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1. INTRODUCTION

A common problem faced by an experimenter is one of comparing several
populations (processes, treatments). Suppose that there are k(> 2) popula-
tions Tyseersly and for each i, s is characterized by the value of a param-
eter of interest, say ei. The classical approach to this problem is to test
the homogeneity hypothesis Hozel = .. = ek. However, the classical tests
of homogeneity are inadequate in the sense that they do not answer a fre-
quently encountered experimenter's question, namely, how to identify the
"best'" population or how to select the more promising (worthwhile) subset of
the populations for further experimentation. These problems are known as
ranking and selection problems. The formulation of ranking and selection
procedures has been accomplished generally using either the indifference
zone approach (see Bechhofer (1954)) or the subset selection approach (see
Gupta (1956, 1965)). A discussion of their differences and various modifi-
cations that have taken place since then can be found in Gupta and
Panchapakesan (1979).

In many situations, an experimenter may have some prior information
about the parameters of interest, and he would like to use this information
to make an appropriate decision. In this sense, the classical ranking and
selection procedures may seem conservative if the prior information is not
taken into consideration. If the information at hand can be quantified into
a single prior distribution, one would like to apply a Bayes procedure since
it achieves the minimum of Bayes risks among a class of decision procedures.
Some contributions to ranking and selection problems using Bayesian approach
have been made by Deely and Gupta (1968), Bickel and Yahav (1977), Chernoff
and Yahav (1977), Goel and Rubin (1977), Gupta and Hsu (1978), Miescke
(1979), Gupta and Hsiao (1981), Gupta and Miescke (1984), Gutpa and Yang
(1985), and Berger and Deely (1986).

Now, :consider a situation in which one is repeatedly dealing with the
same selection problem independently. In such instances, it is reasonable
to formulate the component problem in the sequence as a Bayes decision prob-
lem with respect to an unknown prior distribution on the parameter space,
and then, use the accumulated observations to improve the decision at each
stage. This is the empirical Bayes approach due to Robbins (1956, 1964, and
1983). Empirical Bayes procedures have been derived for subset selection




goals by Deely (1965). Recently, Gupta and Hsiao (1983) and Gupta and
Liang (1984, 1986) have studied some selection problems using the empirical
Bayes approach. Many such empirical Bayes procedures have been shown to be
asymptotically optimal in the sense that the risk for the n-th decision
problem converges to the optimal Bayes risk which would have been obtained
if the prior distribution was fully known and the Bayes procedure with re-
spect to this prior distribution was used.

In the present paper, we describe selection and ranking procedures
using prior distributions or using the information contained in the past
data. Section 2 of this paper deals with the problem of selecting the
best population through Bayesian approach. An essentially complete class
is obtained for a class of reasonable loss functions. We also discuss
Bayes—P* selection procedures which are better than the classical subset
selection procedures in terms of the size of selected subset. In Section 3,
we set up a general formulation of the empirical Bayes framework for selec-
tion and ranking problems. Two selection problems dealing with binomial and
uniform populations are discussed in detail.

2. BAYESIAN APPROACH

2.1 Notations and Formulation of the Selection Problem

Let Bi € ¢ c R denote the unknown characteristic of interest associ-
ated with population Tes i=1,..,k. Let Xl,...,Xk be random variables re-
presenting the k populations Tos i=1,...,k, respectively, with Xk having

the probability density function (or probability frequency function in
discrete case) fi(xlei). In many cases, Xi is a sufficient statistic for

Oi. It is assumed that given 9 = (61,...,6k), % = (Xl""’xk) have a joint

k
probability demnsity function f(fl?) = izl fi(xilei), where § = (xl,...,xk).

Let © denote the ordered wvalues of Oi's and let W[i]

< 9 < ,.. <0
(1] — "[2] = — [k]
denote the unknown population associated with 6[_]. The population ﬂ[k]
i
will be called the best population. If there are more than one population

satisfying this condition, we arbitrarily tag one of them and call it the
best one. Also let Q = {e]ei € 0, i = 1,..,k} denote the parameter space

and let G(+) denote a prior distribution on 6 over Q.

Let § be the action space consisting of all the Zk — 1 nonempty subsets
of the set {1,...,k}. When action S is taken, we mean that population T is

included in the selected subset if i € S. For each 6 € Q@ and S €4, let
L(8,8) denote the loss incurred when 6 is the true state of nature and the

~

acfion S is taken. A decision procedure d is defined to be a mapping from
% * ¢ into [0,1], where % is the sample space of X = (Xl,...,Xk).

Let D be the set of all decision procedures d(x,S). For each d € D,

let B(d,G) denote the associated Bayes risk. Then, B(G) = inf B(d,G) is the
' deD
minimum Bayes risk. An optimal decision procedure, denoted by dG’ is ob- .

tained if dG has the property that

(2.1) B(dG,G) = B(G).




Such a procedure is called Bayes with respect to G. Under some regularity
conditions,

(2.2)  B(d,6) = [, ] d(x,8) [, L(8,s) £(x|0)dG(8)dx.

x se o -
Now let
(2.3) r.(x,8) = fQ L(8,S) £(x|6)dG(e),
(2.4) AG(X) = {8 G,#[rG(x,S) = min rG(x,S')}.

s' e€d
Then, a sufficient condition for (2.1) is that dG satisfies

(2.5) Y d (x,8) = 1.
S € AG_(X) ~

2.2 An Essentially Complete Class of Decision Procedures

In this subsection, we consider a class of loss functions possessing
the following properties:

Let H denote the group of all permutations of the components of a
k~component vector.

Definition 2.1: A loss function L has property T if
(a) L(6,S) = L(h6,hS) for all 8 € Q, S €4 and h € H, and

(b) L(6,8") < L(6,S8) if the following holds for each pair (i,j) with

9119j= igS, j€8S and S'=( - {i}) y {j}.

The property (a) assures the invariance under permutation and property
(b) assures the monotonicity of the loss function. In many situations, a
loss function satisfying these assumptions seems quite natural.

We now let X(l) j_x(z) < een j_x(k) denote the ordered observations.

Here the subscript (i) can be viewed as the (unknown) index of the popula-
tion associated with the observation X(i)' For each j =1, ..., k, let

Sj = {(K),eee,(k - j+ 1)}, and the remaining subsets S, be associated one-

to-one with j = k + l,...,2k - 1, arbitrarily. Also, let}dm = {sed|s| =

k
m}, m=1,..,k, and D, = {d € pD| )} d(x,S,) =1 for all x € %!}.
j=1 7 -

Theorem 2.1: Suppose that fi(xilei) = f(xi|ei), i=1,...,k, where the
pdf f(xle) possesses the monotone likelihood ratio (MLR) property, and the
prior distribution G is symmetric on . Also, suppose that the loss func~= ..
tion has property T. Then,

(a) for eachm = 1,...,k, rG(x,Sm) i_rG(x,S) for all S € 4
X €%, and

k-m+1°

(b) Dl is an essentially complete class in D.



Proof: The proof for part (a) is analogous to that of Theorem 3.3 of
Gupta and Yang (1985). For part (b), let d be any decision procedure in D.
Consider the decision procedure d* defined as: for x € %,

d*(x,8 ) = ) d(x,8), m = 1,...,k;
=" sed -
k-mt+1

d*(x,8) =0, S # Sm’ m=1,...,k.

Then, d* € Dl' Also, by part (a) and (2.2), one can see that B(d*,G) <
B(d,G), which completes the proof.

Let Aé(f) = {Sjll <3j <k, rG(f’Sj) = m%n rG(f’Si) . Then, under
1l <ic<k
the condition of Theorem 2.1, any Bayes procedure dG satisfies
z dG(x,S,) = 1 for all x € %.
s, €80 T ) -

2.3 Bayes-P* Selection Procedures

A selectlon procedure w (0 2.20,%, ) is defined to be a mapping from %
1 k

to [0, l] , where w (x) % - [0,1] is the probability that m is included in

the selected subset when X = x is observed. A correct selection (CS) is de-

~ -~

fined to be the selection of any subset that includes the best population.

In the decision-theoretic approach, a Bayes decision (selec¢tion) pro~-
cedure always provides a decision with the minimum risk under a certain loss.
However, dn practice, one always has the difficulty in figuring out
what the loss may be and the Bayesian result is quite sensitive to the loss
used; in this sense, a Bayes procedure does not mean that its quality is
good enough to pass a certain level. For guaranteeing the quality of a
decision (selection) procedure one would like to have a "quality control"
criterion about the class of all possible decision (selection) procedures.
That is, any procedure with lower quality will be removed, even though it
might be the cheapest one under some losses. Analogous to the classical
subset selection approach, Gupta and Yang (1985) set up a control criterion
using the Bayesian approach. Let

(2.6) pi(X) = P('rri is the best [X = x) = P(ei is the largest ]X = x)

~ ~ ~

be the posterior probability that population L is the best population when

X = x is observed. Then, for selection procedure y, the posterior probabil-

~ ~

ity of a correct selection given X = x is

~ ~

S , k
(2.7) P(CS|y,X = x) = ) ¢, (x)p. (x)
o~ ~ . il
i=1
Definition 2.2: Given a number P%, k_l < P* < 1, and a prior G on %,
we say a selection procedure w satlsfles the PP#*-condition (posterior P#*-
condition) if

(a) wi(x) = 1 for at least some i, 1 < i < k, and

(b) P(CS|y,X = x) > P* for all x € X.

R L e



k
Note that Z Py (x) = 1 for all x € %; hence this kind of selection
i=1 ~ ~
procedures always exist. We let C = C(P%) be the class of all selection
procedures satisfying the PP*-conditiomn.

\
Let p[l](f) < ... f-p[k](f) be the ordered pi(x) s and let ﬂ(i) be the

population associated with p[i](x), i=1,...,k. Then a selection procedure

¢ can be completely specified by {w(l)""’w(k)}’ where

(2.8) (x) = P(m is selected Iw,X =x}, i =1,...,k.

Vi)t (i)

For a given number P¥%, k-l < P*¥ < 1, and an observation X = x, let

j = max{m| z p[i](x) > P*}, Gupta and Yang (1985) proposed a selection

procedure wG = (wi,...,wﬁ) defined as below:

w(k)(x) =1, and for 1 <i <k -1,
1 if 1 > j,
w( )(X) A if i = j,
0 if 1 < j,
where the constant A is determined so that
k
APr.(x) + ) p;_.(x) = Px,
[31°% m=3+1 [m]*2

It is clear that wG € C. In the following, optimality of this selec-

tion procedure is investigated.

Definition 2,3: A selection procedure y is called ordered if for
every x.e ZL, X X, < < xJ implies w (x) < w (x) It is called monotone or just
if for every i = 1,...,k, and X, ¥ € Z, w (x) < ¢ (y) whenever X < Yy

. >y, for an # i.
J __YJ y ]
Sufficient conditions for wG to be ordered and monotonme are given below:
Theorem 2.2: Let G(elx) be the posterior cdf of 6, given X x. Let
G(elx) be absolutely continuous and have the generallzed stochastlc increas-

ing property, that is:

=
'_.l

(1) G(?If) = Gi(6i|§), Gi(._f) = posterior cdf of Si.

i
(2) Gi(tlf) 2_Gj(t|§) for any t, whenever %, j_xj.

G .
Then, ¥ 1is ordered and monotone.

~




Gupta and Yang (1985) also investigated some optimal behavior of this
procedure through the decision-theoretic approach over a class of loss func-
tions.

Definition 2.4: A loss function L has proporty T' if
(a) L has property T, and
(b) L(8,S) f_L(G,S') if Sc S'.

Theorem 2.3: Under the assumption of Theorem 2.2, the selection pro-

cedure wG is Bayes in C provided that the loss function has property T'.

Gupta and Yang (1985) investigated the computation of pi(x) for the

"normal model" by using normal and non-informative priors. Berger and Deely
(1986) have comsidered another selection problem, and given a more detailed
discussion about the computation of pi(x) under several different priors.

3. EMPIRICAL BAYES APPROACH

In this section, we continue with the general setup of Section 2.
However, we assume only the existence of prior distribution G on Q, and the
form of G is unknown or partially known. In Section 3.1, we consider de-
cision procedures for general loss functions. In Sections 3.2 and 3.3,
empirical Bayes selection procedures are concerned.,

3.1 Formulation and Summary of the Empirical Bayes Selection Problems

For each i, i = 1,...,k, let X, 13 denote the random observation from ™
at stage j. Let Oi, denote the random characteristic of L at stage j.
Conditional on @ij = eij, X'jleij has the pdf (or pf in discrete case)
f,(xle..). Let X. (le,...,Xk,) and 8. = (61.,...,6kj). Suppose that

1ndependent observatlons X

l,...,Xn are avallable and e 1 < j < n, have the

same distribution G for all j, though Sj are not observable. We also let

X = (Xl,...,Xk) denote the present random observation.

~

Consider an empirical Bayes decision procedure dn' Let B(dn,G) be the

Bayes risk associated with the decision procedure dn' Then

B(d ,6) = [E | d_((x5 X;,...,X ),8)L(6,8)£(x|0)dxd6(0),
n 0 ¥s é.ﬂ L1 oy - o o~ -

where d ((x X X),8) (Ed (x 8)) is the probability of selecting the

Xipeeos X
subset S when (x; Xl,...,Xn) is observed and the expectation E is taken with

~ o~

respect to (X ,...,Xn) Note that B(dn,G) - B(G) > 0, since B(G) is the

minimum Bayes risk. This nonnegative difference may be used as a measure of
the optimality of the decision procedure dn'

Definition 3.1: A sequence of decision procedures {dn}:=l is said to be
asymptotically optimal relative to the prior distribution G if B(dn,G) -+ B(G)

as n > «,




Let L(6) = max lg(e,S)] and assume that f L(6)dG(8) < «, Following
~ Sed ~ -~ ~

Robbing (1964), one can see that a sufficient condition for the sequence
P

{dn} to be asymptotically optimal is that dn(x,S) - dG(x,S) for all x € %

and S € §, where " Lon means convergence in probability (with respect to
(Xl,...,X )).

Let G .be a distribution function on the parameter space {. Suppose Gn

is a functlon of (X X ) such that P{ lim G (e) = G(G) for every con-

XipeeesX
tinuous point 6 of G} = 1, where the probablllty is with respect to
(Xl,...,X ). Let .the loss function L(e S) and the density f(xle) be such
that L(G S)f(x|6) is bounded and continuous in 6 for every S € ¢/. Then

~ o~ o~

{dG } is asymptotically optimal with respect to G if f L(G)dG(e) < o,
n

where dG is a Bayes procedure with respect to the distribution Gn.
n

To find Gn’ we may assume G to be a member of some parametric family T
with unknown hyperparameters, say A = (X
}n B (Aln""’xkn
found such that Gn converges to G with probability omne. Note that Gn is

l,.‘.,kk). Suppose now an estimator

) depending on the previous observations (Xl,...,Xn) can be

also a member in I'. We then follow the typically Bayesian analysis and

derive the Bayes procedure dG with respect to the estimated prior distribu-
n

tion Gn. Then, according to the result of Deely (1965), the sequence of

empirical Bayes procedures {dG } is asymptotically optimal. This approach
. n

is referred to as parametric empirical Bayes. Deely (1965) has derived

the empirical Bayes procedures through the parametric empirical Bayes

approach in several special cases among which are (a) normal-normal,

(b) normal=-uniform, (c¢) binomial-beta, and (d) Poisson—gamma.

In another approach, called nonparametric empirical Bayes, one just
assumes that Sj, j =1,2,..., are independently and identically distributed;

however, the form of the prior distribution G on @ is completely unknown.

In this situation, one may represent the Bayes procedure in terms of the
unknown prior and then use the data to estimate the Bayes procedure directly.
This approach has been used by Van Ryzin and Susarla (1977), Gupta and Hsiao
(1983), and Gupta and Liang (1984, 1986), among others.

In the following sections, we consider some selection problems with
underlying populations having binomial or uniform distributions. We will

use the nonparametric empirical Bayes approach.

3.2 Empirical Bayes Procedures Related to Binomial Populations

In this section, two selection problems related to binomial populations
are discussed: selecting the best among k binomial populations and select-
ing populations better than a standard or a control. For each i, the obser-
vations Xi can be viewed as the number of successes among N independent

trials taken from T and the parameter ei as the probability of a success

for each trial in ﬂi.' Then_Xile'i has probability function'fi(xlei) =



(N\ 0% (1 - 6,)N—X, x=0,1,...,N. We let G,(*) denote the prior distri-
x i i K i

bution of 6., and assume that G(6) = NI G,(6.).
* ~ i=1 B

3.2.1 Selecting the Best Binomial Population. Gupta and Liang (1986)
considered the loss function

(3.1 L(?,{i}) = G[R] - ei

for the problem of selecting the largest binomial parameter e[k] among k

binomial populations.

1 1
Let £, (x) = (f) £, (x]0) d6,(8), W, (x) = g 6f, (x[0) dG,(0) and ¢ (%) =

Wi(x)/fi(x). Then, from (3.1), following a straightforward computation, a

randomized Bayes selection procedure, say wB = (w?,...,wi), is given below:

. s ™ ifiesm,
(3.2) wi(f) o otherwise,
where
(3.3) S(x) = {i| ¢ (x,) = max ¢ (x,)}.
- ivi 1<3<k

B
Here, wi(x) is the probability of selecting m; as the best population

given X = Xx.

Note that ¢&(X) is the Bayes estimator of the parameter Gi under the
squared error loss given Xi = X. One can see that qi(x) is increasing in

. B . .
x for 4 = 1,...,k and hence § is a monotone selection procedure.

Due to the surprising quirk that ¢&(x) cannot be consistently estimated

in the usual empirical Bayes sense (see Robbins (1964) and Samuel (1963)),
an idea of Robbins in setting up the empirical Bayes framework for binomial
populations is used below.

For each i, 1 = 1,...,k, at stage j, consider N + 1 independent trials
from M. Let Xi' and Yij’ respectively, stand for the number of successes

in the first N trials and the last trial. Let %j = ((Xij,Yij),...,(ij,ij))
denote the observations at the jth stage, j = 1l,...,n. We also let Xn+l =

X=X

l,...,Xk) denote the present observations.

By the monotonicity of the estimators ¢ (x), 1 i< k, in terms of the
Bayes risk, one can see that all monotone procedures form an essentially com-
plete class in the set of all selection procedures. In view of this fact,
it is reasonable to require that the appropriate empirical Bayes procedures



possess the above mentioned monotone property. For this purpose, we first
need to have some monotone empirical Bayes estimators for ¢i(x), 1l <ic<k.

For each x =0, 1,...,N, and n =1, 2,..., define

o -1
.Zl Iigy &gy) + 070

=l
[

(3.4) ‘fin(x)

I
=

Il ~11
<
—

(3.5) Win(x)

=]

+Y j=1,2,... Define

Also, let V, . X, . s
1] 1] 1]

(3.6) W, () = {21 E I V. )] A= E I, (X, )]}+n %
’ ‘in*® T [n(N + 1) =1 {x+I# ij ] MG j=1 v{x}( ij)] B

where a A b = min{a,b}. Let

(3.7) ¢3n(x) Win(X)/fin(X),

(3.8) ¢ =W (X (),

and for each 0 < x < N, define

t
max min {) e /(e -s+ 1},

(3.9) e (x)
0<s<x s<t<N ys=s

t .
max min {) win(y)/(t - s+ 1)}

(3.10) % (%)
in
0 <s<x s<t<N y=s

By (3.9) and (3.10), one can see that both ¢§n(x) and w*in(x) are in-
creasing in x. Gupta and Liang (1986) proposed win(x) (or w?n(x)) as an
estimator of ¢g(x). They also proposed two empirical Bayes selection pro-

cedures, say wg = (wfn""’wﬁn)’ and wn = (wln,...,wkn), which are given

below, respectively:

: : '[s*j(x)l'l if i € S*(x),
(3 ll lp* (X) = n - no~
-11) i~ 0 otherwise,
where
(3.12) S*(x) = {i[¢# (x,) = max % (x.)1,
n . in' i 1<j<k in i
s | 1fies
- n ., n.’?
(3.13) Y, (x) =
SR~ 0 otherwise,

where




(3.14) S (x) = {ile* (x)) = max o (x,)}
n . in i 1<j<k nj

It is easy to verify that w: and wn are both monotone selection procedures.
Without ambiguity, we still use B(y,G) to denote the Bayes risk associ-

ated with the selection procedure Y when G is the true prior distribution.

Gupta and Liang (1986) proved that the two sequences of selection pro-
cedures {w;} and {wn} have the following asymptotically optimal property:

B(YA,6) - B(I©,0) < 0(exp(-¢;m)),

B(_,6) - B(¥,6) < 0(exp(-c,n)),

for some positive constants ¢y and Cye

3.2.2 Selecting Populations Better Than A Control. Let eo € (0,1)

denote a control parameter. Population T is said to be good if ei 3_90

and bad if Gi < 60. Gupta and Liang (1984) considered the loss function

(3.15) L(8,8) = ) (6, - ©,)

b (0) + Y (6, - eo)x(

(e . )\’.
i¢s *

I
©,6.) 6,-1)

for the problem of selecting (excluding) all good (bad) populations. The
value of the control parameter eois either known or unknown. When eo is

unknown, a sample from the control population, say ﬂo, is needed. To be
congistent with the notation used in earlier sections, we assume 90 is known.

We note that Gupta and Liang (1984) have studied the case when eo is unknown.

For the loss function (3.15), a nonrandomized Bayes selection procedure

B - (aB B
a FEREREL N

) is given by

1 if ¢ (x.) >6,
(3.16) aﬁ(f) - { 171 0

.0 otherwise,

where a?(x) is the probability of selecting T as a good population given

. B . .
Note that o is also a monotone selection procedure. Hence, based on

the estimators vin(x) and w*n(x), two intuitive empirical Bayes procedures,

i -
r* = F3 * N = . il
say aX (aln,...,akn) and o (aln,...,akn) can be obtained where
1 if o* (X.) Z 8,
(3.17) a* (x) = ino L °
in' .
0 otherwise;



H

(3.18) ain(f) =

; *
1 if ¢in(xi) > 8.
0 otherwise.

As before, one can show that these two sequences of selection pro-

cedures {ag} and {an} have the following asymptotically optimal property:

B(gg,G) - B(%B,G) j_O(exp(-cBn)),

~ B
B(a_,6) - B(a,6) < 0(exp(-c,m)),
for some positive constants cq and Che

3.3 Empirical Bayes Procedures Related to Uniform Populations

In this section, we assume that the random variables Xi’ 1<1ic<k,
have uniform distributions U(0,0i), ei > 0 and unknown. The parameter space

is @ = {e|ei >0, 1 <i<k}. Itis also assumed that the prior distribu-

=N

tion G on  has the form G(8) = Gi(ei), where Gi(-) is a distribution

i=1

on (0,*), i =1,...,k.

Let eo > 0 be a known control parameter. Gupta and Hsiao (1983) con-~
sidered the problem of selecting populations better than the standard

using the loss function

(3.19) L(8,S)=L. ) (6,-6)I
. 1 igs i o)

where Li’ i=1, 2, are positive and known.

(eo,m)(ei) +L, iés 0, - ei)I(o,eo)(ei)’

Let mi(x) be the marginal pdf of Xi and Mi(x) be the marginal distribu-

tion of Xi' Then we have

(3.20) m, (x) f‘; % dG, (8) for x > 0,

(3.21) M G =[5 7% a6, (0)dt = xm (0) + G, (x).

t
Note that the marginal pdf mi(x) is continuous and decreasing in x.
: . B B B .
By a direct computation, a Bayes procedure y = (wl,...,wk) for this
selection problem is given by
1 if (Xi Z_GO) or (xi < 90 and AiG(xi)_i 0,
0 otherwise,

(3.22) ¥ 00 = {

where



(3.23) AiG(xi) = Lzmi(xi)(xi-eo)-+L2[Mi(60)-Mi(xi)]-FLl[l-Mi(po)].

Since mi(x), 1 < i <k are decreasing in x, one can see that AiG(x),
l i <k, are increasing in x for x <eo; and hence, the Bayes procedure

¢ has the monotone property.

To derive an empirical Bayes procedure, we first need to have some
estimators, say m, (x) and M (x), for m, (x) and M (x), respectively. Due

to the decrea31ng property of m, (x), we require that the estimators m, (x),

n=1, 2,..., possess the same property. Once an estimator min(x) is ob—
tained, we let

(3.24) M, () =[5 (dy,
(3.25) Ain(x) = Lzmin(x)'(x— eo)+L2[Min(eo) —Min(x)]+Ll[l—Min(60)].

Then, an empirical Bayes procedure w (wl ,...,wkn) can be given as
follows: n

(3.26)

o 1 if (xi 3_60) or (xi < 90 and Ain(xi) > 0),
otherwise.

This empirical Bayes procedure wn is a monotone procedure if m, (x),

1 <4i <k, are decreasing in x. We use the method of Grenander (1956) to
obtain such an estimator having the decreasing property.

Let X n < < Xn be the ordered observations of the

1) 2@ S 2

first n observations taken from ﬂi. Let Fin be the empirical distribution

X. . For each j, 1 < j <mn, let

based on X, 117 %0

F, (X%, ) -F, &3, )
(3.27) B, = min max —= i(t) in i)’
J s<j-1 t>j Xi(t) - Xi(s)

when x;‘(o) = 0, and define
0 for x < 0,
(3.28) min(x) = Bij for X i(j- l) f-Xg(j)’
10 for x > xi(n)'

From (3.27) and (3.28), one can see that the estimator min(x) is
decreasing in x. Thus, the empirical Bayes procedures wn defined by

(3.24 =~ 3.28) is a monotone procedure. It is known that both estimators
Min(x) and min(x) have strong consistency property. Hence, Ain(x) is a

strongly consistent estimator of A,G(x). Then by Theorem 2.1 of Gupta and
Hsiao (1983), the sequence of empirical Bayes procedures {w } is asymptotl-

cally optimal provided fO edG (8) < » for each 1 = 1,...,k.
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