An Efficient Method of Generating Infinite-Precision
Exponential Random Variables

by

Herman Rubin!
Purdue University

Technical Report #86-39

Department of Statistics
Purdue University

1986

1 Research supported by the National Science Foundation under Grant DMS-8401996.

An Efficient Method of Generating Infinite-Precision
Exponential Random Variables

by

Herman Rubin

ABSTRACT

We give a method of generating random variables which, assuming we have perfectly
random bits available, are exactly exponential with mean 1. The procedure produces the
integer part and zeros out some of the bits in the fractional part, all other bits in the
fractional part being independent random bits. The procedure uses an expected number
of 4.383154 bits to obtain the integer part and the mask, whereas the information in these
quantities is 3.647347 bits. Unfortunately, the architecture of computers makes it difficult
to carry out the operations efficiently because of bookkeeping. The procedures are as easy
to implement on microcomputers as on large computers, although certain instructions not
found in high level languages may speed up the implementation on some machines. Vector
machines which have good merge instructions (combining vectors by using a bit vector to
decide from which vector to take the next element of that vector, not the element in the
corresponding place) and other cute instructions, such as the CYBER 205, can vectorize
the procedure.

Introduction. The procedure is based on the fact that the waiting times of a Poisson
process with mean 1 are exponential with mean 1. Thus if we let N; be independent
Poisson random variables with mean 1, K is the number of initial 0’s in the N sequence,
and J = Nk, the exponential random variable is E = K + min(Uy, ..., Us). The way
that the minimum is formed is to find the first place where the uniform random variables
differ, put a O in that place, and proceed using only the uniform random variables which
are 0 there, until we get to one random variable only. Of course, we need only get the right
distribution of the locations of the 0’s, and this is what we do. We use the fact that, in
generating Poisson random variables with mean 1, we find it convenient to also generate
geometric random variables g4 with parameter 1/4 if J > 3,J # 5, and geometric random
variables g16 with parameter 1/16 if J > 5. Very little of this extra information is not used
in the process. Now let us give the procedures for obtaining the minimum of j uniform
random variables by masking out bits in one uniform random variable. Initially we assume
the mask bit b is in the place to the left of the binary point. We shall use G for a new
geometric (1/2) random variable each time, and B for a new 50-50 test each time.

If 7 = 1, exit.

If 5 = 2, shift b right G places; mask out b; exit.

If j = 3, shift b right g4 places; mask out b; B;j =1, j = 2. (The last step can also
be done as shift b right G — 1 places; mask out b; exit. This is what we have programmed,
as it uses less tests, but which procedure to use is optional.)

If j = 4, we use both g4 and G. The probability that ¢4 = +,G = k is % x 2~ %i-k,
so if ¢ < k, this is just the probability that the first mask bit is ¢, the new 3 is 2, and we

1

have k — 7 as an independent geometric (1/2) random variable to continue masking, while
if ¢+ > k, the first mask bit is k, the new 7 is equally likely to be 1 or 3, and if it is 3 we
use ¢ — k + 1 as our new g4.

If j = 5, we may use g16 as the first mask bit. The probabilities for the new j are as
1:2:2:1, which can be obtained by the use of B and a 2:1 test. The most efficient use of
bits to obtain one 2:1 test yields a g4 as a free byproduct.

If 7 = 6, we may use min(G, ¢g16) for the first mask bit. If they are unequal, the
difference can again be used as a random variable of the same type, and we shall use that
notation. If g16 > G, the new j is 5. If they are equal, B: 5 = 2, j = 4. If G > ¢16, let
the new G be 4k — h,h = 0,1,2,3. Now if we set the new j tobe 1if h < 1,3 if h = 3,
and if h = 2, choose 3 or 5 with equal probabilities, and if the new j is 5, set g4 = k. This
gives the correct probabilities.

Ifj=171et G=6k—h,0<h<6. Then k is the first mask bit, if h € {0,1,5} we
set the new j to be 3 or 4, and otherwise if m = g4 — 1 is 0 we set the new j to be 2 or 5
(neither of which uses g4), and otherwise the new j is 1 or 6, and if j = 6, g4 = m.

For j > 8, we have just used brute force.

We do not claim that these procedures are optimal, but the amount of improvement
cannot be great unless random information is recycled. For example, if § = 4 with prob-
ability %, for 5 = 5 with probability %, for 7 = 6 with probability %'27-, and for 5 = 7 with
probability %, there is an unused g4, and for 7 = 6 with probability %—?—, and for 7 = 7 with
probability %, g16 is never used. Certainly for j > 7, better procedures can be used both
for generating j and for finding the minimum of j uniform random variables. However,
the wastage in work is only about 0.02 bits per exponential random variable generated, so

that it does not seem worthwhile to do anything about it.

The other place where a better procedure could be generated is to use a more efficient
means of generating Poisson random variables. The improvement possible here is about
0.25 bits per Poisson generated, or 0.39 per exponential random variable generated. Most
of this inefficiency is in the fact that we only use the two least significant bits of the first
geometric random variable in the process. The unused information is a ¢16, which has
nearly 0.36 bits of information. These procedures are also difficult to implement. The rest
of the inefficiency is in the fact that there are different paths to a given mask, and these
are almost impossible to do much about.

In the procedure the Poisson random variables are not formed unless they are at least
8, but only become internal states of the process. ~

What we do is in each cycle is either to exit without generating anything or to generate
indexpendent random variables X and Y in {U,0,1,...}, where U means undefined. If the
random variable is at least 3 and not 5, an geometric random variable g4 with p = 1/4 is also
generated, and if the random variable is at least 5, a g16 with p = 1/16 is generated; these
are essentially free, and may be regenerated in the process as needed. We never separate

2

0 and 1 until we finish the use of that particular Poisson variable. As a preliminary
step we generate random variables S and T in the set {—1,1,3,4,5,...}, T # 5, with
P(S = s,T =t) = 27°7t/1.5, and just abort the cycle with probability 1/320. It might
pay in the case of this abort to generate S only with probability 11/12 in this case. That
this can be useful is due to the fact that there is already a 2:1 division. We will call
this the alternative method in what follows. We then use S(T) to generate X (Y), with
P(X = z,T =t) =27%/(7.5x!), and similarly in the other case. Thus the probability that
X =mis '8%{ and the probability that Y = m is gélmf. The “t” blocks in “work” get
the values of X and/or Y if they exceed 3, although a value less than 8 does not appear
except as a state. Most of the inefficiency of the procedure is in the generation of random
variables with probabilities proportional to 2%, = —1,1,3,4,6,7,.. ., but the author does
not know of any ways to do this better which are not extremely complicated.

Procedure. We now give the detailed procedure for a sequential computer. On some
computers, one may be able to guarantee that a certain number of geometric random
variables with p = 1/2 are available and that enough bits are available for tests, assuming
that the Poisson random variable process terminates by 7. If it does not, it may be
necessary to check in the cases where we consider setting a variable to a value above 7, or
in processing a value over 7, whether enough random information of the appropriate kind
exists. On certain computers, such as the VAX and the CYBER 205, for which a right shift
is a left shift by a negative amount, all geometric random variables should be negated in
their construction. Of course, conditional transfers should be done differently on different
machines. For each instruction, we give the expected number of times that instruction is
taken per cycle, multiplied by 23040 to eliminate most fractions. The expected number of
exponential random variables produced is %(c — 1), or 1.25291383, or 28867.1347 when
multiplied. If we use the alternative method, the expected number of exponential random
variables produced and the expected number of bits used for output purposes increase
by 1/700, while the expected number of bits used in the preliminary process increases
from 66000 to 66048. This decreases the expected number of bits used per exponential
random variable generated by 0.001601; however, the amount of additional computation
is less than would be expected, and this might pay. The expected number of times each
operation in work is done is increased by 1/700 except the integers ending in “36,” for
which we must round up to the next integer. In the preliminary part, we indicate the
additional computations.

We now produce some abbreviations to simplify the description.

done if enough exponential random variables have been obtained, finish up

chg check if there are enough geometric random variables available
for the next cycle and refill if necessary
chb check if enough random bits are available for the next cycle

and refill if necessary

OoUuT store the exponential random variable and initialize for the next

P1 add 1 to the integer part

o1 OUT with probability 1/2 and P1 with probability 1/2

G at each use, a new geometric random variable with p = 1/2
(may be obtained as the distance to the next 1 in a random bit stream)

OUT2 clear the G’th bit in the fraction, store and initialize

B with probability 1/2 do the first branch; otherwise do the second
branch (if the second branch is omitted, fall through)

work a subroutine to be transferred to (not called) to process values
greater than 2

R return to the start of the cycle

q a mask of 1 in the bit to the left of the binary point

start of cycle

done
chg
chb
** get S and T and set up **

by = G&3 ** get the last 2 bits of G ** 23040
go to (aa,ab,ac,bc) if by=(1,2,3,0) 23040
aa: 01;01;R ¥ S =T =-1 ** 12288
ab: B 6144
OL;0UTZR # g] T =1 ** 3072
OUT2;01;R ¥*S =1, T = -1 ** v 3072
be: u = G;j if(u=1) 1536
OUT2;0UT2;R ¥XQ =T =1 ** 768
else if(u=2) : 768
u=G+2; work;OUT2:R ¥*S =y, T=1%** 384
else if(u=5)R 384
else OUT2;work;R ¥*S =1, T=u** : 336
ac: u=G+2; B 3072
work;O01;R ¥*S =u, T =-1** 1536
if(u=>5)goto cc 1536
O1;work;R ¥*8=-1,T = u** 1344
cc: v=G+2;if(v=5)R 192
u=G+2;work;u=v;work;R ¥* S =u, T=v** 168

If we use the alternative method, if v = 5 under bc we go to alta instead of aborting,
and if v = 5 under cc we go to altb. The additional code is

alta: OIL;R ¥ QG =1 ** 48
altb: u=G;if(u=1) 24
02;R % G 1 12

else if(u=2)R ' ** abort ** 12

else work;R ¥ S > gk 6

We now have given the complete procedure except for the processing (work) of the
values of S or T which are at least 3. We now proceed to do this. Initially, u is the value
of S or T, and we shall use z for the value of X or Y. The computation separates into
first obtaining the Poisson random variable and the additional g¢’s, occasionally aborting
(“return”). The second part does the shifting and masking; it never aborts. We now
present the construction of the Poisson information.

work: b=q ** initialize the bit to 3936
insert in the mask**

if(u=3) 3936

g4 = 1; goto {3 *k g = 3 ** 2100

if(u even) 1836

B 1400

g4 = u/2; goto {3 ** g = 3 ** 700

g4 = u/2 -1; goto f4 g o= 4 ** 700

if(u=>5)return ‘ 436

if(u mod 4 = 3) 175

t5: g16=(u-3)/4; goto f5 ** g — p ** 140

t6g: g16=(u-5)/4; u=G; g4=(u+1)/2;if(u odd) ** z > 5 ** 35
16: goto f6; *k g = 6 ** 23.3333
t7g: else u=G; w=2;i=0; while(i<u){ 11.6667
w=w-+w;if(w>7)w=w-7} , 11.6667
if(w<4)return 11.6667
B: goto 7 : 6.6667
t8g: z=S8§; 3.3333
thg: chgu=G;w=1;i=0; while(i<u){ 3.7444
w=w+w;if(w>z)w=w-z} 3.7444
w=w+w;if(w<z)return 3.7444
B 9504
goto fh ** g > T Rk 4752
z=z+1; goto thg ** try 1 more ** 4752

Now let us mask out the output. If the current number being minimized is %k, the
location of the “change” bit is geometric 2!~ places to the right of the current mask bit.
For k=2, 3, 5, and 7 we do this in a more-or-less straighforward manner. We then use the

5

binomial coefficients to get the next step. For k=4 and k = 6 we use a more complicated
procedure. For k >7 we just look at k random bits until a number other than 0 or k
occurs. The expected numbers are irrational because we are taking into account the fact
that a given value of k can also arise due to the reduction of k until 1 is reached. The
detailed instructions for shifting and masking are:

f4:

3:
f2:
f1:

f42:

f5:

u=G;c=b>>u;mask c;
if (u>g4)goto f42;
B

goto f1;

gd=g4+1;
b>>g4;mask b;b<<1;
b<<G;mask b;
OUT;return;
b>>g4;mask b;goto f1;
b>>g16;mask b;u=G;B

£512:if(u odd)goto f2

else goto f1

534:g4=(u+1)/2;if(u odd)goto f3;

f6:

f6a

f65:

else goto 4
u=G;if (g16>u)goto £65;
else b>>g16;mask b;if(g16 =u)
{B
goto f4;
goto f2;}
else u=u-g16;
go to (f3,f6a,f1,f1) if (u mod4)=(1,2,3,0)
B

goto 3;
g16=(u+2)/4;goto f5
{c=b>>u;mask c;goto 5}

** next k is 1 or 3 **
** next k = 1 **

** next k is 2 **

** next k is 1 or 2 **

** next k is 3 or 4 **

730.5858

417.4776
208.7388
208.7388
3065.0225
3118.9221
3667.1347
313.1082
142.9446

- T71.4723
23.8241
71.4723
23.8241
23.5742
22.8137
11.4069
5.7034
5.7034
11.4069

3.0418
1.5209
1.5209

.7605

f7: u=G;b>>(u+5)/6;u=(u+4)mod 6;
if (u<3)goto f7a
B
goto f3
goto f4
f7a: g4=g4-1;if(g4+#0)goto f716;
B
goto f2;
goto f5;
f716: B
goto f1;
goto 16;
fh: b>>1; chb; i=#of 1’s in k bits;
if (i=0 or i=k)goto fh;

k=i; mask b; goto (f1,f2,f3,f4,f5,16,f7,fh) for

i=(1,2,3,4,5,6,7, >7)

** number of bits looked at **

3.3504

1.8613
.9307
.9307

1.4891

1.1168
.5584
.5584
3723
.1861
.1861
4728

3.8388
4632

