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ABSTRACT

Let F be a life distribution function (d.f.) with density f and failure rate r. It is
assumed that f is the first part of a “bath-tub” model, that is, r(t) is nonincreasing for
t < 7 and is constant for ¢ > 7.

In this paper the problem of estimating the change point or threshold 7 has been
considered. Two estimates for 7 have been proposed and their consistency have been
proved.

Nguyen, Rogers and Walker [1984] considered a specific parametric case where, with
I(A) denoting the indicator function of 4, r(t) = a I (0 < ¢t < 7)+b I(t > 7), and
proposed a consistent estimate. We have obtained the asymptotic distribution of their
estimate using a new method which may have applications to other problems. We also
propose a maximum likelihood estimate restricted to lie in a suitable compact set.

We report some simulations comparing the performance of these four estimates.

INTRODUCTION

In reliability theory a widely accepted procedure is to apply “burn-in” techniques to
- screen out defective items and improve the lifetimes of remaining surviving units.

Formally, let Ty,T%,...,T, be a random sample from a lifetime distribution with d.f.
F(t) and density f(t). The hazard rate r(t) is defined as

r(¢) = f(t)/F(t) where F(t) = 1 — F(t).
We assume that r(t) is a truncated “bath-tub” model i.e.

r(t) =/\(t) if 0<t<r
= Ao if t>71 (1.1)

where A(t) is nonincreasing and A(r) > Ao with equality only if A(t) is strictly decreasing
in (1 — 6,7] for some § > 0. We wish to estimate the threshold 7. If one knew 7, items
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could be tested up to time 7 and only survivors sold. This would be one way of screening.
In our experience, screening in such situations is usually provided in a different way by
subjecting items to a shock, thermal or electrical, and selling only survivors.

In Section 2 we propose two estimates for 7 and prove their consistency.

It is of interest to study how our semiparametric estimates perform in specific para-
metric models. Nguyen et. al. [1984], hence forth abbreviated as NRW, have considered
such a model, namely,

r(t) =a I0<t<7)+bI(t>T) (1.2)

and proposed a consistent estimate for 7 (when a > b, (1.2) is a special case of (1.1)).
We have also introduced a restricted maximum likelihood estimate (m.l.e.) for purpose of
comparison.

We carried out some simulations in Section 4 for model (1.2) (with a > b) for various
values of the parameters a, b, and 7. When F(7) is small i.e. when change takes place early
in the lifetime our estimates of Section 2 perform well as compared to the NRW estimate
or the m.l.e. .

In Section 3 we have obtained the asymptotic distribution of NRW estimate of .
Our method for getting the asymptotic distribution would also apply to M-estimates with
kernels that do not satisfy the usual conditions of differentiability or monotonicity but
possess expectation having properties similar to those of the function X(-) of section 3. It
should also be observed that the rescallng technique used in our method is due to Prakasa
Rao ([1968], [1986]).

2. TWO NEW ESTIMATES OF 7

In our model it is reasonable to assume that
O0< F(r)<1. (2.1)

Moreover, an upper bound po to F(7) is assumed to be known, py < 1; this would be a
weak assumption in most practical situations.

Let Fy,(t) be the empirical d.f. of Ty, T5,..., T, and
Yn(t) = —log Fr(t), y(t) = — log F(t).

Let &, and ép denote p-th population and sample quantiles respectively.

Let p; be such that pg < p; < 1. Let k be the number of order statistics between
T((npo)) @nd T([np,]) and let

2 Tsy log Fi (T(3)) / (k + 1) — (X Ty /(k + 1)) (Clog Fa(T()) /(k + 1))
(TG /(k+1)) = (X T/ (k+1)2

and the summations range over ¢ = [npo] + 1 to ¢ = [np,].

Ao =
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Under (1.1) for ¢ > 7, log F(t) is linear in ¢ and :\_o is an ordinary least square estimate
of the slope A treating T{;) as independent and log Fy, (T(:)) as dependent variables. It is

well known (vide e.g. Serfling [1980] p. 59) that

VnSup,|Fu(t) — F(t)| = Op(1),

andforO0<p<1 .
V(& — &) = Op(1).
Using (2.2) it is easy to see that uniformly in t < €p, p < 1, we have
Vn(ya(t) — y(t)) = Op(1).
Now we claim that )
Vn(do — Xo) = Op(1).
Note that :\0 can be expressed as a continuous function of quantities of the form
n T(inoy 1) b(Fa(2), 2)dF, (2)
—_— z),z T
(k+ 1.) T(inpo1+1) " i

each of which can be handled using the following lemma and (2.5) can be proved.

(2.2)

(2.3)

(2.4)

(2.5)

Lemma: Let T;p, = &;+0p(n~1/2) § = 1,2 and let #(z,y) be such that for some M > 0

and for some 0 < 6; < 62 < 1
() |6(z1,9) — ¢(z2,9)| < Mlzy — 22| for all & <y < & and all §; < z1,75 < 6o,
(ii) #(z,y) is bounded in &; <y < &, 6; <z < 6,.

Then
T2n.

&2
8(Fa(2), 2)dFn(z) = /e H(F(2), 2)dF(z) + Op(n=*/2).

1n

The proof of the lemma is not hard and hence omitted.

Now we define our estimates of 7. Let h, = n~% and €n = c(log n)n"é‘

fr= Inf {t: yu(t + hn) — Yn(t) < hnho + €0}

and
o = Inf {t : log Fp(t) — log(l — po) < Ao(&py — t) + €n}-



To see the motivation for #; note that y,(t + hsn) — yn(t))/hn is an estimate of the
hazard rate r(t) at t. For each fixed t, we test Ho; : r(t) = Ao vs Hyz: r(t) > Ao, using
the acceptance region {yn(t+%n) — ¥n(t) < hndo+en}. We then estimate 7 as the smallest
¢ for which Ho; is accepted. Formally #; is as given above. Motivation of #, is similar.

Theorem 1: Let (1.1) and (2.1) hold. Then %, and 7, are consistent for .

Proof: Note that for sufficiently small € > 0 and for sufficiently large n, 7+h,+¢ < Epo-
Hence using (2.4)

Yn(T+e+hp) —yn(r+e)=y(r+e+ hn) —y(r +€) + Op(n"é')
= Xohn +Op(n~%) by (1.1), and by (2.5)
= Xohn + Op(n™%). (2.6)
Now note that
(Un (T + €+ ko) — yn(r + €) < Aohn + &)
= (1 <7 +e¢). (2.7)
Thus using (2.6) and (2.7) we have
Pty <7+¢)—> 1. (2.8)

Now for sufficiently small € > 0 we have 7 — & > 0, hence using (2.4), we have

Yn(t + hn) — yn(t) = log F(t) — log F(t + hs) + Op(n~F%)
uniformly in 0 <t <7 —¢
> hpX(z + hy) + Op(n~%
uniformly in 0<t<r—¢
> huAo + hnbe + Op(n~%)
uniformly in 0 <t <7 —¢
where & is such that A(1 — &/2) > Ao + 6
> hpdo + hube + Op(n~?)
uniformly in 0<¢t<r—¢ (2.9)
Hence
P(fy>r1r—¢)—1. (2.10)
The relations (2.8) and (2.10) prove the consistency of 7.

Now for sufficiently small € > 0, 7 + ¢ < §,, hence using (2.4), we have

log Fo (7 + €) — log(1 — po) = log F(r + €) — log(1 — po) + Op(n™%)
| = do(€po —7—¢) + Op(n™%), (by (2:5)).
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Also,
(log F (7 + €) — log(1 — po) < Ao(€po — 7 —€) +&n) = (2 < 7+ ¢).
Hence
P(#<7+€) > 1. (2.11)
Now, by (2.4), uniformly in0 < z < 7 — ¢,

log Fy,(z) — log(1 — po) = log F(z) — log(1 — po) + Op(n~*%)
6 1
N / " A(t)dt + Op(n~4)
z
> (épo — z)Xo + 6 + Op(n~%) for some 6 > 0.

Hence
P(ip >7—¢€) > 1. (2.12)

Consistency of 7; follows from (2.11) and (2.12).

3. A PARAMETRIC EXAMPLE AND SOME PARAMETRIC ESTIMATES
The density specified by (1.2) has the form

f(t) = aexp(—at)I(0 < t < 7)
+bexp(—ar —b(t —1))I(¢ > 1) (3.1)

which is p.d.f. for (a,b,7),0<a,0<b,0< 7. (If a > b, this is a special case of (1.1) but
we will not assume this now.) If a = b or 7 = 0 we have identifiability problems.

Note that 7 is a change point not in the usual sense (e.g. Hinkley [1970]) where one

has a sequence of parameters §; which change from one value 0o for t < 7 to another value
0; fort > .

Note that the density in (3.1) can be written as a mixture of a right truncated ex-
ponential and an untruncated exponential with the mixing proportion depending on the
parameters a and 7.

Let t(1) <tz) <... < t(n) be the ordered sample. If one sets any arbitrary value to
the parameter “a” and sets b = 1 /(t(n) — 7) where t(n_;) < 7 < t(n), then the likelihood

at a, I;, 7 may be made as large as we please making 7 as close to t(n) as needed. One may
therefore say that in a sense a maximum likelihood estimate of 7 is 7 = t(n)- Obviously
t(n) is not consistent.

If one chooses a compact set of (a,b,7)’s as the parameter space and imposes identi-
fiability conditions like 7 > §; > 0, |@ — b] > 62 > 0 then Wald’s general result (vide Wald
[1949]) implies that m.Le. # is consistent. Since 7 is a point of discontinuity of the density,
the general theory of Chernoff and Rubin [1956] ensures that |7 — 7| is in fact Op(n~1)
(better than usual Op(n~—%)).



Either not being aware of the above result or because they do not want to impose any
conditions on the parameter space, NRW proposed a new estimate 73 of . Using the n
observations ty,...,t, they construct a kernel X, (t) such that the solution of X,(t) =0
provides a consistent estimate of 7. The construction of X, (t) is ingenious but apart from
providing a consistent estimate the kernel does not seem to have any attractive properties.
Existence of a consistent solution is a consequence of the fact that

X (8) 255X (1)

where X(¢) is a non-stochastic function, X(r) = 0 and X(¢) is monotone in a neighborhood
of 7. They show that X,(t) = 0 has a “consistent” solution 73 which is their estimate.
Since X, (t) is neither monotone nor sufficiently smooth (e.g., not differentiable at T), it is
hard to get the asymptotic distribution of /n(s — r). In fact NRW fail to find it.

Now we derive the limiting distribution of #3. Let T be a r.v. having density, f(2) of
(3.1).

Let
B]_ (T, t) = T,

By(T,t) = I(T > t),
Bs(T,t) =TI(T > t),
B4(T,t) = T%I(T > t).

and
'B = (BI)BZ, B3, -B4)-

Let Ty,...,T, be i.i.d. with density f(t) and
Bi(t) =n"1) B;(Ti;,t) j=1,...,4,
1=1

H(B()) = (Ba(t)/Ba(t) — B3(t)/B3(t))* (Ba(t) — Ba(t) log Ba(t) — 1)

Let
X.(0) =0,

Xn(T(,-)) =H(E(T(,-))), t=1,...,n—1
X.(t) = Xn(T(n_l)), fort > T(n-1)
and X,(-) at other points be defined by linear interpolation.

Let 73 be defined formally as follows. Choose a \/n-consistent estimate 7, of 7 and let
73 = zero of X, (t) nearest to .. Fix a neighborhood [r1,72] of 7 and consider

Yo(t) = vn(Xa(t) - X(@), n <t<m

where

X(t) = H(p(?), p(t) = E(B(-1)).



It can be checked from the appendix that

§) X(r) =0,

(ii) the derivatives X(t) and X (t) exist for ¢t > r and ¢t < 7 and are continuous, (3.2)
(iii) X(r+) and X(r—) exist and are of the same sign (vide Appendix).

It can be checked using estimates like in (13.6) of Billingsley [1968, p. 104] and bounds on
the derivatives of H, that

Ya(t) — vn(H(B(t)) — X(t)) = 0p(1).

From this one checks via the delta method that the finite dimensional distributions of
Yn() converge to a multivariate normal distribution. Tightness is proved by checking a

condition analogous to (13.17) of Billingsley [1968, p. 106]. From these considerations it
follows that

Ya()BY ()
where Y'(-) is a zero mean Gaussian process.

Consider now a rescaled process in C(—oo, oo) (with the topology of uniform conver-
gence on compacts. For tightness in C'(—o00,0), see Sen [1981]). Let

Zn(h) =Yo(r+n"%h) if |k| <logn
=Yo(r+n"3logn) if h>logn
=Ya(r—n"%tlogn) if h<-—logn.

Then

Za()32(),
where

Z(:)=Y(7). (3.3)
Now let

Wo(h) = /7 Xu(r + hn~%) if |h|<logn
=yn Xp(r+n"%logn) if h>logn
=y Xu(r—n~%logn) if h<—logn. (3.4)

Then using (3.2), (3.3), and (3.4) it is easy to see that
Wa()2A(),
where A(-) is a Gaussian process on C(—o00,00) with the representation
Ah) =Y(r)+hX(r+) if k>0 (3.5)
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=Y(r) —hX(r=), if h<O

and

Let, for f € C(—o0, ),
A1(f) =Sup{t : f(t) = 0},
Ax(f) = Inf{t : f(t) = 0},

if f has at least one zero and A;(f) and A3(f) equal to a constant, say, ¢ otherwise.
Note that A; and A, are measurable and continuous on a set which contains A(-) with
probability one, hence

(A1(Wn) — A2(Wa)) S (41 (4) — 42(4)) (3-6)

and A;(W,)5 4;(A) for i = 1,2. Using (8.2) and (3.5) it is easy to see that (A;(4)—A3(4))
is degenerate at zero, hence we have w.p. — 1

Al(Wn) 2 \/ﬁ(’f';; - T) 2 Az(Wn). (37)

Thus /n(fs — r) has split normal distribution of A;(A4) (or of A3(A)). It is easy to see
that w.p.1, and 7 = 1,2 :

A;(4) = ;{?;(_3 if Y(r) <0and X(r+) >0
orif Y(r)>0and X(r+) <0
= ;(](:_(_T; if Y(r) > 0and X(r—) >0

or if Y(r) <0 and X(r—) < 0. (3.8)
Hence d.f. of \/n(#s — 7) converges weakly to G(t) where for ¢ > 0
G(~t) = &(~t|X(r-)| / V(r)),
1-G(t) = @(—t|X(r+)| / V(r),
and
V2(r) = Var(¥(r))

0H  OH
=Y > 94 5 lur 3m-lucn)- (3.9)
Lo L 3B, L) 35;

It can be shown that V2(r) > 0. See appendix for further details. This completes the
derivation of limiting distribution of 73.



For simulations, we also have compared #4 which is the m.l.e. with parameter space
r< 61, la—b| < 6 > 0.

Estimates of a and b and their limiting distributions: For each 7 > 0, formal differen-
tiation of the likelihood function w.r.t. a and b yields &(r) and b(r), one can plug in an

estimate of 7 say 73 and get & and b the estimates of a and b respectively, it can be seen
(vide NRW) that

&= (1—Ba(fs))/(B1(#s) — Bs(#s) + 7sB2(s))
= H1(B, 13),
say, and .
= Ba(%3)/(Bs(#3) — 73 Ba(73)).

The following i is the sketch of the derivation of the limiting distribution of @. Limiting
distribution of b can be handled in a similar manner.

Using é6-method we have

n%(a—a) = n¥ (H, (E(?s) 73) — Hl(p,('r) 7))

W

= nt Y (Bilhs) — palr) o ( s+ (s - N2 4 oy()
i=1 b
=1k Y (Bilts) - wilis) aﬁ;)
3
= Wan(r) + Qin(hn) — Q14 (0) + e(r)hn + 05(1), (3.10)
where .
hn =n3%(f5 — 1),
3
Wanlt) =k 3 (Bilt) = () gy
3
Qin(h) = n# S (Bilr +n k) — pelr + nth)) aﬁ;)
i=1
and s
0H, allft
o(r) = Z opi(r) a'r

From (3.6), (3.7) and the remark following (3.6), it has been proved earlier that

Vn(fs — 1) — 4, (Wa ()56,



where § is the measure degenerate at zero. This implies

\/T_I,-(f'g; - T) — Al(Wn())—p>0
It follows that
e(r)hn = A1(Wa())e(7) + 0p(1),
and using Theorem 8.2 of Billingsly [1968, p. 55] we have

SUD|hi<tog nl Q1n (k) — 212 (0)] B 0. (3.11)

Thus .
n} (& - a) = Wan(r) + o(r) 41 (Wa (")) + 0p(1) (3.12)

It is easy to check by the delta method that

(Wan(r), vn(H (B(r)))) (X, Y)

where (X,Y) has a bivariate normal distribution with mean zero and easily computable
dispersion matrix. We may take Y to be equal to Y (r) = A(0) without loss of gener-
ality; define A(-) as before. We first note that (Wan(7),Wy()) is a sequence of random
variables taking values in R X C(—o0,00), equipped with the product topology. Tight-
ness follows from the tightness of the marginal distribution of W, (r) and W, (). It is
also easy to see that the joint distribution of W3, (7) and W, (T1),...,Wr(tx) converge to
that of (X, A(t1),...,A(tx)). Since these finite dimensional distributions determine the
distribution on R x C(—00,00), it follows from Prohorov’s theorem that

(Wan(r), Wa(-))>(X, A()). (3.13)

It now follows from (3.8), (3.12) and (3.13) that 1/n(@ — a) converges in distribution to
X +¢(r)A1(A(")-
_ The limiting.distribution can be calculated from bivariate normal tables. For example
if X(r4) > 0 > X(r—), then for any real “d”,
lim P{y/n(& —a) < d} = P{X —¢(r)Y(7)/X(r+) < d, Y(r) > 0}
+ P{X — ¢(r)Y (r)/X(r—) < d, Y(r) < 0}.

In case 73 is replaced by 74 in the estimate for &, then (3.10) and (3.11) continue to
hold and k, 50 since (#4 — 7) = 0,(1/n). It follows that v/7 (@ — a) has the same limiting
normal distribution as W3, (7). This last fact has been noted by Nguyen and Pham [1987].
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4. SIMULATION RESULTS

We obtained 100 samples each of size 100 and carried out simulations with Po = .50,
p1 = .90. We used the following “smoother” version of 7, for simulations (the summations
below range over ¢ = [npo] + 1 to 7 = [npy])

72 = inf{t: logFn(t) — Y logFu(T(s))/(k +1)
<M Tw/(k+1) =) + e}

if the infimum is less than or equal to épo

= €po otherwise.

|
=
.

For 71: €, = .05, hy, = n
For 73: €, = .05.

73 is the solution of X,(-) nearest to zero.

For 74: 61 = 3, 62 = .01.

The values of po,p1,€n, hn, 6; and 6, are chosen somewhat arbitrarily.

The mi’s and the Ri’s are respectively means and mean square errors; Rz, is the mean
square error using the limiting distribution of 7.

g 7o ) T4 73
a b 7 ml(R1) m2(R2) m3(R3) m4(R4) Ra,
3 2 .15 .1061(.0115) .1175(.0122) .1743(.0131) .9799(1.6256) .0271
3 2 .10 .0792(.0094) .1005(.0131) .1890(.0255) .0888(1.8310) .0229
3 1 .15 .1371(.0076) .1920(.0227) .1957(.0194) .1533(.0023) .0199
3 1 .10 .0955(.0093) .1705(.0401) .1929(.0459) .0994(.0019) .0171
2 1 .20 .1459(.0159) .2139(.0352) .2728(.0441) .3528(.3273) .0385
2 1 .15 .1102(.0122) .1923(.0447) .2758(.0697) .2726(.2075) .0346
2 1 .10 .0883(.0136) .1799(.0585) .3322(.1323) .4270(.6662) .0310
2 .5 .20 .1846(.0100) .3404(.1120) .3092(.0793) .1984(.0017) .0568
2 .5 .15 .1246(.0084) .3215(.1625) .3289(.1649) .1515(.0018) .0513
2 .5 .10 .0839(.0059) .3364(.2383) .4036(.3270) .1090(.0024) .0463
1 .5 .40 .2548(.0454) .4279(.1409) .5456(.1766) .4802(.2550) .1538
1 .5 .30 .1736(.0285) .3846(.1780) .5517(.2788) .4010(.2448) .1382
1 .5 .20 .1120(.0201) .3599(.2339) .6643(.5204) .4218(.4608) .1241
1 .5 .15 .0826(.0172) .3367(.2546) .7568(.7140) .4111(.4989) .1176
1 .5 .10 .0613(.0125) .3465(.3034) .0064(.9721) .5203(.7823) .1114

We like to make the following remarks on the simulations.

(1) Of the three estimates #;, 75, 73, 7; seems to do best in all the cases. (This is a little
surprising for we thought 72 should do better than #;).
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(2) The (restricted) m.l.e. 74 is best when @ = 2, b = .5 or @ = 3,b = 1, i.e. when the
amount of discontinuity in the density at 7 is maximum in the cases simulated. A
reason for this may be that the Chernoff-Rubin asymptotics (see Chernoff and Rubin
[1956]) leading 0,(1/n) errors for 74 is valid only when the extent of discontinuity is
relatively large.

(8) v/n (f3—r) has an asymptotic distribution with mean zero. So its asymptotic variance
may be compared either with simulated variance (= R3 — (m3)?) or with the mean
square error (= R3). The asymptotic value provides good approximation to the
simulated variance but not to the simulated mean square error, because the bias isn’t
negligible in all cases.

APPENDIX

Here we prove some results mentioned in Section 3.

pi(r) =a 1 + e (b7 — a1,
”'2(7-) = e——a.'r’
ps(r) = b_le"‘"(l + br),

pa(r) = b2 (b272 + 2br + 2).

Let

nz)(r) = b3 (6372 + 36372 4 6br + 6),
p(a)(r) = d7%e™°T (b*r* + 4b37% + 126272 + 24br + 24).

Then

ti(r) =2e7%7(b71 —a71) + 2e %" (b"% — a7 %) + 2472 — p¥(1),
Baz(r) = ( ) — p3(r),
933(r) = pa(r) — u3(r),
P44(7) = E(a) (r) - l~"4('r)’
P12(7) = pa(r) — p1(r)ps(r),
P13(r) = pa(r) — pa(r)ps(r),
P14(r) = pa)(r) — pa(T)palr),
#23(r) = ua(r) — pa(r)ns(r),
F24(7) = pa(r) — pa(r)pa(r),
) =

F34(7) = p(ay(7) — wa(r)pa(r),
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oH
@_]u(r) = —ar

oH
3B, a5 lur) =€T(@™ = b7 — 27 — br2/2) 4 7(1 + ab™Y)

+7%(a+b/2) +abr®/2+ b7t — a7,

o0H
ﬁln(r) =2¢*" — 2 — ar — br — abr? + bre®”

aH
|”,(.,-) = (b — be®” + abr) /2.

Let

X(t) = Ky(t) fort<r
= K,(t) fort>r,

then (vide NRW)

Ki1(t) = S(t)( at exp(—at) — 1 + exp(—at))
| + (1 —exp(—at))(t +a~ ' + (0! — a~!) exp(—ar + at))
— (™! — a ' exp(—ar) + b~ exp(—ar))at,
S*t)=a2+ (b —aY)2(r—t + b1
~ (47! — a71) exp(—ar + at)] x exp(—ar + at),
K3(t) =t+ (a —b)rb~ ' exp(—ar — b(t — 7))
— (a7 +b(t — 7)) (™' — a7 exp(—ar) + b ! exp(—ar7)).

Note that
S@) =8 (t)a(d™! - a )r—t+b"1—a7t - (57! — a~ ) exp(—ar + at)] exp(~ar + at),

K1 (t) = S(t)(atexp(—at) — 1 + exp(—at))
— a®tS(t) exp(—at) + at exp(—at)
+a(b™! — a~!) exp(—ar + at),

I'{z(t) =1— (a — b)rexp(—ar — b(t — 7))
—b(a™! — (b7 — a1) exp(—ar)).

Note that K 1(t) and K,(t) are continuously differentiable in a neighborhood of 7 hence
X(t) and X(t) exist for 1y <t <7 and r <t < 75 and are continuous. It is easy to see

that . .
X(r+) = Ka(r) =b"'a—b+ (abr —a%r +b—a) exp(—ar)]

X(r—) = Ki(r) = a 'K (1)

13



(Thus X(74)X(r—) = a~1bK2%(r) >0fora #b,a>0,b>0, r > 0). Asymptotic mean
square error of 7 is

3 (X200 + X2 )V,

Now note that ((9;;(r))) the dispersion matrix of B(r) is positive definite; if not then
there exist, say, A1, A2 and Az (not all zero) such that

AL+ AT 4+ A3T? = constant a.e. on T > 7

and

T = constant a.e. on T < 7
which is not possible. Also 22 SBr H / p(r) # 0. Thus V() > 0. Now by continuity of Vz(t)
7, V2(¢) > 0 in a neighborhood of 7.
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