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\ Abstract

We consider the problem of robustness or sensitivity of given Bayesian posterior cri-
teria to specification of the prior distribution. Criteria considered include the posterior
mean, Vafiance, and probability of a set (for credible regions and hypothesis testing). Un-
certainty in an elicited prior, 7o, is modelled by an e-contamination class
I'={r=(1—¢€)mo+eq, qeQ}, where € reflects the amount of probabilistic uncertainty in
7o, and @ is a class of allowable contaminations. For @ = { all unimodal distributions }
and Q = { all symmetric unimodal distributions }, we determine the ranges of the various

posterior criteria as 7 varies over I'.
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1. INTRODUCTION

1.1 The Problem and Motivation

We observe X having density f(z|0), and desire to perform a Bayesian analysis
concerning the unknown real parameter 6. This requires specification of the prior
distribution. Whether or not it is even conceptually possible to exactly quantify
prior information in terms of a single distribution, time and other constraints
introduce a degree of arbitrariness in the elicitation process. Thus, after an
elicitation process which has led to a prior mo, it is plausible that any prior
“close” to mp would also be a reasonable representation of prior beliefs, and,
- that one should be “robust” with respect to such reasonable changes in . (See
Berger, 1984 and 1985, and Berger and Berliner, 1986 for further motivation.)

In this paper we model “close” through the e-contamination class

F={r=(1-¢)m +eq:qeQ}; (1.1)

here & determines the amount of probabilistic deviation from m, that is allowed,
and @ is the class of allowed contaminations (see subsection 1.3 ). In subsection

1.2 we briefly indicate reasons for considering this class.

A natural goal of a robustness investigation is to find the range of the posterior

quantity, p(z, 7), that is of interest, as 7 varies over I'. Thus we will seek

plz,m) = inpr(z,W) and p(z,m) = sup p(z, 7). (1.2)

xel

Quantities that will be considered include the posterior mean, the posterior vari-

ance, and the posterior probability of a set (allowing for credible sets or tests).



If the range of the posterior quantity is small, then one can be assured of robust-
ness with respect to the elicitation process. If the range is large, one does not
have robustness with respect to I', but our results provide indications as to which
features of mel' are causing the nonrobustness, allowing for further elicitation or

refinement of these features.

We make no attempt here to define what is a “small” or a “large” posterior
range, i.e. to define when one does or does not have posterior robustness. This
is a problem-specific judgement. The idea, however, is simple: if the range is
clearly so small that the differences between the various priors in T' are irrelevant,
then one can use m, with assurance, while if the range is not clearly small enough
then further investigation is needed. It is not our purpose here to discuss how

“further investigations” should be performed.

Bayesian robustness (or sensitivity ) studies with respect to the prior have gen-
erally been carried out on an adhoc basis (try a few different priors ) because
of the perceived technical difficulties in carrying out the minimization and maxi-
mization in ( 1.2 ) over realistically large classes of priors; the technical problem
appears to be a difficult variational problem. We show, however, that the prob-
lem is often tractable, and yields relatively simple answers. (The mathematical
basis for solution of this type of variational problem is briefly sketched in the
Appendix.) We hope that these techniques can lead to automatic checks for
robustness with respect to the prior. Note, of course, that robustness with re-
spect to the model is typically at least as important a concern. Thus our results

provide at best one component of the overall study of robustness.

1.2 History

The “robust Bayesian” view alluded to above has been espoused (in various

versions) by many statisticians, cf. Good (1983), Dempster (1975), Rubin (1977),



Kadane and Chuang (1978), Hill (1980), Wolfenson and Fine (1982), Berger
(1984, 1985 ) (which contain general review and discussion ), and Walley (1986).

We discuss here only some of the papers directly related to our work.

Previous work on finding ranges of posterior measures has mainly considered
classes of conjugate priors having parameters in certain ranges. Recent examples
include Leamer (1978, 1982) and Polasek (1985), who call the endeavor “global
sensitivity.” While interesting, classes of conjugate priors are quite small, and
leave out many priors which are reasonable (such as priors with different tails
than 7, ), and against which it would be desirable to ensure robustness. (Similar
comments can be made about classes based on moments, together with linear

estimates, cf. Hartigan (1969) and Goldstein (1980).)

Several papers which do deal with large classes of priors are especially noteworthy.
Huber (1973) determines the range of the prior probability of a set for the class
in (1.1 ) with @ = { all distributions }. DeRobertis and Hartigan (1981), in
a breakthrough paper, consider a class of priors specified by a type of upper
and lower envelope on the prior density, and find ranges of general posterior
quantities. DeRobertis (1978), Berliner and Goel (1986), Berger and O’Hagan
(1987) and O’Hagan and Berger (1987) find the range of the posterior probability
of certain sets over classes of priors with specified quantiles. West (1979) and

Lambert and Duncan (1986) also have related analyses.

The main motivation for considering the e-contamination class in (1.1) is that
it easily lends itself to automatic checks for robustness with respect to the prior
of standard Bayesian analysis. In other words, after specification of 7, and the
model and performance of a standard Bayesian analysis, one could automatically
carry out a check of robustness with respect to 7 by, say, presenting the range

of the desired posterior quantity as a function of € in (1.1). (@ could be chosen



in any of several automatic ways.) Automating robustness checks is probably

necessary to have them actually used.

The e-contamination class of priors has also been utilized in other types of
Bayesian robustness studies, including Schneeweiss (1964), Blum and Rosenblatt
(1967), Bickel (1984), Marazzi (1985), Berger (1982), and Berger and Berliner
(1986). This last paper is primarily concerned with maximizing the marginal
density, over 7 in T, and thus determining the “ML-II” prior. The mathematics
used there is a simple version of that needed here. Also related is Edwards, Lind-
man, and Savage (1963), Berger and Sellke (1987), Casella and Berger (1987),
Berger and Delampady (1987), and Delampady (1986), which carry out the de-
termination of the range of the posterior probability of a hypothesis when € =
1in ( 1.2 ) (i.e., when there is no specified subjective prior g ). Because of
the drastic differences that can arise in testing between Bayesian and classical
measures, and because of the frequent lack of “objective” priors in such testing
problems, they provide a particularly attractive domain for the application of

robust Bayesian methodology.

1.3 The Choice of Q

We alluded earlier to the choice Q = { all distributions } made in Huber (1973).
This choice is particularly easy to work with, and Sivaganesan (1986b) extends
Huber’s results to deal also with the posterior mean and variance. The resulting
class is attractive in that it certainly contains any prior “close” to mg, so that if

robustness obtains one is done.

Unfortunately, as pointed out in Berger and Berliner (1986), the range of the pos-
terior quantity of interest will often be excessively large when @ = {all distributions}
is used, because this @ contains many unreasonable distributions (such as point

masses which are far from 7). Indeed, it is argued therein that more reasonable



@, when 7y is unimodal, are the classes of all unimodal distributions (with the
same mode as 7, ) and the class of all symmetric unimodal distributions. These
classes allow wide variation in the functional form and tails of 7€l', while retain-
ing the overall shape features of mg; this overall shape is often rather confidently
known, so that it is not desirable to allow priors into I' which have a very differ-
ent shape. The ranges of posterior measures are substantially smaller for these
classes, and a lack of robustness is thus much more likely to be indicative of a
real problem. Section 2 deals with the symmetric unimodal class, and section 3

with the unimodal class.

1.4 Formulas and Notation

We will be working only with the observed likelihood function, f (z|0), considered
as a function 6, and to emphasize that it is a function of 8 we will write it f;(6).
We also assume that the base prior 7o is unimodal with mode at 8, and density
(with respect to Lebesgue measure) mo(d), and that the contamination ¢ has

density ¢(6) with respect to Lebesgue measure; thus any mel’ has a density of the

form
7 (6) = (1 —&)mo(8) + £q(0).

Using the notation m(z|r) for the marginal distribution of X with respect to the

prior w, namely
m(zlr) = / £.(0)7(8)d8,

and assuming all quantities in question exist, we get by simple computation
m(z|7) = (1 — &)m(z|mo) + em(z]q). (1.3)
Also, the posterior density of § with respect to 7 is

m(8]z) = A(2)m0(8]z) + (1 — A(z))q(0]2), (1.4)



where my(f|z) and ¢(f|z) are the posterior densities with respect to 7 and g,

respectively, and A(z)e [0,1] is given by

(1 — e)m(z|m)
m(zlr)

Az) = (1.5)

(Note that A(z) could be thought of as the posterior probability that 7, is the
true prior, if apriori it was believed that my or ¢ were true with probabilities
(1 — €) and ¢, respectively.) Furthermore, the posterior mean 6™ and posterior

variance V™ with respect to 7 can be written ( when they exist) as
§7(z) = A(z)6™ () + (1 — A(z))8(z) (1.6)
and
V7 (2) = A=)V™ () + (1 = A(2))V(2) + A(2) (1 — A(2)) (6™ (2) — 6%(2))". (1.7)

Finally, if C' is a measurable subset of the parameter space ©, then the posterior

probability of C with respect to 7 is given by
P (9 ¢ C) = A(z) P™12)(9 € C) + (1 — A(z)) PICR)(9 € C). (1.8)

In most of what follows © will be the whole real line R, and Cy(R) will denote
the set of all continuous real valued functions vanishing at infinity. Cases where
© is a subset of R can be similarly handled. As a last note, U(a,b) will be used
to denote the uniform distribution on the interval (a,b), and ¢ and ® will stand

for the standard normal density and c.d.f, respectively.



2. SYMMETRIC UNIMODAL CONTAMINATIONS

2.1 Introduction

In view of the prior beliefs, it may often be natural to require that the contami-
nations be unimodal and symmetric. This would be particularly desirable when

the base prior 7 is also symmetric and unimodal. Thus, we define

@ = { all symmetric unimodal distributions

with the same mode ,fg, as that of 7o}, (2.1)

and consider the class I' given in (1.1). In sections 2.3, 2.4, and 2.5 we find the
ranges, as 7 varies over I', of the posterior mean, posterior variance, and posterior
probability of a set, respectively. Applications to the normal distribution are

given.

2.2 Preliminaries

The following lemma forms the basis of dealing with (2.1), and will be repeatedly
used. The proof is standard (being based on representing a symmetric unimodal

density as a mixture of symmetric uniforms), and will be omitted.
LemMa 2.2.1: For ¢eQ as in (2.1)
m(zlo) = [~ H()dF (), [ 61.(0)9(0)d0 = [ Hi(2)aF (),

and

[ 1c0)1.0)q(0)d8 = [~ Ho(2)aF(z),



where 1¢ is the indicator function on the set C, F is some distribution function

(the mixing distribution which yields q),

1 rlotz .
H(z) = { 22 fﬂo—z fz(a)da if 2 75 0 (22)
fz(60) if 2 =0,
1 rbo+z gi R
H;(Z) _ 2,? foo—z 9 fz(o)do if z 75 0 (2.3)
06fz(00) if z= 0,
and
L [t 16(0)f.(0)d0 if 2 #0
Hc(z) =1 f.(80) if z=0 and 0,eC (2.4)

0 ifz=0 and 6, ¢ C.

The dependence of these quantities on z is suppressed for notational simplicity.

2.3 Range of the Posterior Mean
Let T be asin ( 1.1) and T'; C I be given by
Iy={r=(QQ—-¢e)m+eq:qisU(fy— 2,0, + 2) for some z >0 }. (2.5)

In order to find the range of the posterior mean over the large class T, it is in
fact sufficient to do the maximization and minimization over the much smaller
( and simpler ) class 'y (as shown in the following theorem), thus reducing the

problem to that of finding the extrema of a function of one variable.

TrEOREM 2.3.1: For I’ and T'; as above,
ag + Hy(z)
sup 6™ (z) = sup 6" (z) = —_—
p 87(e) = sup 87(e) = sup 2y

and

e eemi N se emry e G0 T Hi(2)
inf87(z) = Inf 8"(=) = Inf ~ =5



where a = (1—¢)m(z|mo) /e, a0 = a6™(z), and H(z), H,(z) are as in the previous

subsection.

Proor : For wel’, 6"(z) can be written as

ao + [ Hy(2)dF(z)
a+ [ H(z)dF(2)

8 (z) =

for some distribution function F(-). Now the result follows by a direct application

of Lemma A1 of the Appendix. I

ExampLE 2.3.1: Let X|0 ~ N(0,0%) and mo(f) be N(u,7?). Then

“= (1 ; s> \/Z'Jr(al2 + 72) P {_%%} ’

and
o 2
ag :a(02+72u+ 02+T21:) .
Furthermore, ) \
1 etz 1 -z
H(z)zﬂ/"_z . 27rezp(—( 202) )dﬂ
and

H,y(2)

—z—z)2 ( z—z!z
. o C_QW—L e_ ‘L+2¢r + H( )
T 22 V2T Var wHAE).
Letting ¢t = (p(ﬁ_;:ﬁ) + go(i_‘::—_Z), U = @(@) — (p(%) and v = <I>(#_+:~_=v) —

®(£=2=%), the values of z which maximize and minimize

ao + Hq(2)
a+ H(z)

are given by the solutions of the equation (obtained by differentiating the above),

_ (vz — ou)(t + 20a) — v(2a00 + tu)

# 2[auz +t(ap — ap) — vu /2

(2.6)

This equation may be iteratively solved for z by taking a number larger than
6™ (z) as the initial value of z when maximizing, and a number smaller than

6™ (z) as the initial value of z when minimizing.
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As a specific example, let 4 = 0,02 =1, 72 =1 and ¢ = 0.1. In Figure 2.1, the
ranges of 67(z) and the values of §™(z), for various values of z, are displayed.
It can be seen from Figure 2.1 that the range of 6§™(z) is fairly small for small
values of z(|x| < 3) but is larger for large values of z. (Recall that our viewpoint
here is a posterior viewpoint; we are imagining use of the methodology to find
the possible range of the posterior criteria after the data is at hand. We present
the range here as a function of = only because of several technical points we wish

to make in Section 4.)

2.4 Range of the Posterior Variance For Fixed Posterior Mean

It is typically necessary, in estimation problems, to also require an accuracy
measure; here we consider the posterior variance. Since the posterior mean is of
primary interest, and since there will be a different range of the posterior variance
for each (fixed) value of the posterior mean, it is natural to seek the range of the
posterior variance corresponding to each possible value of the posterior mean.

Thus, for p € [inf, §™(z), sup, 67(z)], if we let

Lo = {n(0) = (1 — &)mo(0) + €q(0) : ge@ and 6™(z) = p}, (2.7)

then we want to find sup, ., V7(z) and inf,er, V7™(z).
2.4.1 Determining the Supremum of the Posterior Variance

It is shown below, under some regularity conditions on the likelihood function,
that the posterior variance is maximized, subject to fixed posterior mean, when
the contamination is a mixture of two symmetric uniform (symmetric with re-

spect to 8, ) distributions. Let

Top = {n(0) = (1 — €)mo(0) + eq(0) €Ty : qeQ; },
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where
Q:={g=0aoU(lo—2,00+2)+ (1 —a)U(lo—2*,00+2*):0<a<1and 22" >0}.

Note that one of the three quantities a,z,2* is determined by the constraint
that 7 have posterior mean u. Hence maximizations over I'y, are effectively two-
dimensional maximizations. Note also that 2* (say) could be infinite, so that ¢

would then be a single uniform, possibly with total mass less than one.

TrEOREM 2.4.1: Suppose f,(f#) is such that, if a and b are real constants, then
[h (6 + 0) + h(8 — 8)] and [g{6, + 0) + g(f, — )] each have at most two positive

local maxima; here

h(6) = (0 — a)f(9) and ¢(6) = (67 — ad — b) £, (6)- (2.8)
Then
sup V" (z) = sup V7(z). (2.9)

Proor : Using equation (1.6) of section 1.4, for 7 € T'; we have
p=Az)6™(z) + (1 — A(z))é(=). (2.10)
First we consider the problem of maximizing V*(z) over a subset Ty, of ' given
by
Tom = {n(0) = (1 — €)mo(0) + £9(8) €Ty : m(z|g) = m}, (2.11)
where
m € A(p) = { /fz(ﬂ)q(l?)dﬂ : ge@ satisfies ( 2.10) } (2.12)

Now, letting
(1= )mfalro)

Az) = Y
(=) (1 — e)m(z|mo) + em
and
pi(a) = L8

1-2)
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we have, for mel'om, using equation ( 1.7), that
n x x 2 (1 — A) 2
V™ (z) = AV™(z) + A1 — A)(6™(z) — 6)% + —m~—/0 £.(8)q(8)d8.
Thus, finding sup, ., V" (z) is equivalent to finding

sup [ 0%f, (0)g(6)dd,

9€Qm

where ‘
Qm = { q(+) : m(z|q) = m,/0fz(0)q(0)d0 =mé }
This problem of maximization may be re-formulated using the symmetry and

unimodality of ¢(-) ( with mode 6, ) as that of finding

sup [ Hy(2)u(dz),
()

where u(-) is subject to the following conditions:
/Hl(z),u(dz) = mé
/ H(z)u(dz) = m (2.13)

/ p(dz)

and H, Hy, and H; are given by equations ( 2.2) and ( 2.3). Clearly (m,mé)eV,
the convex hull generated by the set {(H(2),Hi(2)) : zeR}. When (m,msé) is

L

not an interior point of V, Lemma A2 implies that u(-) satisfying (2.13) must
be a point mass, proving the result. Thus, suppose that (m,mé) is an interior

point of V. Then, using Theorem A1 of the Appendix,

sup Hy(2)pu(dz) = amé+bm+ ¢
p(-):( 2.13)

= inf{amé+bm+c: (a,b,c) € A},
where

A= {(a,b, c)eR®: Hy(2) < aHy(2) +bH(2) +¢ V2z> 0} .
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Furthermore, the maximizing po(-) has support given by
support (uo(-)) = { 2> 0: Hy(2) = aHy(2) + bH(z) + ¢ } .

Now, since (&, , ¢) € A we have, by letting g(4) = (6% — a6 — I;)fz(ﬂ), that

bo+2

/0 g(0)dd —2é2<0 Vz>0

0—=2
and ¢ > 0. Thus, if G(2) represents the function on the left hand side above,
then

Number of elements in support (ug(-)) < Number of zeroes of G(z) .

Now, G(0) = 0 and

1 d
Number of zeroes of G(z) < 2 Number of zeroes of EG (2).
But,
d
EG(z) =g(0o+2) +g(0o — 2) — 2¢
and

d
d—G’(z)(at z=0) = 2¢g(8,) —2¢<0.
z
Now, suppose & > 0. Then po(-) is a probability measure (see Theorem A1) and,

if (0o + 2) + g(fo — z) has at most two local maxima, then
Number of zeroes of diG(z) <4 (4+1if g(6) —¢é=0).
z
Thus,
Number of zeroes of G(z) < 2

and hence, support (1) has at most two points. By means of a similar argument
it can be shown that uy is a one point (sub)probability measure when & = 0.

Thus we have established that

supV™(z) = sup V7™(z).

I‘o,,,, FOmnr02

It follows directly that

sup V™(z) = sup V"(z). I

x€lp T€lo2
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2.4.2 Determining the Infimum of the Posterior Variance

We will show that the infimum of V*(z) over I'y can be obtained by minimizing

over the smaller class

Loy = {7(0) = (1 — €)mo(0) +€q(0)eTo: g = aU(8y — 2,0, + 2)

for some 0 < @ <1 and 2 > 0}. (2.14)

Here alU(6y — 2,00 + z) denotes the subprobability distribution having mass «
uniformly distributed over the interval (8, — 2,0y + z). Note that o will be
determined by the constraint that 6™ = u (i.e., that meTy), so that this will be
only a one-dimensional minimization. It is interesting that one must consider
the possibility of mass escaping to infinity (i.e., @ < 1). For use in the following

theorem, define
Hy(2) — H(z)[V™ + (6™)?]
’(,b(Z) = py )
H(2)6m™ — Hq(2)
where H, H;, and H, are as in (2.2) and (2.3).

THEOREM 2.4.2: Suppose that [h(fy+8) — k(8 — 0)] has at most two positive local

maxima and that [g(fo + 2) + g(fo — 2)] has at most one positive local minimum

where h and g are defined in (2.8). Then

?

inf V™(z) = inf V"(z). (2.15)

welg meloy

When 6™ (z) # p, the infimum is given by
Y (§) — 4 (67— w)(3), (216

where 2 is that value of 2 minimizing [sgn(6™ — p)]¥(z) over the region

pH(z) — Hy(2) S g (1 — &)m(z|mo)
1 - €

{z

When 6™ (z) = p, the infimum is the smaller of V™(z) and

}. (2.17)

aV™ + Hy(z) — H(z)(6™)? _
a+ H(z) )

inf{ Hy(z) = 6™ H(2)}. (2.18)
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ProoF :: The proof of (2.15) is similar to that of Theorem 2.4.1, and will be
omitted. For ¢ = alU(6, — é, 0o + 2) to yield 7 = (1 — €)m + eqely, it must be
the case that (when 6™ # pu)

o Up—6")

Hy(2z) — pH(z)
Using this expréssion for «, together with (1.7), yields after simplification the
expression for V”(z) given in (2.16). This expression is then minimized over the

set of all allowable 2z, namely those for which 0 < a < 1; this set is equivalent to

(2.17).

When 6™ = u (equivalent to the condition Hj(z) = 6™ H(z) in (2.18)), a can be
arbitrary. Then, however, V7 is a linear function of A, and hence a monotonic
function of e, so that only a = 0 (yielding V™) and a = 1 (yielding the expression

in (2.18)) need be considered. This completes the proof. I

ExampLE 2.4.1: ( Normal Distribution )

Suppose X |§ ~ N(6,0%) where o is known. Then it can be shown that £[g(6, +
z) + g(0o — z)] has at most three positive zeroes, which would mean that g(f, +
z) + g(6o — 2) has at most two positive local maxima and at most one positive
local minimum. Similarly, the other regularity conditions can be verified; thus,
when X|0 ~ N(0,0%) and my(-) is any unimodal distribution with mode 8, the

results of Theorems 2.4.1 and 2.4.2 hold.

As a specific example, let X|0 ~ N(8,1), mo(f) be N(0,1) and ¢ = 0.1. Then
the range of the posterior variance, when the posterior mean is fixed at various

levels, is displayed in Figure 2.2 for certain values of z.
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2.5 Posterior Probability of a Set

2.5.1 Credible Set

When constructing a credible set C for an unknown parameter @ it is of interest
to find the range of the posterior probability of C as 7 varies over I'. For 7 € T,

(1.8),(2.2), and (2.4) yield

ki + [ He(2)dF (2)
k+ [ H(z)dF(2) ’

P12 (geC) =

where k = (i%)-) m(z|mo) and k; = kP""(a'”)(ﬂeC). Determination of the range
of the posterior probability of C is considerably simplified by the following the-

orem.

THEOREM 2.5.1: For any measurable subset C of O,

ki + Hc(2)
P2 (geC) = S Sl A 4
pr's (6<C) Tﬁg k+ H(z)
and
: .o k1 + He(2)
(8]z) — inf L T 7CL%)
inf P (0eC) = inf k+ H(z)

Proor : Proof follows directly from Lemma A1 of the Appendix. I

Defining g,(0) = f.(0)Ic(9), A(2) = g:(2) + gz(—2) and B(z) = f.(2) + fo(—2),
the values of z, at which the inf and sup of the probabilities are obtained, are
given by the positive solutions of the equation ( which may be solved iteratively
by carefully choosing the initial values )

22(kA(2) — k1B(2)) = (2a + B(2)) / " 02(8)d8 — (2k; + A(2)) / £.(8)ds.

2 -
In choosing the initial values for iteration when C is an interval, it is helpful to

note that the sup is attained at a value in the interior of C or, to the right of C

or left of C according as whether z > 6, or z < 8, and the inf is always attained
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at an exterior point of z ( mostly to the right of C when = > 6, and left of C

when z < 6, ).

ExampiE 2.5.1 (Normal Distribution) Let X|§ ~ N(6,1), mo(8) be N(0,2), and
e = 0.1. When z = 0.5, the 95% HPD credible set is Co = (—1.27,1.93). The
range of the posterior probability of Cj is given by

inf P(?°%)(9¢ Cy) = 0.945 , sup P™I%)(ge C,) = 0.958,

mel’ xel

and these are attained when the contaminations are respectively the U(—2.98, 2.98)
distribution, and a point mass at 0. When z = 4.0, the 95% HPD credible set is
Co = (1.07,4.27). The range of the posterior probability of Cy is (.830,.965), the
extreme values of which are attained when the contaminations are, respectively,

U(—6.1,6.1) and U(—4.3,4.3).

2.5.2 Testing of Hypotheses

To test the hypothesis Hj : €@, versus H; : 0e©\O,, suppose it is desired to
determine their posterior probabilities. Then, robustness can be investigated by
determining the range of these probabilities as m ranges over the class of priors T.
These ranges can be directly obtained from Theorem 2.5.1 when ©, and 6\06,

both have positive Lebesgue measure.

Also quite interesting is the testing of point null hypotheses, because of the
dramatic discrepancies between classical P — values and posterior probabilities
( see Berger and Sellke(1987)). Thus, suppose we want to test Hy : § = 6, versus
H, : 0 # 6,. A typical prior distribution for this problem specifies a point mass,
a, to be assigned to 6y, and a continuous density, g(8), to be assigned to {6 # 6,}.
We assume that | — ag| < 6, and that g is of the form g(8) = (1—¢)go(0) +£4(6);

thus « is specified as g, but could be in error by an amount 6, and g is within
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a certain e-contamination class of the elicited go. Specifically, we consider
G = {g(9) = (1 — €)go(6) + eq(6) : ¢ is symmetric unimodal with mode 6;} ;

here 6, is the (assumed unique) mode of gy, not necessarily equal to 6. Let T,
denote the implied class of priors . The range of the posterior probabilities of
H,, as w varies over I'g, is given in the following Theorem, the proof of which is

straightforward and is omitted.

THEOREM 2.5.2:

inf P19 (H.) = f2(0o) =
7elo (Ho) fo(00) + (L) (1 - e)m(algo) + )
and
PW(NE) o) = fz(ao) ,
sap P (Ho) f2(60) + (L) (1 = &)m(z]go)
where

N 1 otz

fr=emp (5[ o)
ExampLE 2.5.2: Let X|0 ~ N(8,1), 6o = 0, go(8) be N(61,1), oo = 1,6 = 0.1 and
€ = 0.1. Then the range of the posterior probability of Hy, for various values of
6, and =z, is given in Table 2.5.1. When z < 1.5, the uncertainty in P*(¢l2) (Hy)
is almost entirely due to the uncertainty in the prior probability of Hy,. When
z = 4.0, the uncertainty in g also contributes significantly to that of P™(¢l=) (Hy).

Table 2.5.1 Range of the Posterior Probability of H,

z | 6=0 6, =10 0,=2.0
0.5 | (.46,.69) | (.46,.68) | (.59,.78)
1.0 | (42,65) | (.35,.59) | (.42,.65)
15| (35.57) | (24,45) | (.24,.45)
4.0 | (.004,.007) | (.002,.007) | (.0008,.002)
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3. UNIMODAL CONTAMINATIONS

3.1 Introduction

When 7 is not symmetric about its mode 6, ( and even in some situations when
it is), it may be desired to drop the symmetry assumption on ¢ that was made

in section 2. Then, the class of prior distributions is given by (1.1), where

@ = { all distributions which are unimodal

with the same mode , 8y, as that of mp}. (3.1)

Here we present the analogs of the results in section 2 for this class. Proofs are

similar and hence are omitted.

3.2 Preliminaries

Lemma3.2.1: For ¢ € Q from (3.1),

mizle) = [~ H(z)dF(2),

/mnwmwwo:/wzﬂgmma,

—00

and

[ 1@ £000)d0 = [~ Ho(z)dr(2),

where 1¢ is the indicator function on the set C, F is some distribution function,
L[t £,(6)d0 if 2 # 0

£2(80) if 2 =0, (62)

-
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Hi(z) = { LI 6 f.(0)d0 240 .
6: £, (60) if 2 =0,
d
an 0o+z 1 (0)fz( ) lf N 7£ 0
Ho(z) = fz(ao) if z=0and f, € C (3.4)

0 if z=0and 6, & C.

3.3 Range of the Posterior Mean
Let T be as in (1.1), and T'y C T be given by

= {m(8) = (1 — €)m0(8) +q(8) : ¢(6) is U(bo,80 + 2) or U(fo — 2, 6,)

for some z > 0}.

TueoreM 3.3.1: For T, T'; as above,

a0+H1(z)
6" (z) = 6" (x) = _—
Sup&7(e) = sup §7(z) = sup ~
and

a0+H1(z)

) ot snry —op G0t Ha(2)
nf8™() = Inf 87(z) = inf Z "

where a,aq are as given in Theorem 2.3.1 of section 2.3.

ExampLE 3.3.1: Let X|0 ~ N(,0%) and mo(6) be N(u,7%). Then, a, ao are as

given in Example 2.3.1 and

H(z)?i'/,,w T—=ean(~ (9 ) ——5—)dd,

oV 2T

Hy(z) = d (exp{— (b - $)2} - exp{—('u'—_l_z;—z)z}) + zH(2).

2 202 20

Letting t = p(4=2) — (p(f_ﬂ:_—z), w = @(H%z) — ®(£2) and v = (p(z+u— ), the

o

values of z which maximize and minimize

ao + Hi(2)
a+ H(z)
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are given by the solutions of the equation (obtained by differentiating the above)

_ (ot 4+ uz)(oa + v) — g(oag + ru)
2= v(za + ap + v — ay) ) (35)

As a specific example, let 4 = 0, 62 = 1, 72 = 1 and ¢ = 0.1. In Figure 3.1
the ranges of 6"(z) and the values of §™(z) for various values of z are displayed.

Note that the ranges are larger than those in Figure 2.1, as would be expected.

3.4 Range of the Posterior Variance For Fixed Posterior Mean

3.4.1 Determining the Supremum of the Posterior Variance

Let Ty and I'g; be as in section 2.4, but with @ as in(3.1) and
Q2={q#aUz+(1—a)Uz- :0<a<1andz2z* >0},

with U, representing a uniform distribution of the form U (6,8 + y) or U(fy —
Y, 00) .

THEOREM 3.4.1: Suppose szW) is convex, and :—a( ) is concave in (—oo,t) and

1
fz
convex in (¢, 00) for some ¢. Then

supV”™ = sup V"
rel’ 1r€I‘02

Proor :The proof is similar to that of Theorem 2.4.1, using Lemma A3 of the

Appendix to show that the support of up has at most two points. I

3.4.2 Determining the Infimum of the Posterior Variance

Let T'o; be defined by
Ta={r=(1—-¢)m+eqely:qis aU, for 0 < a <1 and z > 0};

here U, again denotes a U(fy,0, + z) or U(fy — 2,8,) density, and « is the mass
of q.
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TuEOoREM 3.4.2: If 1/f,(0) is convex in 8, then

inf V™(z) = inf V" (z).

xelo mel o1

(As in Theorem 2.4.2, this infinum can be expressed as the minimum of a function
of one variable over a specified range.)

Proor : The proof follows the lines of the proof of Theorem 2.4.2 and uses Lemma

A4 of the Appendix. I

ExampLE 3.4.1: Normal Distribution

Let X|0 ~ N(8,0%), mo(6) be N (g, 7%) and e=0.1. It is easy to check that 1/ f,(6)
is convex in # and that ;—0 (?1—1(7)-) is concave in (—oo, ), and convex in (z, o), and
hence Theorems 3.4.1 and 3.4.2 are applicable. Ranges of the posterior variance,

when the posterior mean is held fixed at different values, are displayed in Figures

3.2 and 3.3.

3.5 Posterior Probability of a Set

3.5.1 Credible Set

TuEOREM 3.5.1: For any measurable subset C of O,

ky + He(z)
x(0]2) _ 1 c
sup PTU(0eC) = swp S
and
ki + He (Z)

: 0|z) —
inf PR(0eC) = inf Sy

where H(z) and Hc(2) are defined in section 3.2, k£ = (1=2)m(z|m), and k; =
kPmCR) (g € C).

Bounds for an Interval C

Let C = (a,b), and 6y < 2, for 2 given by the solution of

fz(bo + 2) = ! / o f=(8)do. (3.6)

Z Jbg
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Then the range of P7(¢l2) (6eC) can be found using the following equations. We
need to consider various cases of a and b.

(1) When a < 8, < b:

k
inf P™1=)(geC - s
xel ( ) k +max{fz(z1)’ fz(ZZ)}
and
sup P9 (pec) = F1 H(2)
wel k + H(z-‘?) ,

where z, = min {2,b} and z,, 2, respectively are the solutions of the following
equations (defined as co when the solution to an equation does not exist):
L fo(8)d0 K+ fa(2)

2= S NAD f,( )6 z>b (3.7)

and

S5 0)d_ k+ fi(2) ("o <a 0s)

fa(2) k1fs(2)

(2) When 6y <a<b< 2:

k1
k 4+ max {H(a), fo(2)}’

where 2; is the solution of the following equation:

inf Pl (geC) =

1 z _k+fa(2) .
2= f_('zT/a fol0)a0 - S S / f(0)d0 2> 3 (3.9)
and
sup PO (gec) = Dt Jau Fo(6)d0
mel bk + [, f.(0)do

(3) When fy <a< 2<b:

ki

. x(6|z) —
o P00 = e (@), o)}




24

where z; is the (largest) solution to the equation ( 3.9). Also,

x(6|z k +f5(z3) kl }
(0lz) _ !
o PO000) =max {3 R

where z; is the (smallest) solution to the equation ( 3.9) and z, is the solution

(=o0 if solution does not exist) of the equation:

2= ﬁ/ﬂzf,,(a)do— (Tkl_-% aafz(a)dﬂ a<z<h.

V]

ExampLE 3.5.1: (Normal Distribution) Let X|8 ~ N(8,1), m(6) be N(0,2) and
e = 0.1. When z = 0.5, the 95% HPD credible set for 8 is C; = (—1.27, 1.93),
and the range of the posterior probability of Cj is

inf P0%)(g ¢ C;) = 0.94, sup P*CI°%)(9 ¢ C,) = 0.96.
L =€l

These are attained when the contaminations are, respectively, U(0, 3) and U(0, 0.75).

When z = 4.0, the 95% HPD credible set for 6 is Co = (1.07, 4.27), and the
range of the posterior probability of Cy is
inf P"149(9 ¢ C;) = 0.77, sup P"*1O (g ¢ C,) = 0.97.

rel xel

These are attained when the respective contaminations are U (0, 6.3) and U(0, .97).

3.5.2 Testing Hypotheses

The discussion in section 2.5.2 applies here, though now we will constrain ¢ to

be in
G = {g(0) = (1 —€)go(0) + £¢(0) : g is unimodal with mode 6;.}
Then Theorem 2.5.2 is valid here, with H replaced by

-FAI = fz(al + 2),
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where 2 is the solution of ( 3.6).

ExaMPLE 3.5.2: As a specific example, let X|0 ~ N(0,1), 6, = 0, go(0) be N(6;,1),
o = %, 6 = 0.1 and € = 0.1. Then the range of the posterior probability of Hy,

for various values of 0; and z, is given in Table 3.5.1.

Table 3.5.1 Posterior Probabilities of Hy

z ;=0 6, = 1.0 6; = 2.0
£ =0.5 | (.46, .69) (.46, .69) (.57, .79)
z =10 | (.41, .65) (.35, .59) (.41, .65)
£ =15 | (.35, .57) (.24, .45) (.24, .45)
£ = 4.0 | (.004, .04) | (.002, .007) | (.0007, .002)

4. Discussion

As is clear from the figures given earlier, the degree of robustness present, in any
given situation, can depend heavily on the observed value of z. The large ranges
(of the posterior quantities) that we observed for large = were due to our choice of
.71'0 as normal; the resulting I contained priors with tails ranging from normal to
uniform, and robustness is generally lacking when there is such a wide variety of
tails and the likelihood function is located in the tail of the prior. Had we chosen
7o to be, say, Cauchy the ranges for large z would have been much smaller (and
indeed go to zero as |z| — ©0); note that the tail can, in some sense, never get
sharper than that of (1 — €)my(8). Whether or not one can rule out exponential

tails, however, is a subjective decision, although a large difference between = and
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6o does indicate that sharp tails for the overall prior are not very appropriate

(see Berger(1985)).

As mentioned in subsection 1.3, an e-contamination class can be “too big,” in
the sense of containing unreasonable priors which artificially inflate the ranges of
the posterior criteria. We mentioned that choosing @ = { all distributions } is
generally “too big”. Further evidence of this comes from noting that, if Xj, ..., X,
are i.i.d. N(#,1) and @ = { all distributions } is used, then |sup,. 6"(z) — Z|
converges to zero as n — oo at the rate of \/W . For the classes we consider
in this paper, the rate of convergence can be Shown to be the correct rate y/1/n
(see Sivaganesan (1986a)), correct in the sense that this is the usual rate at which

single posterior distributions converge.

A reasonable alternative to the choices considered here is the choice @ = { all

distributions such that the resulting 7 = (1 — &)my + eq is unimodal }. This
was considered for the ML-II problem in Berger and Berliner (1986), and for the
posterior mean in Sivaganesan (1987). Besides being substantially more difficult
to work with, there is some indication in Berger and Berliner (1986) that this class
might also be too big. The classes we have considered seem to strike a reasonable
compromise between the desire to have I' include all reasonable priors, and the
problems of having a too-large I'. Whether one uses either of these classes is,
of course, dependent on believing that either symmetry and unimodality, or just

unimodality, are reasonable.

A slight modification of the section 3 unimodal class, that might be appealing,
is to impose the additional constraint that 6, be the median of ¢; this prevents
all the contaminating mass, ¢, from being concentrated on one side. Analysis for

this class can be done similarly.

A second possible modification arises from observing that the key fact driving

much of the mathematics of the paper is that unimodal densities are mixtures
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of uniforms, and that the relevant extreme points for calculating infimums and
supremums are just one or two point mixtures of uniforms. This suggests the
possibility of replacing @ by the class of mixtures of a family of distributions other
than uniform, e.g. the class of normal or maybe Cauchy distributions. Indeed
this will work for the range of the posterior mean, the only real change being the
replacement of (2.2) through (2.4) or (3.2) through (3.4) by the corresponding
mixtures over the new base parametric family. Substantial additional work might
be necessary, however, to develop the analogue of the posterior variance material

for these other mixture classes.

Alternative mixture classes might be useful in a variety of situations. First, if
say one feels quite certain that = has a smooth bell shape, then only allowing
smooth bell shaped contaminations, as would result for example from letting Q
be all mixtures of symmetric (about 6y) normal distributions, can be reasonable
and will reduce the size of the ranges of posterior quantities. A second possibility
would be to consider a mixture class of, say, bimodal distributions, if oné desires
to allow the possibility of small departures from unimodality. The basic point
is that a great deal of flexibility is possible, without complicating most of the

mathematics.

A final possible modification that should be mentioned is that of allowing vari-
ation in the prior mode. It is certainly reasonable to assume that there is some
uncertainty in this mode. We did not explicitly incorporate this uncertainty be-
cause: (i) we feel that the central part of the prior is easier to elicit than the tail
of the prior, and were hence mainly concerned with including contaminations
that allowed very general tail behavior; (ii) small variation in the prior mode
will typically not change the Bayesian answers much; and (iii) allowing variation
in the mode can easily be done utilizing our results, with the appending of an

optimization over the mode. (In a sense, parametric optimizations are easy; the
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purpose of the paper is partly to show how optimizations over large classes of

distributions can often be reduced to parametric optimizations.)

When robustness fails to obtain for a given ¢, 75, and @, one must reconsider
these subjective inputs. (This is, of course, a somewhat controversial statement;
see Berger (1984; Section 2.4) and Berger (1985; Sections 3.7 and 4.12) for dis-
cussion.) In particular, further refinement of m, or @ may lead to robustness;
knowledge of the priors in T, at which the extremes occur, can be invaluable in

suggesting where to concentrate such efforts at refinement.

ACKNOWLEDGMENT

We are grateful to Prem Goel, Herman Rubin, Stephen Samuels, and Bill Studden
for helpful comments, and to the Associate Editor and three referees for very

valuable suggestions.

Bibliography

[1] Berger, J. (1982). Bayesian robustness and the Stein effect. J. Amer. Statist.
Assoc. T7, 358-368.

[2] Berger, J. (1984). The robust Bayesian viewpoint (with discussion). In
Robustness of Bayesian Analysis, (J. Kadane, Ed.). North Holland, Ams-

terdam.

[3] Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-

Verlag, New York.

[4] Berger, J. (1987). Robust Bayesian analysis: sensitivity to the prior. Tech-
nical report #87-10, Department of Statistics, Purdue Univ., W. Lafayette.



[5]

[6]

[7]

8]

(9]

[10]

[11]

12]

[13]

[14]

29

Berger, J. and Berliner, L. M. (1986). Robust Bayes and empirical Bayes
analysis with e-contaminated priors. Ann. Statist. 14, 461-486.

Berger, J. and Delampady, M. (1987). Testing precise hypotheses. To ap-

pear in Statistical Science.

Berger, J. and O’Hagan, A. (1986). Range of posterior probabilities for
the class of unimodal priors with specified quantiles. Technical Report,

Department of Statistics, Purdue University.

Berger, J. and Sellke, T. (1987). Testing a point null hypothesis: the irrec-
oncilability of significance levels and evidence. J. Amer. Statist. Assoc. 82,

112-139.

Berliner, L. M. and Goel, P. (1986). Incorporating partial prior information:
ranges of posterior probabilities. Technical Report #357, Department of
Statistics, Ohio State University.

Bickel, P. (1984). Parametric robustness: small biases can be worthwhile.

Ann. Statist. 12, 864-879.

Blum, J. R. and Rosenblatt, J. (1967). On partial a priori information in
statistical inference. Ann. Math. Statist. 38, 1671-1678.

Casella, G. and Berger, R. (1987). Reconciling Bayesian and frequentist
evidence in the one-sided testing problem. J. Amer. Statist. Assoc. 82,

106-111.

Delampady, M. (1986). Testing a Precise Hypothesis: Iﬁterpreting P-Values
from a Robust Bayesian Viewpoint. Ph.D. Thests, Purdue University, West
Lafayette.

Dempster, A. P. (1975). A subjectivist look at robustness. Bull. Int. Statist.
Inst. 46, 349-374.



[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

30

De Robertis, L. (1978). The use of partial prior knowledge in Bayesian
inference. Ph.D. Thesis, Yale University, New Haven.

De Robertis, L. and Hartigan, J. A. (1981). Bayesian inference using inter-
vals of measures. Ann. Statist. 1, 235-244.

Edwards, W., Lindman, H., and Savage, L. J. (1963). Bayesian statistical
inference for psychological research. Psychological Review 70, 193-242.

Goldstein, M. (1980). The linear Bayes regression estimator under weak

prior assumptions. Biometrica 67, 621-628.

Good, 1. J. (1983). Good Thinking: The Foundations of Probability and Its

Applications. University of Minnesota Press, Minneapolis.

Hartigan, J. A. (1969). Linear Bayesian methods. J. Roy. Statist. Soc. Ser.
B 31, 446-454.

Hill, B. (1980). Robust analysis of the random model and weighted least

squares regression. In Fuvaluation of Econometric Models. Academic Press,

New York.

Huber, P. J. (1973). The use of Choquet capacities in statistics. Bull. Int.
Statist. Inst. 45, 181-191.

Kadane, J. B. and Chuang, D. T. (1978). Stable decision problems. Ann.
Statist. 6, 1095-1110.

Kemperman, J. H. B. (1968). The general moment problem; a geometric

approach. Ann. Math. Statist. 39, 93—122.

Kudo, H. (1967). On partial prior information and the property of paramet-
ric sufficiency. Proc. Fifth Berkeley Symp. Statist. and Prob. 1, University

of California Press, Berkeley.



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

31

Lambert, D. and Duncan, G. (1986). Single-parameter inference based on

partial prior information. The Canadian J. of Statist. 14, 297-305.

Leamer, E. E. (1978). Specification Searches. Wiley, New York.

Leamer, E. E. (1982). Sets of posterior means with bounded variance prior.

Econometrica 50, 725-736.

Manski, C. F. (1981). Learning and decision making when subjective prob-

abilities have subjective domains. Ann. Statist. 9, 59-65.

Marazzi, A. (1985). On constrained minimization of the Bayes risk for the

linear model. Statistics and Decisions 3, 277-296.

O’Hagan, A. and Berger, J. (1987). Ranges of posterior probabilities for
quasi-unimodal priors with specified quantiles. To appear in J. Amer.

Statist. Assoc., 1988.

Polasek, W. (1985). Sensitivity analysis for general and hierarchical linear

regression models. Bayesian Inference and Decision Techniques with Appli-

cations, (P. K. Goel and A. Zellner, Eds.). North-Holland, Amsterdam.

Rubin, H. (1977). Robust Bayesian estimation. In Statistical Decision The-
ory and Related Topics II, (S. S. Gupta and D. Moore, Eds.). Academic
Press, New York.

Sivaganesan, S. (1986a). Robust Bayesian Analysis with e-Contaminated

Classes. Ph.D. Thests, Purdue University, West Lafayette.

Sivaganesan, S. (1986b). Range of posterior measures for priors with arbi-

frary contaminations. Manuscript in Preparation.

Sivaganesan, S. (1987). Sensitivity of posterior mean to unimodality pre-
serving contamination. Technical Report, Dept. of Statistics, Southern

Methodist University, Dallas.



32

[37] Walley, P. (1986). Rationality and Vagueness. Manuscript in preparation.

[38] West, S. (1977). Upper and lower probability inferences pertaining to Pois-
son processes. J. Amer. Statist. Assoc. 72, 448-453.

[39] Wolfenson, M. and Fine, T. L. (1982). Bayes-like decision making with
upper and lower probabilities. J. Amer. Statist. Assoc. 77, 80-88.

APPENDIX

LeMMA Al: Suppose F € 7, a class of probability distributions which contains

all one point distributions, and that B + g(z) > O for all z. Then

A+ [ f(z)dF(z) “u A+ f(2)

rer B+ 9()aF(z) ~ "L Brg(2)

' (A.1)
g A+ [ f(z)dF(z) _ ian—l-f(z)
Fe7 B + [ g(z)dF(z) Z B+g(z)

Proor : Clearly

a+[10are) = [FETEL B gaere)

IA
T
[ =
o)

Thus
sup AL IAF(G) _ 4+ 1(2)
Fe7 B+ [g(2)dF(2) = 2 B+g(2)

But, since ¥ contains all one point distributions, equality must obtain. The proof

for the “inf” is similar. I

THEOREM AO: Suppose that go = 1, g;(¢ = 1,...,m) and h are real-valued mea-
surable functions defined on a fixed measurable space (T, A); and that ¢;(s =
0,...,m) are linearly independent in the sense that

m
Y aigi(z)=0Vz €T <= @ =0fori=0,...,m.

=0
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Suppose further that the set of measures T' on T, given by

I‘={u:/g,-du:)\.-forizo,...,m} (A.2)

where the A;’s are given constants with Ag = 1, is non-empty. Define V to be the

convex hull generated by {(g1(t),...,9(t)) : t € T}, and

A= {Q = (ao,. . .,am) € R™t1 . h(t) < Za,-g,-(t),‘v’t € T} .
=0
Then, if (A1,...,A,) is in the interior of V and A is not empty, it is true that
sup/hdp, = > &X; = inf {Z a;X;1a€ A} . (A.3)
=0 =0

uer

Furthermore, if T is compact Hausdorff with respect to some topology, and ¢;(z =

0,...,m) and h are continuous, then there exists po € T such that
/ hduy = sup [ hdu.
uer

Proor :Follows from the results in pp. 98-99 of Kemperman (1968). ||
TueoreM Al: Consider the situation in Theorem AO, with k, g;(+ = 1,...,m) €
Co(R). Then A is not empty and, for (Aq,...,A,) in the interior of V, (A.3)

holds and there exists a measure vy on R, vo(R) < 1, such that

/g,aﬁ/o:A.- 1=1,...,m (A4)
/ hdvo = sup [ hdu (A.5)
puer

Furthermore v4(R) = 1 when &, > 0.

Proor :Only the existence of 1 is not immediate from Theorem AQ. To prove
(A.4) and (A.5), let T'= RU{oo} be the one-point compactification of R with the
usual metric topology. Then T is a compact Hausdorff space, and by Theorem
AQ there exists a measure yo on T such that yy € I' and

supfhdﬂ - /hduo.

werl
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Now, taking v as the restriction of po to R, we have (A.4) and (A.5) since
h, gi(i =1,...,m) € Cy(R). Now, let & > 0 and suppose that uo(R) = Ah < 1.
Consider the problem of maximizing [ hdu over T' as in (A.2) but with the A;
now replaced by the A, where A} = X; for ¢ = 1,...,m. Then, if X2 a&\ =
inf {3°7, a;A! : @ € A}, we have, as before, that

> ax =sup [ hdu > [ hduo = Y 2k (A.6)
£=0 £=0

But Y72 6 0] < X7, @A < X, @A since & € A and A} < Ay = 1, contradicting
(A.6). Hence po(R) = 1 when @, > 0. ||

LemMaA2: Suppose that for any constant a, h(z) = (2—a) f;(z) is such that h(fy+
z) + k(8o — z) has at most two positive local extrema. Then for H(z), H;(2) as in
section 2, the extrema of [ Hy(2)u(dz) (respectively of [ H(z)u(dz)), taken over
all probability measures p(.) having a fixed value for [ H(z)u(dz2) (respectively,
for [ Hy(z)u(dz)), are attained by measures with support having one point. For
H(z), H(z) as in section 3, the condition on h can be replaced by the condition
that 1/f,(0) be bowl-shaped.

Proor : Uses Theorem Al in a way similar to the proof of Theorem 2.4.1. ||
Lemma A3: Let f,(0) be such that 1/f,(0) is convex, and [1/f,(6)]' is concave in

(—o0,t) and convex in (t,00) for some ¢. Suppose there exist a,b, ¢ such that

Hy(2) < aHy(2) +bH(2) + ¢ V=, (A.7)

where H,, H, and H are as in section 3.2. Then, equality can hold in (A.7) for

at most two values of z.

Proor : We will only prove the lemma for the case 8y = 0, since the proof for the
other general case is similar. One can write (A.7) as
1 r=z
- / (62 — a0 — b)f,(0)d8 < ¢ V= (A.8)
0

-4
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Then, 2z for which equality holds satisfy

[0 a0 -t)p(0)d0 = (A.9)

-4

and (since z is a point of maximum for the function on the left hand side of

(A.8))

1 2
%(2 — az—b)fa(2) — ;5/ (62 — ab — b) £,(6)d6 = 0. (A.10)

0
Now, letting g(2) denote the left hand side of the equation (A.9), we have
g (0) = —1(af,(0) + bf,(0)). So, if equality holds at 0, then g'(0) = 0 and

“hence ((6% — a8 — b)fz(ﬂ))' at 0 equals —(af,(0) + bf,(0)) which is 0; thus equal-
ity cannot hold at any other point. It is, therefore, sufficient to consider only

z # 0. Now, the z # 0 for which equality holds satisfy (by (A.10))
(22 —az —b) f.(2) = c. (A.11)

If z; is the smallest positive solution to both (A.9) and (A.11), then there exists
2,0 < 2y < 2, satisfying (A.11); for otherwise, (22 —az—b)f,(2) < ¢,0 < z < 2z,
and hence (1/2) f5 (¢6® — a8 — b) f.(0)d0 < ¢, which is a contradiction. It can be
similarly verified that between any two consecutive solutions of (A.9) there exists

at least one solution to (A.11). Hence

Number of solutions satisfying both (A.9) and (A.11)

< %( the number of solutions of (A.11)).

Now, (A.11) is equivalent to

c
fa(2)
We note that ¢ > 0, and that it is enough to consider ¢ > 0. Thus, (A.11) is

22—az—b=

equivalent to
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Now,

Number of solutions to g(z) =0

< (Number of solutions to g'(z) = 0) + 1.

But,

) 2 a 1
g(z)=_z+(-2) - (fz_(z)) -
Thus, solutions to g'(2) = 0 are the points of intersection of the line 2+ (-9
and the curve [l/fz(z)]'. Since [l/fz(z)]' is concave in (—oo,t) and convex in
(t,00), there exist at most two points of intersection in each of the intervals
(—oo,t) and (t,00). However, if there exist 2 points of intersection in (—o0,t],
viz t1,t3(t1 < t2 < t), then the curve [l/fz(z)]' must be below the line 2az + b in
the interval (¢1,%; + ) for some € > 0. Hence, by the convexity of [1/ f,,(z)]' in
(t,00), there exists at most one point of intersection in (¢, 00). Thus, the number
of solutions to g'(z) = 0 is less than or equal to 3, and hence the number of -
solutions to g(z) = O is less than or equal to 4. Thus, the number of solutions
satisfying both (A.9) and (A.11) is less than or equal 1/2 times 4 or 2, proving

the lemma. I

LEMMA A4: Let f;(0) be such that (1/f,(8)) is convex. Suppose that there exists

a, b, ¢ such that
— Hy(2) < aHy(2)+bH(2)+c¢ V z, (A.12)

where Hj, H; are as in section 3.2 . Then, equality can hold in (A.12) for at most

one point.

Proor : We will prove the lemma for the case 8, = 0, since the the proof for the

other case is similar. (A.12) gives

1 r= 1 r= 1
. /0 8 1,(0)d0 < o /0 07.(6)d8 + b /0 2f,(0)d0 +c Yz,  (A13)
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which can be re-written as

= [0 1.00) + 01.(6) + b1,(0) +¢) 0 > 0 V.

As before, we note that ¢ > 0, and that it is sufficient to consider ¢ > 0 and

z # 0. Further, for equality to hold at z(# 0) in (A.13),

/oz(azfz(”)+a0fz(0)+bfx(0)+c)d0 = o, (A.14)

and, because there must be local minima for the function on the Lh.s. of (A.14)

at the points of equality in (A.13), differentiating with respect to z yields that
22 fo(2) + azfs(2) + bfz(2) +¢ = O. (A.15)
Now (A.15) is equivalent to

1

c

Ayl o 1

c ¢ fz(2)
Since az?+4bz+c is strictly convex and (_fz;(z)) is concave, the number of solutions
to (A.15) is less than or equal to 2. By a similar argument to that in Lemma A3,
there exists at most one solution to both (A.14) and (A.15). Hence, support(uo)

has at most one point. I



