
containing {} in its interior, with some reasonable modification at 80 (there is no point in
searching outside 2). It is clear that one may construct an asymptotically minimax family

of strategies for M by using Proposition 4.

Our strategy does not have the “localization” property of the Gal-Fitzgerald strategy.
Even if P is given the position and direction of M from time to time, she will not be able
to predict its course for very long, in view of Proposition 2. Therefore, the strategy for M
that we have described is not only fully efficient in the minimax sense, but also robust to

partial information.

3. Search in a Parallelogram

A somewhat different search plan may be used when {1 is a parallelogram. Like that
of the preceding section, this strategy does not suffer from the localization defect. For

simplicity of exposition we shall describe the strategy for the square (1 = [0,1] x [0, 1].

Consider the torus ) = R2/272, and let 7: R? — (1 be the natural projection
mapping. The torus () may also be thought of as the square [0,2] x [0,2] with opposite

sides identified. Consider the mapping é: [0,2] x [0,2] — [0,1] x [0,1] defined by

£(z,y) = (z,9) if 0<z<1, 0<y<1;
=(2-z,y) if 1<z<2, 0<y<1
=(2—-2z,2-—y) if 1<z<2, 1<y<
= (2,2 — y) if 0<z<1, 1<y<2.

Since £ maps corresponding points on opposite sides of [0,2] X [0,2] onto the same
point of [0,1] X [0,1], ¢ may be projected to a mapping &  — 0. The composition

om: R? — N is a continuous mapping of the plane onto the unit square.
Y

Fix 0 < p < 1. Let P;,P,,... be i.i.d. random vectors in R? with the uniform

distribution on the circumference of the circle of radius p centered at (0,0). Let Py be
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uniformly distributed on [0,1] X [0,1], and independent of Py, P;,.... Define a random
path Y (¢) in R? as follows. Start at Py, move at unit speed along the line segment from P,
to Pp + Py, then move at unit speed along the line segment from Py + P; to Py + P; + P,

and so on.

Our search plan calls for M to follow the projection onto £ of the random path Y (¢),

so that the position of M at time ¢ is

X(@®) = &(r(Y (1))

Proposition 5. The stochastic process X(t), ¢ > 0, is an ergodic semi-Markov process
on {1 whose stationary distribution is the uniform distribution on Q. In particular, if

f: © — R is continuous, then

lim %/Ot F(X(s) ds=/Q f(z) dz as.

t—oo0

and

lim B(FX@)IPoP) = [ fl2)dz s

Let 75 be defined as in section 2. For z £ %, let 7c(2) = inf{t > 0: dist (X(¢), 2(t)) <

e}.

Proposition 6. Let 0 < § < 1/2. If p < 26, then as € — 0,

sup 2¢E 7.(z) — 1.
yeFs

4. Concluding Remarks

(1) We conjecture that any ergodic semi-Markov process with uniform stationary distri-

bution may be used to obtain asymptotically minimax strategies for M.
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(2) The boundary effect implicit in Propositions 3, 4, and 6 deserves further study. How
should M behave near 91?

(8) It would be useful to have a good definition of a modified search game when the

boundary Q1 is fuzzy.

(4) It would be useful to make a systematic study of modifications of the game in which

one or both players is allowed partial information about the movement of the other.
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