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ABSTRACT

If {¢,} is an orthonormal system, {a,} is a sequence of random variables such that
dn(an)? =1 as., then f(t) = | X, @ndn(t)|? produces a randomly selected density func-
tion. We study the properties of f under the assumptions that |a,| is decreasing to zero
at geometric rate and {¢,} is one of the following four function systems: Trigonometric,
Jacobi, Hermite or Laguerre. It is shown that, with probability one, f is an analytic func-
tion, has at most a finite number of zeros in any finite interval, and the tail of f goes to
zero rapidly.

1. INTRODUCTION

Let {¢,: n =0,1,2,...} be a complete orthonormal basis of square integrable func-
tions with respect to a measure u, {a,} be a sequence of random variables on a probability

space (2, 7, P) such that
P(Zaszl):]w (1)
n

W(t) = 2 andn(t) and f(t) = [W(t)|%2. The random function f, being non-negative and
having mass [ f(¢)u(dt) = Y, a2 = 1 almost surely, is to be considered as a randomly
selected density function.

A particular choice of {a,} which satisfies (1) is proposed in Chen and Rubin (1986):
we may define a,, as:

T R(UU - UR)Y2(1 — Upy)V? ifn > 1,

where the signs of a, are arbitrarily chosen and {U,} is a sequence of i.i.d. random
variables with 0 < U,, <1 and P(U, # 1) > 0. The resulting random density function f is
useful in a simulation scheme in which the performance of various density estimators are
compared on the sample being generated according to this randomly selected density z.

It is desirable to study the properties of the above randomly selected density function
f. One reason is that a density estimator which performs well in the above mentioned
simulation scheme should be appropriate for estimating those unknown density functions
having “typical” properties of the randomly selected density functions.

In this paper, we study the properties of the randomly selected density function f.
We focus our attention to those f(t) = | Y an$,(t)|? which {a,} is defined in (2) and {¢,}
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is one of the following four orthonormal systems: the trigonometric, Jacobi, Hermite, or
Laguerre function system. In section 2, we prove that, with probability 1, f is an analytic
function and has at most a finite number of zeros in any finite interval. In section 3, we
prove that if {¢,} is either the Hermite function system or the Laguerre function system,
the tail of f behaves at worst like a power the density of the base measure u. As a result,
the k-th moment of f exists for all £ > 0.

In the following, we list the definitions of the four orthonormal bases and their corre-
sponding measures u. '

Trigonometric function system:

Fort €[0,1],57 > 1,
1 ifn=0,
$n(t) = { V2cos(2mjt) ifn=25—1, (3)
V2sin(27jt) if n = 2j.

Jacobi function system:

w4 = [ BICED RS

where o and 3 are real numbers greater than —1.

Fort € [-1,1],n =0,1,2,...,

() = c{@P) PLP) (z), | @
where ; |
(e,8) __ {2n+a+ﬂ+1 T(n+1)T(n+a+B+1) }1/2
Cn 7 = 2a+A+1 Tln+a+1)T(n+6+1)
and
P,?’ﬁ)(-’l?) = (1 — 2:)“0‘(1 + :c)"ﬁ(—l)nz—n(n!)—l(Ed;)n{(l _ z)n+a(1 + :):)n"'ﬁ}.

For the special case o = # = 0, the function system is called the Legendre function system.

Hermite function system:

There are several definitions of this function system, but for the convenience of pre-
senting this paper, we adopt the one used in Szegd’s book.

A) = [ eVat,
w(4) /Ae t
Pn(t) = 742 )"V 2H, (1), n=0,1,2,..., (5)
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where Ho(t) =1 and

Laguerre function system:

where « is a number greater than -1.

Fort >0,n=0,1,2,...,
$n(t) = (n)V2(D(n + & + 1)) 727222 () (1), (6)

where LSLO‘) is the Laguerre polynomial of order o

1 fn=0
(a) — ]
Ly (t) = { (n!)_lt""‘et(d%)n(t”""ae_t) ifn>1.

2. THE ANALYTIC PROPERTY OF f.
In this section, we want to prove the following theorem:
Theorem 1: -

If {an} is defined as (2), and {$,,} is one of the four orthonormal systems: trigono-
metric, Jacobi, Hermite, or Laguerre function systems, then

P(f is an analytic function)
= P(W is an analytic function)
=1, (7)

and

P(f has at most finite number of zeros in any finite interval)

= P(W has at most finite number of zeros in any finite interval)
=1. (8)

The following two lemmas are useful in proving Theorem 1.

Lemma 2: If {b,} is a sequence of numbers, {¢,} is a sequence of analytic functions
in a closed domain B with boundary 8B, and if there is a sequence of positive numbers

{cn} such that
|bn| < ¢y, for large enough n, (9)
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and
Z en®n(2) is uniformly convergent on 9B, (10)

n

then
Z bndn(z) s an analytic function in the closed domain B.
n

Proof: This is an easy application of the Weierstrass theorem (See Smirnov (1964)
p.42) and the Weierstrass M-test on uniformly convergent series.

Lemma 3: If {U,} is a sequence of positive, i.i.d. random variables, and X is a posttive
constant such that A > exp(ElogU), then

P(UiUy---U, > A" i0.) =0. (11)

Proof: Applying the strong law of large numbers, we have

P(UUy---Up > A" io0.) = P(% Z log(U;) > logA i.0.) =0,
1<j<n
since
1 a.s.
~ > log(U;) 25 E(logU) < log A.
1<5<n

Proof of Theorem 1:

First, we notice that it is suffice to prove (7) since (8) is an easy consequence of (7),
the uniqueness theorem for an analytic function, and the fact that P(W(t) = 0 for all
t) = P(a, = 0 for all n) = 0.

Define Ao = exp( %E logU). From the assumptions about U/, we have Elog U < 0, and
hence 0 < Ag < 1. Apply Lemma 3 and the fact that A2 > A3 = exp(E log U), obtaining

P(lan] > A7 io.) < P((UUz---U,)Y2 > 22 io.)=0. (12)

If we delete a set of probability zero, we may and do assume that
lan] < AG  for large enough n. (13)
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In order to apply Lemma 2, we extend the definition of {¢, } to the complex domain C
in a natural way. For each case, we find a suitable closed domain B such that ), A%¢,(z)
is uniformly convergent on the boundary of B, 98.

Trigonometric function system: for n > 0,

¢(z) _ \/E %(ei21rnz + e—i27rnz) for ]. =920 — 1,
J - \/5 _21_i(ei21rnz . e—i21rnz) for J. = 2n.

~ Lete= %log(%) >0,and B = {z: |z —t| < € for some t € [0,1]}. For z € D. and
J = 2n or 2n — 1, we have

1, . . .
|¢J(z)l S \/2_ §(|ez27rnz| + Ie—z21rnz,) S \/Eeﬂ'(.H-l)e- (14)

Since Y, AB+v/2e™¢ = /2 Ag/z < 00, Y, AZ¢,(2) is uniformly convergent on B.
Hence, by Lemma 2, W(2) = ) anén(2) is an analytic function on B D [0, 1].

Jacobi function system:

Let us quote a well-known result about the Jacobi polynomial:

If 2 ¢ [-1,1], then lim |P{*P)(2)|Y/" = |2 + (2% — 1)1/?], (15)

where the branch of (22 — 1)1/2 is chosen so that the limit > 1. (See Szegd (1939) p.195
(8.23.1)).

Define B = {u + v : (ﬁ)2 + (,\_—}’_-3\-)2 < 1} where A € (Ag, 1) is a fixed number.
For z = u +tv € 8B, let w = z + (2% — 1)1/2 such that lw| = r > 1. We may represent w
as w = re*? for some real number 6. Notice that

1
utiv=z= E(w +w ) =(r+r"Ycosd+i(r—r ') sind.

2 2
u + u _1q
<r+r—1> <r—r—1) '

Hencer +r '=A"1+dandr—r~t=X"1-) ie.

|24+ (22 = 1)Y2| =r = X~! for z € 88B. (16)

We have

Since for z € 9B,
Hm A2, (2)|Y/™ = Lim |AZel®P) P{P) (z)|2/"
n—oo n—00
=Xo X 1x|z+ (22 —1)?
- Ao/)\
<1. (17)



The series ), Af¢n(2) is a uniformly convergent series. Therefore, by Lemma 2, W
is an analytic function on B > [-1,1].

Hermite function system:

The following results about Hermite series can be found in Hill (1939) p. 885, Theorem
2.2, and Remark.

The series Y ., bne= = /2H, (2) is analytic in the strip
z€{u+iv, —co <u<o0,—7<v<T} (18)

where : 1 0
7= —limsup — log((Tn)nﬂ[bn]).

n vV 2n
Applying this result to the series )~ AZ¢,(2) = Ag(Znn!\/F)_l/ze_zz/ZHn(z),

7 = —limsup log((27%n)1/4A2)

1
n vV 2n

= lim g log(Ao)

= 0o
since A < 1. Therefore, ) an¢,(2) is an entire function.
Laguerre function system:

The following statement above the Laguerre series, although not stated explicitly, is
implied in Szegd (1939) p.246 (9.2.8) and p.197 (8.23.3).

anLSf‘) (2) is analytic in {z : R((—2)Y/?) < 7}, (19)

where

7 = liminf — log |b,.|.

1
n—00 2\/n
The region described in (19) is

{u+w:u>—-rand —Vu+72<v<Vu+r2}

which is the region surrounded by a parabola with its focus at the origin. The formula for
7 results from the root test and formula (8.23.3) p.197 of Szegd (1939).

For the Laguerre series

D AZ$n(2) = /22002 D ALY (0 + a+ 1)) "V2L (),

1
T = liII::linf — 2\/5 Iog()‘g(n!)l/2(r(n+a+ 1))—1/2)
. 1
= nli[Ig_o —_ mnlog(Ao)
= o0



since Ag < 1. Therefore, ) ¢n(2) is an entire function.

3. THE TAIL BEHAVIOR OF f

In this section, we show that the tail of f converges to zero very rapidly. In the
following, we use ¢, ¢, c1,... to represent constants.

Theorem 4: If {an} is defined as (2), and {$,} is the Hermite function system, then
there are positive constants ¢ and p, p < 1, such that

P(W(t)] <ce ®/0+P)  forallt,—oco <t < oo0) = 1. (20)

Proof: First represent W as

= Zan¢n(t)
—L.on i d —$2
=Y m @ ) TH(—1) e ()"
= ¢y Z 2"nl) "% (— a,n/ (2iz) e T2te gy (21)

—o0

where the path of integration is along the line Im(z) = —v.

Interchanging summation and 1ntegrat10n, which is valid under the condition consid-
ered below, we have

W(t) = e /_Z o~ +2itz Zla’" %ﬂﬁd% (22)

Let p be a constant such that A < p < 1. Then, by (13) and the ratio test,

Z lan|?p™™ < oo. (23)

Since

IZ (— \/_ZCD I2<(Z|anl2 —n Z|—\/_Z:B|n "

n

= cyetrlel’, (24)
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we have, setting z = u — 1v,

)
IW(t)I Scl/ e~ % +21t:z:”Z \/—zz) I =

)

< 63/ eIR(—:c +2it:c)+p|z|2dz
—o0
co

— 63/ e—(uz—vz)—2tv+p(u2+v2)du
—00

o0
= cge(ltp)v?—2tv / e~ (1-9)¥* gy
—00

— c4e(l+p)vz—2tv.

Set v = ﬁ}—], we have _
R _
W (£)| < eqe™ /(1HP), (25)

Theorem 5: If {a,} is defined as (2) and {#.} is the Laguerre function systcm then
there are postive constants ¢ and wg, wo > 2, such that

P(W(t)] < celz=20)%4% for t>1)=1.

Proof: By (5.4.8) page 101 of Szegd (1939), for ¢ # 0,

1
e L () = —— [ e %2t (z — ) "4y, (26)
2ms
where the contour enclosed z = ¢, but not z = 0.

Let w = z/t. Then

1 wn+a
L __t/ —tw_ WS o7
w (¢) omi- | € (w—l)""'ldw 27)
consider the contour w
|——7l= o+, | (28)

where )¢ is the same as in (13) and e is a positive constant such that Ao + & < 1. This

. . _ 1 . Xote
contour is a circle centered at w = T=CoFe) with radius ﬁ%

It is easy to see that

n+a
]L(o‘)(t)|— tl/ tw _1n+1d w|
< c5et(1 wo)()‘o +€)7", (29)
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where wq is the minimum value of R(w) on the contour of integration. Also, % < wg < 1.

Now

IW(t)l = |Za’n¢n(t)|

< Z |an|(n) 2 (T(n + a + 1)) Fe~ 5t 5|1 (1)

< esel"FHI=w)4E N g, |(n) 2 (D(n + a+ 1)) "3 (Ao + &)™ (30)
Since Y
_ 0 -
- < n
lanl(Xo +&)™™ < (A0 n z-:) for large n
and

(n!)%(].‘(n +a+ 1))—% ~nT%,

the infinite series in the last expression of (30) is a convergent series. We have the conclu-
sion:
1 o
W (2)| < ceelz20)%,

An easy corollary of Theorem 4 and Theorem 5 is the following:

Corollary 6: If {a,} is defined as (2), {¢,} is either the Hermite function system or
the Laguerre function system, then for all &,

P(/Z it £(£)dt < o0) = 1.

REFERENCES

[1] Chen, J. and Rubin, H. (1986) Drawing a random sample at random. To appear in:
Computational Statistics and Data Analysis.

[2] Hill, E. (1939) Contribution to the Theory of Hermitian Series, Duke Mathematical
Journal 5, pp. 875-936.

[3] Smirnov, V.I. (1964) A course of Higher Mathematics, vol. III, part 2. Addison-Wesley
Publishing Co., Massachusetts.

[4] Szegd, G. (1939) Orthogonal Polynomials. American Mathematical Society, New York.



