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Summary. We study two processes obtained as follows: Take two independent d-
dimensional Brownian motions started at points z,y respectively. For the first process, let
d > 3 and condition on X; = Y; for some ¢ (a set of probability zero). Run X out to the
point of intersection and then run Y in reversed time from this point back to y. For the
second process, let d > 5 and perform the same construction, this time conditioning on
Xs = Y; for some s,t. The first process is shown to be Doob’s conditioned (to go from
z to y) Brownian motion Z, and the second has distribution absolutely continuous with
respect to that of Z, the Radon-Nikodym density being a constant times the time Z takes
to travel from z to y. Similar results (including extensions to the critical dimensions d = 2
and d = 4) are obtained by conditioning the motions to hit before they leave domains. We
use the asymptotics of the probability of ‘near misses’, and results on the weak convergence
of h-transforms.

§1. Introduction

If two Brownian paths in R% come close to one another, either at the same or at
different times, those paths yield a bond connecting the paths’ initial points. We study
these bonds. Since we wish such ‘near misses’ to happen only once, we will do so in
dimensions high enough for such events to be very unlikely.

Let = # y be points in R%, d > 3, and let ,Z7, 0 < t < ¢(Z) be Doob’s Brownian
motion conditioned to go from z to y; that is, the Markov process which starts at z, has
finite lifetime ¢(Z) and transition density

(1.1) yPi(z,w) = (jw — yl/|z — y))*pe(z,w), z#y

where p; is the transition density of Brownian motion. Note that [ yp:(z,w)dw < 1, the
excess being the probability that ,Z* exceeds its lifetime before time ¢. This process is,
for all purposes we can imagine, as tractable as (unconditioned) Brownian motion. See
Doob (1984) for much more information about conditioned Brownian motion, and Durrett
(1984) for an elementary account.

Let X7, Y)Y be independent Brownian motions started at z,y respectively. Let ¢ > 0
and put
L. =sup{t > 0; |X; — Y| < €} (sup(¢) =0).
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It is easily checked that P(0 < L) = (¢/|z — y|)¢ "2 if |z — y| > ¢, and L. < oo a.s.. Let

X7, 0<t< L,
WE = { Y.t Le<t<2Le
A, t>2L,

and make W* right continuous at L.. We also make ,ZF = A for ¢t > ¢(Z), so that A
functions as a cemetary state.

(1.2) Theorem. As € | 0, the law of W€ conditioned on {L, > O} converges weakly to that
of yZ=*.

The use here of the last time our processes are within ¢ of each other is for convenience
only. The analogue of Theorem 1.2 with L, replaced by inf{t: |X; — Y;| < €}, or by any
other time our processes are within € of each other, still holds, and is easily derived from
Theorem 1.2 and some of our lemmas on Brownian paths. Weak convergence is with
respect to the usual Skorohod topology. This is discussed more fully in §2 and §7. The
proof of Theorem 1.2 is not difficult.

Now let d > 5, and put

M, = sup{s > 0; | X% — Y| < ¢ for some ¢}
N, =sup{t > 0; | X7 — YY| < e for some s}.

(Again the precise forms of M., N, are not essential, only convenient). Both M, and N.
are finite a.s.. Let

Xz, 0<t< M,
VE = {YJ&#Ne_t, M, <t <M.+ N,
A, t> M, + N..

(1.83) Theorem. As e | O, the law of V¢ conditioned on {M, > 0} converges weakly. The
limiting law is absolutely continuous with respect to that of yZ*, with Radon-Nikodym
density ¢(yZ*)/E¢(yZ7%).

Thus in Theorem (1.2) we condition massive particles to collide, and in Theorem (1.3)
we condition Wiener sausages to intersect.

The proof will in fact show that the joint law of (V ¢, M) converges weakly to that of a
pair (V, M). It is also shown that conditional on V', the time M is uniformly distributed on
[0,¢(V)]. In particular, it is not determined by V' and occurs, in some sense, at a typical
point along the path (rather than at, say, a place with rapid oscillation). In contrast,
Martin Barlow has observed that the intersection of Brownian motion in R? with space
time Brownian motion occurs at atypical points; as a consequence of Makarov’s theorem,
harmonic measure in the domain below the space-time Brownian path is carried by a set
with Hausdorff dimension strictly less than that of the whole path.
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Neither of these two theorems extends to lower dimensions (in dimensions 2 and 4
respectively, the weak limits still exist, but are standard Brownian motions. In even
lower dimensions, the weak limits aren’t needed to make sense of the analogous results,
but unfortunately these results are false). However, we can go down one dimension by
considering domains other than all of R¢.

Let D be any domain in R?, d > 2, which has a Green function G(z,y). For z,y € D,
z # y, let ; Z® now be Doob’s Brownian motion conditioned to go from z to y before leaving
D (in (1.1), (jw — y|/z — y|)?~2 gets replaced by G(w,y)/G(z,y) and p; by the transition
density of Brownian motion killed upon leaving D). For ¢(X®) = inf{s; X% ¢ D}, ¢(Y?)
= inf{t; Y ¢ D}, we let L, = sup{t < min(¢(X?®), ¢(Y¥); |XF — Y| < €}, and then
define W€ as before.

(1.4) Theorem. As e | O, the law of W* conditioned on {L. > 0} converges weakly to that
of yZ=.

Now let D be a domain in R¢, d > 4, and suppose that
(1.5) / G(z,2)G(y,2z)dz < oo.
D

This condition always holds if d > 5, since it is true for D = R? and the Green function
for D is dominated by the Newtonian one. In contrast the condition fails for D = R4, so is"
a real restriction here. It holds if D is bounded or is contained in the complement of any
solid cone.

Define V¢ as before, now using M. = sup{s < ¢(X%); |X? — Y| < € for some
t <¢(Y¥)} and N, = sup{t < ¢(Y¥); | X% — Y| < € for some s < ¢(X*)}.

(1.6) Theorem. As e | O, the law of V. conditioned on {M, > 0} converges weakly. The
limiting law 1s absolutely continuous with respect to that of ,Z*, with Rodon-Nikodym
density ¢(yZ2%)/E¢(yZ®).

Note that since [, G(z,2)G(y,2)dz = G(z,y)E¢(yZ*), we need (1.5) to state the
theorem.

It is very likely that our Brownian motions can be replaced by random walks of step
size |z — y|/n, and ‘coming within &’ by ‘intersection’, and that limiting results will be the
same as n — 0o, but we do not attempt to prove this here (although our original argument
was a heuristic nonstandard one, and suggests the above result). A different question is
that of whether there are random walk results similar to ours which do not involve taking
limits. The exact analogues of the above theorems fail, but the following holds: Let X7,
Y)Y be independent standard random walks on the standard d-dimensional lattice, d > 3.
If X(z; — yi) is even, let L = sup{n; XZ = Y}¥}. If it is odd, let L =sup{n; XZ =Y} ,}.
Then conditioned on {L > 0} (now a set of positive probability), the pasting together of
X?* and YV is a random walk conditioned to go from z to y. In fact, if 74 is the probability
that X0 # Y, for any n > 1, then it is easily seen that the probability of the above pasting
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giving any fixed path of length m is (2d) ~™+4, and this easily implies our assertion. This
argument clearly fails if we restrict our random walks to any proper subset of the lattice,
or if we replace last hitting time with first hitting time.

Our proofs of the above results are based on Doob’s theory h-transforms. Since in
Theorem (1.3) we have two time parameters, we’ll sometimes need h-transforms of two
parameter processes; see §2 for the definition.

In §7, we prove some results about weak convergence of h-transforms. They are
folklore in the one-parameter case, but we don’t know a reference. In the two-parameter
case they appear to be new. Section 2 will set notation, and the proofs of Theorems (1.2)
and (1.3) are given in §3. Section 6 contains some discussion of the condition (1.5), and
the estimates needed to make the arguments of §3 work are shown in §4 and §5.

These estimates are close to many others in the literature. The sources Lawler (1982),
(1985), LeGall (1986a), (1986b), Aizenman (1985), Felder and Frohlich (1985), Brydges
and Spencer (1985) and especially Erdds and Taylor (1960a), (1960b) all contain related
results, from which we have profited, but whereas most of these papers deal with problems
like the asymptotics in € of P(|X? — Y| < € for some s,t), we are principally concerned
with the dependence of these objects on z and y. Moreover, we work in domains, and
must deal with the possible presence of pathological boundaries. This is especially true
in dimension four (see §6). In this context, it should be pointed out that LeGall (1986a)
studies asymptotics like those in §4, but for stopping X7¥ and Y/ at some fixed o rather
than at ¢(X*) A ¢(Y'Y).

§2. Notation
We now collect some of the notation used in the remainder of the paper.
e B(z,r) is the ball of radius r centered at z.
e B(K,r) is the r-neighborhood of K.
e A, will be the lattice €Z¢.
o b will usually be the number 1+ (v/d/2).
o u. ~ v, will mean that uc/ve — 1.

o The letters X, Y, V, W, Z, L, M, N will keep the meanings given them in §1. In

addition
Se = inf{s; |X? — Y| < ¢ for some ¢}

T. = inf{t; | X7 - Y| <€}
with similar definitions when dealing with domains.

e he, ge, g will be special functions, to be defined in §3, but we will often use h or h,
for a generic excessive function.

e We adopt the conventions that ¢ denotes a generic constant, whose value may change
from line to line, and that all functions vanish at A.
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e Wemove z and y inside and outside expectations at will. Thus the following are taken
to be tautologies
yE*[f(2)] = E[f(,2%)], yP*(Z € A) = P(,Z” € 4)
E™Y[f(X,Y)] = E[f(X*,YY)], P*¥((X,Y) € A) = P((X*,YY) € A).

Similarly, when dealing with general h-transforms, we write

Ef(nX*) = nE*[f(X)]
efc.

e When dealing with domains, we use the same letters (P%¥,G, P;,...) when dealing
with objects killed upon leaving D, as we did before, for the corresponding unkilled
objects. This should cause no confusion, as we are consistent within sections. To talk
about the unkilled object in a domain section we just add a ‘0’. (e.g. PyY,Go,p0?,...).

We now describe the form of weak convergence used in the theorems of §1.. We must
allow jumps, since our processes usually have two, one from the ‘seam’ between X and Y,
and another at ¢. Let D be the one-point compactification of D, and let A be a point
isolated from D. Let Q be the space of paths with values in D U {A} which are right
continuous with left limits, and stay at A forever once they reach it. Endow Q with the
Skorokhod topology (see Billingsley (1968) and Lindvall (1973)). Weak convergence will
always be that of probabilities on 02 (or O X (; see §7).

To go along with {1, we have other standard notation; for w € Q we write ¢(w) =
inf{t; w(t) = A}, (few)(s) = w(t + s). (Respectively the lifetime, and shift operator). We
use the o-fields 7 generated by the evaluation maps w — w(s), for s < ¢t. Thus, since
X,Y,... will take values in {1, we can write random variables depending on X, for s <t
in the form 7(X) for r € #. Similarly, the lifetime of X is ¢(X).

Recall that if h is excessive (i.e. superharmonic) we say that ;X is an h-transform
of X if for each positive r € #,

E[7(rX),¢(nX) > t] = E[r(X)h(X3)/h(X0),¢(X) > t].
It will be convenient to have a similar definition for two-parameter processes as well.
A lower layer is a set ¢ C [0,00) X [0, 00) such that
(a) If (s,t) € ¢ and &' < s, t' <'t, then (s',t') € ¢;
(b) If sp | 8, tp | t and (sp,%,) & ¢ for any n, then (s,t) & ¢.
A bipath will be a function of the form

[ (@ (0?0, (s:8) € ¢
wis:t) = { (A,A), (5.0) & ¢

where w!,w? € Q, ¢ is a lower layer, and ¢(w?) = inf{s; (s,0) & ¢}, ¢(w?) = inf{%; (0,t) & ¢}
(so that w! is the first component of w(-,0) and w? is the second component of w(0, )).
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A biprocess is a random bipath U such that each U, ; is measurable. We write U}
and Utz for the first and second components of U, o and Uop,: respectively, and ¢(U) for its
associated lower layer.

The simplest biprocess is called bi-Brownian motion; we let X and Y be independent
Brownian motions and set ¢(U) = [0,¢(X)) X [0,¢(Y)), U = X, U2 = Y (unless we are
working in domains, clearly ¢(U) = [0,00) x [0,00)). Thus U, ; = (X,,Yz) while both X
and Y are alive.

Let U,,; be a bi-Brownian motion, and let k(z,y) be biexcessive (that is, h(z,-) and
h(-,y) are each excessive). A biprocess pUs,; is called an h-bitransform of U, ;, if for
every s,t > 0 and positive o € %, T € #, we have that

E[o(nU)r(nU?), (s,1) € ¢(nU)]
= Elo(U")r(U*)h(Us,)/h(Toy), (5,t) € ¢(U))-

Not much is known about these objects, but see for example Walsh (1981) and Cairoli
(1968). All we will need will be the following fact: let A be an open subset of D x D,
and let h(z,y) = P((X?,Y) € A for some s,t > 0). Kill bi-Brownian motion at the “last
exit” from A; that is, set

U, - (X,,Y:), if there is some s’ > s and ¢/ > ¢ such that (X, Y) € A
h%et = (A,A), otherwise.

Now condition on T' = {(XZ,Y¥) € A for some s,t} (that is, on {,Uo 0 # (A,A)}).

(2.1) Proposition. When conditioned on T, yU,; is an h-bitransform of bi-Brownian mo-
tion.

The proof is identical to the corresponding well known result in one parameter — see
p.568 of Doob (1984).

We will be concerned with the above only when A is the event | X, — Y;| < € for some
s,t, so that we are killing bi-Brownian motion at the last near miss. The set ¢ for this
process is just {(s,t): | Xy — Xy| < € for some s’ > s and ¢’ > t}. This set is contained
in [0,sup{s: | X, — Yi| < € for some t} Xx[0,sup{t: | X, — Yi| < € for some s}, but is not
in general equal to this rectangle, since X; can be within € of the Y path several times,
and the supremum of the ¢ for which this happens can correspond to a smaller time for
the Y process than for other ¢ for which it happens. Part of what we prove is that the set
¢ becomes more rectangular as £ — 0.

§3. Outlines of the Proofs of Theorems (1.2) and (1.3)

We start with a lemma on time reversal. Let Z = ,Z %, Since Z has finite lifetime we
may define its reverse;

Y, t=0
Zy = {Zg(Z)-—-'h 0<t<§'(Z)
A’ tZ g(Z)'



In general, " will be used to denote reversal of a process with finite lifetime.

(3.1) Lemma. Let o, T € F; be positive. Then

vE°0(2)7(2),¢(2) > 2t] = E*¥[o(X)7(Y)G(Xs,Y:)/G(z,v)]

Proof:

vE®10(2)7(2),¢(2) > 21]
= yE®[0(2),E?([r(2),¢(Z) > t],¢(Z) > 1]
= yE®[0(2) 2, E¥[r(2),¢(2) > t],¢(Z) > 1]
1

= S Zle0xBIr(2),6(2) > 1G(X,)]

1 z 1 Yy T
= sa® [a(X)mE [7(Y)G(Yz, X2)|G( Xz, 9)]

= E*¥[o(X)r(Y)G(X:, Y2)/G(z,9)]

by symmetry of Brownian motion under time reversal. O

The following result may be found in the appendix (Proposition (7.6)), generalized to
domains;

(3.2) Lemma. Let hy, and h be strictly positive and superharmonic on R® with h, — h a.e.
and h,(z) — h(z) < co. Then j, P® — , P® weakly.

Proof of Theorem (1.2). Let

he(z,y) = P(| XY — YY| < ¢ for some )
= P(|X3; Y| < € for some t)
= C4e?2G(z — y,0) = Cae?2G(x,y), whenever |z —y| > «.
Let X** and Y*¥ be X* and YV killed at L.. Then (see Doob (1984)) conditioned
on L. > 0, the R?%-valued process (X;'*,Y;"¥) is an h.-transform of (X¥,Yy), so that

by Lemma (3.2) its law converges weakly to that of a G(:,+) transform. We have that
We = ®(X*=*=,Y*¥), where
w(s), s < ¢(w)
®(w,w')(s) = | w'(le(w) +¢(w) —s]-), ¢(w) <8< ¢(w) +¢(w)
A, s > ¢(w) + ¢(w')

(defined on ¢ = {(w,w’); ¢(w’') < oo}). Since @ is continuous on g, we’ll have that the
law of W€ converges weakly, once we know that G(-, -)-transforms have finite lifetimes a.s..
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This is easily seen; either by a direct calculation that G(-,-) is a potential in R2¢, or by the
observation that the difference of the first and second components of a G(-,-)-transform
is itself a transform by G(0,-) in R%. This identification of the limit law of W* as that of
yZ* follows immediately from Lemma (3.1). O3

We’ll follow a similar approach to Theorem (1.3). The following generalization of
Lemma (3.1) has a similar proof and will be omitted.

Let Z, Z be as in Lemma (3.1). Set

goit Zgrr, s+r+t<¢(2)
r A, otherwise.

(3.3) Lemma. Leto € #,, 7 € F;, € € Fo all be positive. Then

vE®[0(Z)1(2)€(2%Y),¢(2) > s +1]
= E*Y[o(X)r(Y )y, EX*[£(2)|G (X, Y1) /G, )]
The easy proof of this lemma is omitted.

Let
ge(z,y) = P*¥(| X, — Y3| < € for some s, ).

As before, we must determine the asymptotic behaviour of g.. Since this is tricker
than before, we’ll merely record the result, postponing the proof to §5A. Let 9(z,y) =
[ G(z,2)G(y, z)dz, which, by scaling, is c|z — 2|~(¢=*) for a constant ¢ not depending on
z or y.

(3.4) Lemma. gc(z',y")/ge(z,y) — g9(=',y")/9(z,y) as € | O, for any z' # o', z # y.
We’ll show the following in §5A as well.

(3.5) Lemma. For each s >0 and z # y,

P*¥(S, < s < M,)/g:(z,y) >0 ase |O.

Proof of Theorem (1.3).

Let

e _ J(X2YY), f3s'>s,t' >tst |X5-Y)|<e

st (A, 4), otherwise.
Condition on {M, > 0}. By Proposition (2.1), U is a g.-bitransform (see §2 for the
definition). In §7 we prove a weak convergence result for such bitransforms, analogous to
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Lemma (3.2) above. To apply it, we must verify condition (7.7), but Lemma (3.5) does
precisely this. The conclusion we obtain is exactly that the joint law of (U1:*,U?%*) on
1 x Q, conditioned on {M, > 0}, converges weakly to that of some pair (U, U?), where

Ul = {Xf’ s <M

A, s> M¢
U2,€= }’ty, tSNS
¢ A, t> N-.

Since V¢ = ®(U1*,U?*) we have as before that the law of V¢ converges weakly to
that of V = ®(U1,U?).

To identify the law of V', let I be uniform on [0,1], and independent of ,Z*. Let

Z1 = Zs, s<1I¢(Z)
8 A, otherwise

2 12, t<(1-Iy(2)
¢ A, otherwise.

Since V = ®(U!,U?) and Z = &(Z?, Z2), we need to show that the joint law of (U?,U?)
is absolutely continuous with respect to that of (Z!,Z2), with Radon Nikodym deriva-
tive ¢(Z)/yE®¢(Z). Thus let 0 € ¥, and 7 € # be positive. Recall that g(z,y) =
G(z,y)yE®¢(z). By Lemma (3.3),

Elo(UY)r(U?),¢(U") > s and ¢(U?) > i]
= E*¥[o(X)7(Y)9(X,, Y1) /9(z, y)]
G(Xs, Vi) v, EX¢(2)
Glor) 550 )
= yE*[0(2)7(2)(¢(2) — s — 1) /yE"¢(2),¢(Z) > s +1]
= yE?[0(2)r(2)s(2)/yE*5(2),I¢(2) € (s,¢(Z) — )]
= yE®0(Z2")7(2%)¢(2)/yE*¢(2),$(Z") > s and ¢(Z?) > 1]

= E*¥[o(X)r(Y)

as required. O

It is now clear how to modify the argument above to obtain:

(3.6) Corollary As € | 0, the joint law of (V.,M.) conditioned on {M, > 0} converges
weakly to that of a pair (V,M). M/¢(V) is uniform on the interval [0,1] and is independent
of V.



§4. Asymptotics I

This section covers the proof of Theorem (1.4). The arguments given in §3 apply
equally well in this context, once we show the following; [recall that X and Y¥ are now
Brownian motions, killed upon leaving a domain D C R%, and that h.(z,y) = P(|X? —
YY| < € for some t < ¢(XZ) A ¢(Y¥))].

(4.1) Proposition. Let z,y € D, = # y.

(a) If d > 3 then h.(z,y) ~ C3G(z,y)e? 2.

(b) If d =2 then ho(z,y) ~ C2G(z,y)/log(1/€) provided D has a Green function.
These statements are proved in §4A and §4B respectively.

First we sketch the proof for d > 3. The analog of (a) with h. replaced by he (z,y) =
P(G(XE, YY) = e (@2 for some t < ¢(X*®) A ¢(YY)) are easily proved. Observe that h.
is harmonic on D x D —U,, where U, is all (21, 2;) satisfying |22 — 21| < €, with boundary
values 1 on U, and 0 elsewhere, while he differs only in that U, is replaced by a different
neighborhood V, of the diagonal in D x D, which is asymptotically the same except at the
boundary of D x D (see figure 1). We must show that the parts near the boundary don’t
count.

Figure 1.

Formally, let T = T, be inf{t > 0; | XF — YY| < ¢, t < ¢(X®) A ¢(Y¥)} and let D, be
relatively compact domains, D, C Dyy1, D, T D. We prove the following.

(4.2) Lemma. Under the conditions of Proposition (4.1),

lim limsup P*¥(T, < o0, X1, & D,)/P®¥(T. < 00) =0.

n—oo elo
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To prove this we essentially write down a density for X7 .

§4A D CRY, d> 3.

Warning: recall that P, G, etc. ... refer to BM killed upon leaving D. If
we need (unkilled) BM on all of R%, we write Py, Go, etc. ...

Before proving Lemma (4.2) in dimensions greater than 2, we use it.

Proof of Proposition (4.1)(a).
Since Go — G is continuous on D x D, letting € | O and then n — oo we have, by
Lemma (4.2), (writing T = T.)
E[G(XF,Y}), X7 € Dy, T < 0|
~ E|Go(X%,Y}), X7 € Dy, T < 0]
= Cye~ U~ p2¥(Xp € D,,, T < )
Cq~ s"(d—z)Pz’y(T < o0) = C’de_(d"2)hs(z,y).
That is, given § > 0 we can find €0(f) = €0 > 0 and n(e) such that if € < g9 and n > n(e)
then the ratio of the first to the last terms in this expression is within 8 of 1. Also,
G(z,y) — E[G(XF,Y{), X7 € Dy, T < 0]
= E[G(X%,YT‘({),X% ¢ Dy, T < o0]
< Cae~ =D P2Y(T < 0)[P*¥ (X1 ¢ Dy, T < 0)/P™¥(T < )]
< G(z,y)P*¥ (X1 & Dy, T < 00)/P*¥(T < o0)

—0asn— oo
by Lemma (4.2) again, showing the result. O
Proof of Lemma (4.2), d > 3

Write . o
O(z,y;2) = / pi{z, 2)p:(y, 2)dt
0

Oo(z,y;2) = /0 p?(z, 2)p8 (v, 2)dt.

Since p?(z, 2)p?(y, ) is the transition density at (2, z) of Brownian motion in R2¢ started
at (z,y), ©o(-,-; 2) is harmonic in (z,y) off any neighbourhood of (2, z). Thus

(4A.1) Oo(z,y; 2) = E®Y[0o(X71,YT; 2))-
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Let |y| = 1. Then

e 1
[ 800 2)dz = [ pu(0,1)at = 56o(0,) < oo
R 0

S0
/ ©0(0,4; 2)dz / / ©0(0,v;2)dz — 1 as k — oo.
|z|<k Rd

By scaling,
(44.2) / O0(0,e7;2)dz / / ©0(0,e7;2)dz — 1
|z|<é Rd

as € | 0, for each fixed 6§ > 0.
Now fix n and let 6 > 0 be so small that B(D,,6) C D,41. By (4A.1) we have

(4A.3) / Oo(z,y; 2)dz = [/ 00(0, e7; 2)dz| PJ*Y (T < o0), and
R4 Re
/ Oo(z,y; 2)dz = E*Y| Oo(X7T, YT; 2)d2]
D\D,, D\D,,
> E*¥[Xp € D\Dpy1, / Oo(Xr, Yr; 2)de]
B(Xr,5)

y / 00(0, &; 2)d2] P2 (X1 € D\Dypy1).
|z|<6

Thus by (4A.2),

(44.4) lim limsup Py*Y(T < 00, X7 € D\Dyy1)/P3Y(T < 00) = 0.

n—oo0 eJ,O
To complete the proof, we need to show that

lifginf P*¥(T < ¢)/P{Y(T < 00) > 0.
&

But 1
=G(z,y) =/ O(z,y; 2)d=
2 D
= B / O(Xr, Yri 2)dz, T < ¢]
D
< (/ O0(0,e7;2)dz) P*¥(T < ¢),
R4
so by (4A.3)

P*Y(T < ¢)/P3*¥ (T < o0) > G(z,y)/Go(z,y) > 0.
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Note. In (4A.4) we are not claiming that

lim limsup Po(|X? — YY| < € for some ¢ at which XF € D\D,41)/P3"Y (T < o0) = 0.
0

n—oo 5l

In fact, if [0D| > O this is in general false.

§4B D C R?

First, note that the proof of Lemma (4.2) in the last section works for d = 2, provided
D is bounded. [If D C B(0,r) say, then replace p$, Go, ©9 etc. by the transition density
etc. for Brownian motion killed upon leaving B(0,2r). The main fact then is that
inf{fB(z’s) Oo(z,y;2)dz; |z —y| < e, |z| < 7}
Sup{fB(O,Zr) Oo(z,y; 2)dz; |z — y| < e, |z| < r}

as € | 0, for each 6 > 0].

This is the only honest ingredient in this section; we’ll bootstrap our way from it to
the proof of Proposition (4.1(b). We first handle that part of D near oo ((4B.5) below)
and then, more generally, the part near 3D.

Let D c R? have a Green function G. Then
G(z,y) > Czlog™ (6/|z — y|) if d(z,dD) > 6,
so that for T =T,

(4B.1) G(z,y) = E[G(XF,Y}), T < o]
> Cqlogt(6/e)P*¥(d(Xr,0D) > 6,T < o).

Let D,, be relatively compact domains, D, C D41, D, T D. In general, let o4 be the
first exit time from A, and let G4 be the Green function of A. Then by the first remark
of this section,

(4B.2) Gp,(z,y) = liFol Cylog(1/e)P*¥(T < op,,)-
£

Let é, = d(Dn,3D) > 0. We have that
(4B.3) G(z,y) > lsiirollimsup Cqlog(1/e) P*¥(T < o0,d(Xr,8D) > 6)
el0
> lim limsup C;log(1/e)P*¥(T < 00,T < 0p,,)
n—oo slo

= G(z,y).

The first statement is by (4B.1), the second by the implication that T' < op, = d(Xr,
dD) > 6y, and the third by (4B.2) and the fact that G =limGp,,.

13



Thus we have equality throughout, and hence also

(4B.4) lim limsuplog(1/¢e)P*¥(T < o0,d(Xr,8D) > 6,,T > 0p,) = 0.
0

n—oo sl

Since D has a Green function, there are two disjoint closed balls B; and B, so that
Hy = DU By has a Green function too, k = 1,2. Apply (4B.4) to H; and H, rather than
to D, to find 6 < d(By, B2)/2 and r > 0 such that

limsuplog(1/e) P*¥(T < 00, T > 0p(0,s), d(X7 < By) > 6 or d(Xr, B;) > 6) < .
|0

Since d(z, By)vd(z, B) > 6 for every z € R? we have in fact that

(4B.5) limls(}1p log(1/e)P*¥(T < 00, T > oB(0o,r)) < 0.
&

Then apply our first remark once more, to find § > 0 such that

4B.6 limsup log(1/e) P*¥(T < 00,T < 0g(0.») but d(Xz,8D) < §) < 6.
el0 (0r)

Combining (4B.5) and (4B.6), we have that

(4B.7) limsup log(1/e) P*¥(T < o0, X € B(8D,4)) < 29.
el0 .
Together with (4B.3), this yields both Theorem (4.1)(b), and Lemma (4.2) (for d = 2). O

§5. Asymptotics II

To complete the proof of Theorem (1.3), we must establish Lemmas (3.4) and (3.5).
We’ll do this in §5A, and will show the analogous results for domains in §5B and §5C. Since
the arguments of §3 apply equally well to domains, this will also show Theorem (1.6).

We will restate the results to be shown, and, for ease of reference, separate the hy-
potheses into three cases;

(5.1) Proposition

For z,7,y,y' €D, s # y, @' # y' we have that g.(z',9')/ge(2,9) — 9(z’,v") (2, )
as € | 0, provided

(a) D=R4,d>5; or
(6) D is a domain in R%, d > 5; or
(¢) D is a domain in R* and g(z,y) < co.
Recall that S, and M, are respectively the first and last times s such that | X*—YY| < ¢

for some ¢.
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(5.2) Lemma. Fizz,y € D, z # y, s > 0. Then P*¥(S. < s < M.)/gc(z,y) =0 ase 0O,
provided

(a) D =R%, d>5; or
(b) D is a domain in R%, d > 5; or
(¢) D is a domain in R* and g(z,y) < oo.

Our approach is as before. The basic proof is that of (a). It requires minor modification
in case (b), with a new lemma (Lemma 5B.1) needed, to the effect that the part of D near

0D doesn’t matter. In case (c) we must also worry about that part of D near oo ((a) of
Lemma 5C.4)).

Though we have not stated them above (as we did in Proposition (4.1)), the decay
rates of g.(z,y) will emerge in the course of the proof. They are €97%, ¢%~*, 1/log(1/e)
respectively. With a little more work involving a scaling argument, we can show in cases (a)
and (b) that g.(z,y) ~ c¢(d)e?*g(z,y), where the constants do not depend on the domain.
Since we do not use this result we omit the proof. We conjecture that in case (c), g.(z,y) ~
cg(z,y)/log(1/€). We also have a completely different approach to these questions, which
uses approximate Laplacians to compute the potential part of the superharmonic function
ge(*,y), but it is significantly longer than the one given here.

§6A. D=R%,d>5
(5A.1) Lemma. Fiz z # y.
(a) e (@~4g_(z,y) is bounded in €, above and away from zero.

(b) There is a constant ¢ such that for each closed K,

limsupe~(@=4) P%¥(S, < 00, X5, € K) < c/ G(z,2)G(y,z)dz=.
€l0 K

(¢) For each p > 0,

P(diameter{z; z = X7 for some s,|z — Y| < € for some t} > p)

=o(e? %) ase 0.

Proof.

(a) Consider first the upper bound on g.. Let A. be the lattice eZ%, and let Q. =
(—€/2,e/2)%. Set b=1+ @. We assume 2be < |z — y|. Then
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g:(z,y) < Z P(X* and Y'Y hit B(z, be))
z2€Ae

<eced 24 Z [be/|z — zl]d_z[be/lz — zl]d_2

ZEA.
|z—z|,|z—y|>2be

< %% 4 et Z / |z — zl_(d_2)|y — 2|72 g,
z+Qe

zZ€EA,
|z—z|,|z—y|>2be

< ee?2 + ce?4g(z, Y)

giving the upper bound.

For the lower bound we assume, without loss of generality, that z = (0,...,0),y =
(1,0,...,0) and ¢ is of the form 2™ (so that we have z,y € A,). Then for each 8 € (0, 1/2),
it follows as above that

9:(2,y) > P(U.en,\{2,5}{X" and Y'Y hit B(z,B¢)})
> ) P(X®and Y" hit B(z,B¢))
z€A\{z,y}

—1/2 ) P(X®and Y? hit both B(z,e) and B(2', f¢))

z2/€Ac\{z,y}
z#z!

Now P(X? and Y'¥ hit both B(z, f¢) and B(z', Be)) is majorized by P,,+ P, + Pyt + Pai
where for example P, is the probability that X= hits first B(z,8¢) and then B(2, B¢e)
and that Y hits first B(2/, B¢) and then B(z, fc). Each of these four probabilities is easily
bounded, since the strong Markov property can be used. This, together with the above
inequality, yields

9s(y) 2 (Be)*7 D7 o — 27Dy — 4|02
zGA,\{z,y}
— Z (ﬁ€)4(d—2)|z — zl—(d—2)|z _ zl|—2(d—2)[(y _ z)_(d_2)

z, 2l €re\{z,y}
z£ 2!

+ly— 2|77

> cﬂz(d—z)ed—4/ Iz — 2|~ (@D |y — 5~(@-D) g,
R4

_ cﬂ4(d—2)€2d_8/ /
R JRE\B(z,¢/2)
+ |y — 2|~ (42)]d2dz

o= 2|~z — 2|72y — 5D

The second integral is O(e~(4=4), so that g.(z,y) > €?~4(c2(4~2) - ¢54(4-2)), where the
two (different) constants ¢ do not depend on S. Thus we may choose 8 so small that the
second factor is strictly positive, giving the lower bound.
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(b) Let F(K,e)=F = {z€ A¢; 2+ Q. N K # ¢}. Then as above,

P™¥(S. < 00,Xs, € K) < Y P(X® and YV hit B(z,be))
z€F
< ce?2

+ cgd* Z / |z — w|~@ |y — w|~ Dy
z+Q.

zZEF
|x—=|,|x—y]|>2be

<eet 24 ced_4/ |z — 2|4 |y — 2|~ (8- g,
B(K,be)

from which the result follows.

(c) For e small, the probability in question is bounded by

(56A4.2) Z P(X?® and YV hit both B(z,be) and B(w, be))

zZ,wEAg
lz—w|2p/2

and as in part (a), this is easily seen to be o(e?~%). O

Proof of Proposition (5.1)(a)

We will approximate g.(z,y) by 3_ 4, P(|X®-Y| < e for some s,t at which XZ € z
+ Qs—,p) for suitable 6, p. _

Recall that b = 1 + /d/2, and set 4 to be the uniform distribution on 3B(0,b). For
e > 0 let n(e) = P(|X¥ — Y}| < € for some s,t at which X* € Q).

The argument for the upper bound in (a) of Lemma (5A.1) shows that

(5A.3) n(e) =0(e* %) ase 0.
Let 8 > 0 and choose A > 0 so small that

(5A.4) |z — 2|70y — 2|~ (¢Ngz < 0.

/B(z,z,\)uB(y,z,\)

Choose 6 so that if |z — z| > A and 6§’ < 6 then the hitting density of X* on dB(z,b6")
(with respect to normalized surface area) lies between (1 — 6)(b6'/|z — z|)%~% and (1 +
0)(b6'/|z — z|)%~%. The same is of course true for Y? if |z —y| > A as well, so that in this
case

(54.5) (1 —8)*(08' /|2 — 2)*~* (b6 /|y — 2I)*~*n(e/8")
< P(|XZ% — Y| < € for some s,t at which X € 2+ Qs')
< (1+6)%(68'/|o — 2))* 2 (66" /|y — 2) " *n(e/8")
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(for & small). By choosing § possibly even smaller, we can also guarantee that if |z — z|,
|z —y| > A then

(5A.6) (1—08)6%z — 2|~ Dy — z|~(¢-2)
< / |z — w| =y — |~ @2 gy
z+Qs '
< (14 0)6%]5 — =Dy — 4]
Forpe (0, 6/2), let K = U,ep,z + (Q5\Qs—,). Choose p so small that

(54.7) / 2 — w|~ @Dy — =gy < g,
K
Write A7 = {|X7 — Y}’| < € for some s,t at which X, € 2+ Q5_,}. Then
(54.8) Yo P4 - Y PRY(ASN 45)
ZEAg z,wEAg
lz—z|,|z—y|>X z#w

|z—=|,|z—yl,
lo—z|,|w—y|>A

g:(z,y)
Z P™Y(A%) + P™Y(S, < 0,Xs, € K)

ZEAy
|z—zl,|z—y|>x

+ P%¥(S, < 00,Xg, € B(z,2)) U B(y,2})).

Looking first at the upper bound, we use (b) of Lemma (5A.1) [applied with (5A.4) and
(5A.7)], then (5A.5) [with 6’ = § — p], (5A.6), and (5A.3) to see that

IA A

(1+6) (b(6 = )2 [ ¢
< .
ge(z’y)— 1—4¢ 5d n 5—p
E / |z — w| =Dy — w|~@Ddy + chet~*
ZEAg z+Qs
lz—z],|2—y|>A
(L+6) (b(6 —p))*(*2 [ ¢ a1
<
(B —p))*@D ( e d-4
< .
< 54 n - 9(z,y) + cbe

Observe that the second sum in the left side of (5A.8) is bounded by a sum such as (5A.2),
hence is 0(e%~%). Thus we obtain a lower bound

0e(2,3) = (b(6 — p))* @28~/ (5 — p))g(z,y) — el

now using (5A.5), (5A.6), (5A.4), (5A.7) and (5A.3). If ' # y’ we may choose § and p to
give the same conclusions for z’ and y’ as well. Thus, for small enough e,

ge (.’l:, y) . ge(ml, y’)

< cfet4,
glz,y) g(=,v) |~
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The conclusion of the proposition now follows, using the lower bound in (a) of Lemma
(5A.1), and letting € and then 0 tend to zero. O

Proof of Lemma (5.2)(a)

Fix z # y and let a > 0. For § > 0, let o5 be the first time X* leaves B(z,6). Then
(b) of Lemma (5A.1) lets us find 6 so small that

(5A4.9) P®Y(S, < 05) < ac® tase 0.
Let 8 be a bound on the density of os. For any € > 0, it will also be a bound on the

density of o5 + S. o 0,,, conditioned on S, 0 8,, < oo. Thus, if we choose v < a/8, we
obtain

(5A.10) P*Y(g5 < S¢,8¢e € (s —,8)) < aP™¥(Se < 00) < cae?* ase | 0.
By the strong Markov property of X at S, we can find p so small that
(5A.11) P*¥(S, < 00,|Xg,+¢t — Xg.| < p for some t > ~) < ac®tase|0.
Finally, (c) of Lemma (5A.1) shows that for ¢ sufficiently small, |
(54.12) P>¥(S, < 00,|Xs, — Xar,| > p) < ae® 2.
Putting (5A.9) - (5A.12) together shows thaf

P¥(S, < s < M,) < a3 +c)e?*

as required. O

§6B. DCR%, d>5

Observe that (b) of Lemma (5.2) follows from (a) of that result (note that (a) of (5A.1)
easily generalizes), so that only (b) of Proposition (5.1) need concern us here. Recall once
more that P§"Y refers to Brownian motion on all of R¢, the notation P*¥ now being
reserved for Brownian motion killed upon leaving D.

As in §4 we must handle the part of D near 8D. Let D, be relatively compact
domains, D, C Dypy1, D, T D. If 8D has Lebesgue measure zero then the following is a
consequence of (b) of Lemma (5A.1).

(5B.1) Lemma
lim limsup s_(d_‘l)Pz’y(Ss < 0,Xs, ¢ D,) =0.

n—oo Elo
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Proof: Part (b) of Lemma (5A.1) shows that

lim limsup s_(d_4)P;’y(Se < 00,|Xs,| > r) = 0.

r—oo slo
Thus, it will suffice to show, for r > 0 fixed, that
(6B.2) lim limsup zs_(d_“)P(;"’y(,S's < 00,Xs, € B(0,r) "N D\D,,) =0.

n—oo slo

Without loss of generality, we assume B(z,3)UB(y,3) C D, for each n. Let u(dz,dw)
be the probability on B(z, 1) X B(y, 1) under which z is uniform on B(z,1) and w = z+y—z.
Write _

Pt = /P(,z’wu(dz,dw).
Let 0, be the first time X leaves B(z, p), and let 7, be the first time Y leaves B(y,p). In

addition to
Se = inf{s > 0;|X, — ¥}| < € for some ¢t > 0}

we will consider
e = inf{s > 02;|X, — ¥i| < ¢ for some ¢ > T2}.

We will compare the measures

ac(dz) = P3"¥(S. < 00, X5, € dz)

be(dz) = P§(S. < 00, X5, € dz)

0e(dz) = Py¥(Ee < 00, X5, € dz)

Be(dz) = PY(Zc < 00, X5, € dz).
Let A be the event {|X, — V3| < ¢ for some X, € B(z,2) U B(y,2) and also for some
X, & B(z,3) U B(y,3)}. By (c) of Lemma (5A.1), P¥(A) = o(?~*). If B is any set which
is disjoint from B(z,3) U B(y,3), then clearly (for € < 1),

ac(B) < ac(B) < ac(B) + P5"¥(A)

be(B) < Be(B) < b.(B) + P(A).

The law of (Xo,,Yr,) under P3*¥ has a bounded density with respect to its law under P,
If C is such a bound, and B is a set as above, we therefore get an inequality

ae(B) < CB(B).

Finally, notice that the law of Xg, under P31*¥*2 is just a translate of its law under P,
Thus b, is a convolution of a, with the uniform distribution on B(z,1). Since a.(R?) =
O(e%*), we see that b, has a density which is bounded by ce?—*. Putting all this together,
we see that for B as above,
a¢(B) < 0o (B) < CBe(B) < C(be(B) + P(A))
< C|Ble?™* + o(e%*)(|B| being the Lebesgue measure of B).
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In particular, since B(0,r) N D\D,, | 8, we have |B(0,7) N D\D,| } 0, and (5B.2) follows.
a

The proof of Proposition (5.1)(b) now proceeds as in §5A, with only minor modifica-
tions: We choose n so large that P%¥(S, < oo, X, ¢ Dy,) < 0?4 and then approximate

ge(z,y) by

Z P(|X; —Y¥| < € for some s,t at which X7 € z+ Q;5_))

zZEAGNDy, 4
lz—z|,|z—y|>2

for A, 6 and p sufficiently small. As long as we restrict z to be in D, 1, all the approxi-
mations of §5A carry over (now of course using the Green function of D rather than the
Newtonian one). For example, in the left hand side of (5A.5) we need to replace 7(e/6’)
by n(e/é',r/6') where

n(e,r) = Po(|X# — Y¥| < € for some s,t such that X¥ €
@1, and X* and Y* stay inside B(0,r) before times s and ¢
respectively)

and the particular choice of 7 is d(Dyp41,8D). Then, to approximate n(e/é’,r/6') by
n(e/6’) we need to choose é so small that r/§ > rq, where

n(e,r0) > (1 —0)n(e) ase | O.

§5C DCR%, d=14

In contrast to §5A and §5B, we must first spend some time deriving the order of
magnitude of g.. Once that is settled, we’ll prove a version of Lemmas (5A.1) and (5B.1)
suitable for dimension four, after which the argument settles into the pattern set in the
preceding two sections.

Let B = B(0,1). The following uses an argument of Erdds and Taylor (1960b) for the
lower bound, and one of Lawler (1982) for the upper.

(5C.1) Lemma. There are constants c, ¢’ such that if € is small and if |z|,|y| < 100 and
|z — y| > 1/100 then

¢ < (log1/e)Po(| X7 — Y}¥| < € for some s at which X7 € B) < ¢'.

Proof.
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Lower bound: Set 6(¢) = e(log1/¢)!/4 and let 8 < 1/2 remain to be chosen later.

Then
Po(|X7 — Y| < € for some s at which X* € B)

> > Po(X® and YV hit B(z, B¢))
zGAs(,) nB(0,1/2)

- > Py(X* and Y¥ hit both

5awEA5(e) nB(o,1/2)
2w

B(z,B¢) and B(w, f¢)).

Arguing as in Lemma (5A.1), the first sum is bounded below by c¢(8e/6(¢))* = ¢f* /
log(1/€), and the second is bounded above by

o(Be/5(€))® / / Go(2,2)Go(2, 2')?[Go(y, 2) + Goly, /)] d2'dz
B JB\B(0,5(c)/2)

< ¢(Be/b(e))®log(1/6(€)) < B8/ log(1/<).
The two constants ¢ may differ, but they don’t depend on g, so that choosing 8 small
enough yields the desired lower bound.

Upper bound: Let |y| = 1 and consider

o0
r, = / 150, (Y")G(0, ¥7") dt.
0
Then it is easily seen that

EoT, = / Go(0,2)Go(,2)dz = 2n%log r + O(1)
B(0,r)

Eorf = 2/ / Go(O,Z)Go(O, w)GO('y, z)Go(z,'w)d‘de
B(0,r) /B(0,r)

= (272 logr)? + O(logr) as r — oo.
Thus Var(T',) = Ologr). Let
®(e) = U{B(2,2¢/3); Y? hits B(z,¢/3)N B,z € Ag/s}

Let o be the first time X* hits ®(¢), and if it does so in B(z,2¢/3), let 7 be the first time
Y'Y hits B(z,&/3). Then

oo
/ Golz, 2)Go(y, 2)dz = Fo| / 15(¥#)Go(z, ) dt]
B (o}
o0
~ Bolo <o, [ 15()Go(Xz, ¥)dd]
0
T2
> 2 (log1/€)[P5*Y (0 < o0)
[e.0] 7l_2

— Po(o < oo,/ 15(Y)Go(X3,YY)dt < 2 log 1/€)].

: T
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Thus
Po(| X3 - YY| < e for some s,t at which YY € B)
< P§Y(o < o0)

oo 2
< cllog1/e]™ + Po(o < oo,/ 15(Y¥)Go(XZ,YY)dt < g log 1/¢).

T

The latter probability is majorized by
(5C.2) O+ ). [Po(X® hits B(z,2¢/3),Y" hits B(z,¢/3)]-

z€A,/3NB(0,2)
lz—z|,{y—=z|>2e

(o0}
sup Po(/ 15(Y¥)Go(e', Y¥')dt < clog1/€)].
z'€8B(z,2¢/3) 0

y'€aB(z,e/3)

As usual, we must worry about the boundary. Since the first factor in the above sum is
O(e*), we may peel off a strip about the boundary, of thickness 2¢1/2, and get that (5C.2)
is
oo
0(/2) + O(Pof / Lp (0172 (Y2 ) Go(#, Y )dt < clog1/€))
0
where z/ and y’ are fixed, |z’ — 3’| = €. By scaling, this is

o(e'/?) + O(Po(/ 1p(0,e-1/2)(Y7)Go(0,Y7")dt < clog(e™*/%))),
0

and by Chebyshev’s inequality and our computations involving T',, this is O(1/log(1/¢))
as required. O

For T open write G for the Green function of I', and m for the time of first exit from
I'. We take the convention that Gp(,-) vanishes off T' x I'. Let B’ = B(0,2), B = B(0,4)
and set n = inf{Gp(z,2); z,z € B'} > 0.

(5C.3) Lemma. Given 8 > O there is an a = a(f) > 0 such that if T is an open subset of

B, u is a probability measure on B n T, and Gpu(z) < n/2 on a subset of B’ of Lebesgue
measure at least 0 then
P¥(m < 78) > a.

Proof. Let A be a Borel subset of B. Then

[ Gouteyiz = / (] 6o 2)ds)u(ds)
= P / A(X)d)

_ P /0 14(X2)dt) + P / 14(X:)dt)
:/AGpu(z)dz+/AG'BV(z)dz,
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where
v(dz) = P§(rr < 78, X € dx).

Thus, Gpu(z) = Gru(z) + Gpr(z). For dz — a.a. z € B (recall our convention that
Gru = 0 off T'). In particular,

Gpr(z) > n— Gru(z)

for dz — a.a. z € B'. By our hypothesis on p, we therefore have the Ggv > /2 on a set
of Lebesgue measure at least §. Set

c= sup/ Gg(z,z)dz < co.
z€B J B
Then
o] > / Gav(2)dz > nd)2.
B
Taking o to be n8/2¢, we get |v| > a, as required. O

Now let D be a domain in R* with [ p G(z,2)G(y,2)dz < oo for some (and hence
every) £ # y. Aside from a new argument in part (a), the following result amounts to

reproving Lemmas (5A.1) and (5B.1). Recall that we take relatively compact domains D,,
with D,, € Dy, 4, and D,, T D.

(56C.4) Lemma

(a) lim,_, limsup, |, (log1/e) P(|XZ - Y| < € for some s,t at which |X%| > r) = 0.
(b) For each x # y, (log1/€)g:(z,y) is bounded in e, above and away from zero.

(c) There is a constant ¢ such that for each compact K C D,

limsup(log 1/e) P*¥(S, < 00,Xg, € K) < c/ G(z, 2)G(y, 2)d-=.
€]0 . K

(d) For each p >0,

P(diameter {z;2 = X7 for some s,|z— Y| < e for some t} > p)
= 0(1/(log1/€)) ase | 0.

(¢) lim, o limsup, |, (log1/e)P*¥ (S, < 00, X3, ¢ Dy) = 0.
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Proof.

P(|X? — Y| < € for some s,t at which |X7| > r)
< Z P(|X? —YY| < € for some s,t at which X; € B(z,1))

ZE€EA)
|z|>r/2

< ¢(log1/e)™t Z P(X*® and YV hit B(z,2))

zEA)
|zl>r/2

the latter by Lemma (5C.1) and the strong Markov properties of X® and Y'?, say at
the first times they hit B(z,1) and B(z,2) respectively. Thus it will suffice to show
that

Y P(X® and Y hit B(z,2)) < co.

z€A1 .

Let 1 be the constant of (5C.3). If 4 and v are measures on B(z,2) N D, and
/ GB(2,4)nDH(2')GB(z,4)npV(2')d2z' < n?/8
(z4+Q1)

(with the convention of (5C.3), that Gru = 0 off T') then at least one of Gp(;4)nDi
or Gp(z,4)npV is less than g /2 on a set of 2/ € z+ Q; of Lebesgue measure bigger
than 6§ = 1/4. Thus by Lemma (5C.3),

P§' (X leaves D before it leaves B(2,4)) > a or
PY (Y leaves D before it leaves B(z,4)) > a.
If we condition X* and YV to hit B(z,2) before leaving D, and take ¢ and v to be

their respective hitting distributions, then we see that for each z € A, at least one of the
following holds: ’

Jerannp G(2:2)G(y,2)dz' > % P(X* and Y hit B(z,2));
P(X?” leaves D in B(z,4)) > aP(X?® hits B(z,2));
P(YY leaves D in B(z,4)) > aP(Y¥ hits B(z,2)).

Let I, II, III respectively be the sets of z € A; such that these conditions hold. Then

Y P(X® and Y hit B(z,2))

Z€EA;
<) P(X® and YV hit B(z,2)) + Y_ P(X® hits B(2,2))
z€l zeIll
+ Y P(Y¥ hits B(z,2))
zelIl

< %/ G(z,2")G(y,2")dz’' +2¢' e < o0,
n"Jp
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where ¢/ = #{z € Ay; B(z,4) intersects B(0,4)}.

(b) The upper bound in (b) has essentially just been shown. The lower bound follows
from the argument of Lemma (5C.1), with trivial modifications.

(c) For 0 < & < d(K,8D)/2, let k = {z € As; 2+ Q5 N K #0}. Then

P=¥(S, < 00,Xs, € K) <Y P(|XZ — Y| < € for some s at which X? € B(2,6))

ZEK

< ¢(log 6/¢) 1 ZP(X” and YV hit B(z, 26))

ZEK

by Lemma (5C.1) and the strong Markov property (as in part (a)). The conclusion
of (c) now follows as in Lemma (5A.1), letting € — 0 and then § — 0.

(d) For e small, the probability in question is bounded by

Z P(|X7 — Y| < € for some s,t at which X7 € B(z,p')
zHwEA
]z—w)>;p'

and for some s,t at which X% € B(w,p"))

where p’ = p/5 and we handle this as above.

(e) The argument is the same as that in Lemma (5B.1), except that instead of appealing
to (b) of Lemma (5A.1), we use part (a) of the present lemma. O

At this point we have obtained four dimensional versions of all the lemmas used in
the proof of (a) and (b) of Proposition (5.1) and Lemma (5.2). It should be clear that (c)
now follows as well, with only minor modifications of the old arguments.

§6 Remarks

In dimension four, there are several forms of our condition
(6.1) / G(z,2)G(y, z)dz < oo.
It is clearly equivalent to having
(6.2) yE%¢(2) < o
~ (and we used this in §3). Moreover it is not hard to see that it is equivalent to
¢(X) pe(Y)
(6.3) Ez’y[/ / 15(0,e) (Xs — Yi)dsdt] < oo
0 0

26



for some € > O (in one direction, use the argument of (a) of Lemma (5C.1)). We have
another proof of the dimension four result, that involves looking at X only at the times

o1 = inf{s > 0; |X,| € {2*; k > 0}},...
On+1 = inf{s > op; |X,| € {Zk; k> 0} | X, |}

(and similarly for Y). This argument shows that for m; = #{n; | X, | = 2*}, the above
conditions are equivalent to

oo

(6.4) Z E?*[m2] < oco.
k=1

An interesting condition that is not equivalent is that ¢(X*) < oo a.s.. Since Po(| X7 —
Y| < e for some s,t = 1) (see for example LeGall (1986a)), and (6.1) implies that
ge(z,y) — 0 as € | 0, this condition is implied by any of the above (and moreover is
equivalent to g.(z,y) — 0). The converse is not true; for example, consider a domain
obtained by taking R* and deleting concentric half-spheres whose radii increase so rapidly
that X and Y expect to spend a long time within 1/n of each other during a transition
between the nt* radii.

In fact, in terms of the my, the condition that ¢(X*) < oo a.s. amounts to having only
E*my — 0 as k — oo. In this case, the decay rate of g.(z,y) need not be 1/log(1/¢), as in
general liminf(log 1/€)g.(z,y) > ¢ [ G(z,2)G(y, z)dz. Thus another condition equivalent
to (6.1) is that

(6.5) ge(z,y) = O(1/log(1/€)) for each z,y.

Moreover, if (6.1) does hot hold and we condition on S, < oo, then | X, | gets increasingly
large as € | 0. That is, the conditioning forces the paths to leave compact sets before dying.
Since we worked hard in §5 to control exactly this kind of behaviour, it is reassuring that
this is where the result breaks down in general.

§7 Appendix: Weak Convergence of h-transforms

We turn to the weak convergence results needed in the foregoing. Let D C R¢ be a
domain with a Green function G(z,y). Recall that 2 is the Skorokhod space based on
DuU{A}, where D = DU{d} is the one-point compactification of D and A is an additional
isolated point. Weak convergence is that of probabilities on {2 or {2 X (1.

In the following result there are two obstacles; ¢ — O (hypothesized away by (7.2)), and
oscillatory discontinuities at ¢. The latter is eliminated by our choice of compactification
[we haven’t tried to verify the result for the Martin compactification, but it certainly fails
for the Euclidean one (viz. Littlewood’s crocodile)].

(7.1) Lemma. Let (hy) be strictly positive and superharmonic on D, and let x € D. Then
n, P% are tight provided h,(z) < coVn, and

(7.2) inf{hn(y)/hn(x); y € B(z, 6)} —1
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untformly inn as 6 | 0.

Proof. Let p be a metric on D U {A}, compatible with its topology, and satisfying
p(y,2) > |y — 2| for y,z € D. Write |A —y| = oo for y € D. Fix ¢, and R. For 6§ > 0 let
K = {y; p(y,8) > €}, and define

7 = inf{¢; | X, — X;| > € for some s € (t — §,t)} A R,
' =inf{t >7; X; € K} A\ R.

If 7 > 6, we may divide [0,7) into equal intervals of length > 6/2 on which the Euclidean
increments of X are < . By enlarging the last such interval, and only requiring the p-
increments to be < 2¢, the same is true on [0,7’) (now assuming only that 7’ > §). Thus
we will have tightness (see Billingsley (1968) and Lindvall (1973)) provided the following
hold (again, for z, €, R fixed):

(7.3) r, P*(r' < ¢ AR) — 0 uniformly in n, as § | O

(7.4) h,P(¢ < 6) — O uniformly in n, as § | O.
To show (7.3), let A, be the réduite of h,, on K. Without loss of generality we assume
z € K. We have that

ha P?(r < ¢ AR) = E*[hn(Xr)/hn(z), 7' < ¢ AR]
= E®[hp(Xr)[hy(2), 7' < ¢ A B]
= E*[RL,(X,)/Ry(2), T < ¢ AR].

Since P®(r < ¢ A R) — 0, we need only show that the h}(X;)/h} (z) are uniformly
integrable (in n,d).

First let d > 3. We build up to this by noting that if U is uniform on the unit sphere
in R?, the following are uniformly integrable:

U — 2|2, 2 € B(0,2),

[approximate dB(0,1) by a disk, to get

E(U — 2|, |U — 2|42 >n] < e / W7D Ly - a2 > eny dy
Bd-1(0,1)

which — 0 as n — 0|
|z 41U — 2|72 )|z — 2|7 2z ¢ Rd and r > 0,
[translation, scaling, and then boundedness as |z| — oo]
X2 — 2|2 )|z — 2|74, 2 €R% and £ > 0, under P
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[condition on | XZ — z|, as X7 is spherically symmetric about z under P§]
G(X?,2z)/G(z,2), z€ K and § > 0, under P®
[as G(z,2) > ¢|z — 2|~(4=2) for z € K, and G(y,2) < |y — 2|~(¢=?) for y,z € D], and
k., (XZ)/h,(z), n > 0 and € > 0, under P*

[as A, (y)/hy(z) = [x G(y,2)/G(z,2)v(dz) for some probability 1/], showing (7.3). The
same argument works for d = 2, replacing |y — z|~(4=2) by k + log* (1/|y — 2|) where k is
so large that this dominates G(y,z) forye D,ze€ K.

To show (7.4), let o, = inf{¢; | X; — z| > r}. It is enough to show that
(7.5) h, P%(0r < ¢) — 1 uniformly inn as r | O,

and this follows easily from (7.2) since

roP%(0r < ¢) = ——=E*[hn(Xs,)]- |

n()

(7.6) Proposition. Let h,, and h be strictly positive and superharmonic on D, with h, — h
a.e., and hy(z) — h(z) < oo. Then p_ P® — , P® weakly.

Proof. Let fzn be the superharmonic regularization of inf{h,,; m > n}. Then lim izn
= lim h,, = h ae, so since the h,, are increasing, in fact h, — h everywhere. Since h,, is
Isc. Thus for every € > 0 and for every ng, we may find § > 0 such that

ho(y) > ﬁn(y) > hpo(z) — € for each y € b(m,&) and n > ng.

since hy(z) — h(z), and i, (z) — h(z) (7.2) follows immediately, showing tightness.

Thus we need only show convergence of the finite dimensional distributions. Let
¢ € #. Then
v 5656 > 1] = E*[{hn(X:)/hn(2)].

Without loss of generality, £ < 1x(X;) for some compact K C D, so that it suffices to
show the uniform integrability of 1x(X;)h,(X:)/hn(z) in n (¢, K fixed). This follows as
in Lemma (7.1). O

Recall from §2 that the ‘paths’ of (two parameter) h-bitransforms U, : have the form

{ (w;’wtz)’ (s,t) €¢
(A,4), (s’t) ¢
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where ¢ C R? is a lower layer. We are interested in ‘limits’ with ¢ a rectangle [0,¢1) x
[0, ¢2), but we need to approach such objects by h-transforms with non-rectangular ¢. Our
approach will be to look at weak convergence (over 2 x ?) of the law of the pair ( KUY, R U?)
where LU} is the first component of rUs,0 and nUZ is the second component of rUo,t. We'll
do so under the condition that

(7.7) r PEY(UL # A, UZ # A but (s,t) € ¢) — 0 as n — oo, for each s,t > 0.

(7.8) Proposition. Let (hy),h be strictly positive biezcessive functions on Dx D. Let , U*Y
and RbU®Y be bitransforms of bi-Brownian motion by h,, and h respectively. Assume (7.7).
If hy = h a.e. and hy(z,y) — h(z,y) then the law of (r, U, r,U?) converges weakly to
that of (hUl, hUz).

Proof. For tightness, it suffices to show separately that the laws of , U! and , U2
are tight. Since they are (one parameter) transforms by h,(-,y) and h,(z,-), we need only
check (7.2) for these. But biexcessive functions are excessive (Avanissian (1961)) so as in
Proposition (7.6), in fact (7.2) holds for hy,(:,-) (which is even stronger).

Turning to the finite dimensional joint distributions, let o € #;, 7 € #t. Then

r EZY[o(UY)r(U?), U # AU # A
> h, E*¥[o(UN)r(U?), (s,t) € ¢]
> h E®¥[o(UY)r(U?), UL # A, U # A
— n PPY[UL # A UE # A but (s,t) & ¢
Moreover,
r, EZY[o(UY)r(U?), (s,t) € ¢]
= E*Y[o(X)7(Y)hn(Xs, Ys)/hn(z,¥)]

by definition. The integrand converges a.e. by assumption, and the appropriate tightness is
shown as before (using Avanissian’s theorem again). Combined with (7.7), this establishes
the result. O

Note that some ‘path’ condition such as (7.7) is required. In fact, though this need
not concern us here, simple examples show that A need not uniquely determine the law of
an h-bitransform. If the h,-bitransforms in question were known to have rectangular ¢’s
then it turns out their laws would be determined, but in this case (7.7) would be trivially
satisfied as well.
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