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Abstract

Lower bounds on Bayes factors and posterior probabilities in multinomial
tests of point null hypotheses are developed. These are then applied to derive
lower bounds on Bayes factors and posterior probabilities for yZ-test of fit,
in both exact and asymptotic situations. The general conclusion is that the
lower bounds tend to be at least an order of magnitude larger than P—values,
causing serious questions to be raised concerning the routine use of P—values

for these problems.
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1 Introduction

1.1 Overview

Lower bounds on Bayes factors and posterior probabilities of point null hypotheses,
Ho, have been discussed in Edwards, Lindman and Savage (1963), Dickey (1977),
Good (1950, 1958, 1976), Berger and Sellke (1987), Casella and Berger (1987),
Berger and Delampady (1986), and Delampady (1986a, 1986b, 1986c) among oth-
ers. The startling feature of these results is that they establish that the Bayes
factor and posterior probability of Hj are generally at least an order of magnitude
larger than the P-value. When such is the case, the usefulness of P-values as
measures of evidence against Hj is highly questionable.

One common rejoinder is that P—values are valuable when there are no alter-
natives specified, as is commonly the case in tests of fit. Without alternatives,
calculation of Bayes factors or posterior probabilities is impossible. The ultimate
goal of this paper is to address this issue for a particularly common test of fit, the
x?—test of fit. It will be argued that alternatives implicitly do exist, which allow
for the computation of lower bounds on Bayes factors and posterior probabilities.
The overall conclusion is that P—values for x*-tests of fit are highly misleading.

The lower bouﬂds on Bayes factors and posterior probabilities are also of direct
interest to Bayesians and likelihoodists. They provide a bound on the amount of
evidence against the null hypothesis, in a Bayes factor or weighted likelihood ratio
sense, irrespective of the prior distribution or likelihood “weight function”.

In developing the results for the x*-test of fit, it is first necessary to deal with

testing of point null hypotheses in multinomial problems. This is the subject of



Sections 2 and 3; Section 2 deals with lower bounds over the class of conjugate
priors, and Section 3 with lower bounds over a large class of transformed symmetric
priors. Section 4 discusses the xZ—test of fit, and Section 5 presents some comments

and conclusions.

1.2 Notation

We let f(x]|0), 6 € © C Rt denote the density of the random quantity X. It will
be desired to test

Hy:0 =20y versus Hy:0 #4,,

where 6, is a specified element of ®. Assume that a classical significance test is
based on some test statistic T'(X), large values of which provide evidence against

the null hypothesis. The P—value, or the observed significance level, of data x is

defined to be
a = Py (T(X) 2 T(z)). (1)

The example that will be of most interest in this paper is the multinomial situa-
tion. When specifically discussing this, we will use = (ny,n3,- -, n;) instead of X
to denote the random multinomial cell frequencies, and p = (py,p2,- - -, p¢) instead
of 0 to denote the unknown cell probabilities. Thus g will be Multinomial(N, p),
with N = Y!_; n; the fixed sample size; 0 < n; < N for i =1,2,...,%

t
pEA = {p:0<p;<lfor1<i<¢;) pi=1} (2)
i=1
and probability density (mass function)
Nt
flolp) = =m—II»" (3)

!
=1 n" =1



The problem of interest is then to test the hypothesis:
Hy:p=p" against Hy:p# 2, (4)

where p° is a specified vector in A. The classical multinomial test has a P—value

of

a = Pp_o(y: fyle’) < F(nlp). (5)

However, this being a hard computation, the most popular approach is to use the

o . (n; — Np)* . o
x* approximation, P(x}_; > O), where O =) _ —NT’. This approximation
=1 p;

will be considered in Section 4.

Approaching the general testing problem from the Bayesian viewpoint, assume
that « is a prior distribution on © with prior probabilities 7y = P™(H,) and
1 — my = P7(H,), and conditional density given H, is true, g(6) (on {0 # 6o}; we

define g(6y) = 0). The conditional marginal density of X with respect to g is

my(z) = /; f(z/0)g(8) d8 > o, (6)
which we assume to be positive. The quantities of interest are then

(i) The Bayes factor of Hy to Hy:
f(zl60)

my(z) ’

B™(z) (7)
(ii) The posterior probability of Hy:

1 -1

R ®)

The Bayes factor is of interest to a Bayesian because of the well known rela-

P (HOI-'B) — [1+ (1 ;07"0)

tionship that
PT(H()IIB) . o

Pr(Hllx) - (1 _ 7l'0) ' Br(z); (9)




thus B”™(z) is the factor by which the data changes prior odds of H, to H; to
posterior odds. By considering B™(z), one thus considers the impact of the data;
the prior probabilities of the hypotheses can be ignored. A likelihoodist is also
interested in B*(z), since it is the ratio of the likelihood of H, to the average
or weighted likelihood of H,, the averaging being with respect to the “weight
function” g.

Specification of g is natural and important to a Bayesian, but is resisted by
others. Of interest is that lower bounds on B™(z) (and hence P7(Hp|z)) can be
found for important classes of densities g, and that these lower bounds tend to
be surprisingly large. If G is a class of densities g under consideration, we will
consider the lower bounds

Bs(e) = inf B"(a), (10)
and
Po(Hole) = inf P*(Holz)

-1
ppd=m) L] (11)
o Bg

For the most part, we will only present results in terms of Bg, since Pg(Ho|z)

requires the additional specification of .

1.3 Choice of G

A lower bound, such as Bg(z), is particularly useful when G is large enough to
include all densities which are plausible, but is not so large as to include unreason-

able densities. If reasonable densities are omitted from G, one could argue that



Bg is not actually a valid lower bound. If G contains unreasonable distributions,
on the other hand, then the lower bounds may be driven too low to be useful.
Note, in particular, that minimizing B™(z) over g has the effect of finding that

g € G which is most favorable to Hj.

All these lower bounds thus contain a potential substantial bias towards Hj,
and it is obviously desirable to minimize this bias; this can best be done by re-
stricting G in as many ways as are considered reasonable. (Surprising results can
be obtained even if G is allowed to contain all distributions; indeed, Edwards,
Lindman and Savage (1963) show that B;(z) is often still much bigger than P—
values.)

A Bayesian might restrict G to a single distribution, g;. A robust Bayesian
might restrict g to a small class of densities, say, those in a neighborhood of
some go (cf. Berger and Berliner (1986) and Sivaganesan and Berger (1986)). But
any such restrictions require specific subjective input.. Of interest to Bayesians and
non-Bayesians alike are choices of G which require only general shape specifications

concerning G. Two such possibilities are

Gc = {g which are conjugate to f(z|f) and such that E9[f] = 6,}, (12)

Gys = {unimodal g, symmetric about 6,}. (13)

The appeal of these two classes of densities is that they seem to be “objective”
classes. They acknowledge the central role of 6y, and seek to spread mass about
fp in ways that are not biased towards particular alternatives. Lower bounds
derived from such G could be termed “objective lower bounds,” and are thus

of interest when subjective input is unavailable or being avoided. Many other



similarly “objective” classes could be considered; a detailed study of a number
of such classes in Berger and Delampady (1986) (for the binomial case) indicates
that G¢ and Gyg are quite representative, and also satisfactory in terms of being
neither too big nor too small. (It might appear that G¢ is too small, typically
including only a small dimensional class of distributions; use also of Gy should
allay any such fears.) Use of G¢ is considered in Section 2, and use of Gyg in

Section 3.

2 Bounds for Conjugate Priors in Multinomial

Testing

2.1 Introduction

For the Multinomial distribution, f(n|p) in (3), the Dirichlet densities form the
usual conjugate family. The density of the Dirichlet distribution with parameters
],f,; = (khk%" 'akt) ’ is
N k) ¢ .
gk(P) = _(tX:L)Hpik'_la ki > 0’ 1= 1’2,'- ',t; P € A.
- i=1 T (ki)

=1
The mean of gj> is the vector (Xf%=1 k;) "'k, which equals p° = (p?,p3,- - -, p})

only if k = ¢p® for some ¢ > 0. Thus, in testing Hy : p = p° versus H; : p # 1°,
the class of conjugate densities with mean equal to p° is

Go = {g:k=cp’c>0}. (14)
As discussed in Subsection 1.3, we will seek

Bo(n) = Bg,(n) = inf B"(n) (15)

9€Go



and

l-m) 1 17

Mo - Be(n)

Po(n) = inf P*(Hols) = |1+ (16)

It should be observed that Good(1967) extensively discusses the multinomial test-
ing situations with conjugate priors, and Edwards, Lindman and Savage (1963)
discuss the possibility of finding B, for the binomial problem. Extensive discus-
sion of the binomial problem can be found in Delampady (1986a) and Berger and

Delampady (1986).

2.2 Exact Results

For the conjugate priors g}, it is possible to exactly calculate the marginal density

as

mo () = [ f(nlp)g(e)dp
P(Xioi ki) | THicy T(m + ki)

. 17
i T(k) T(N+Xi, ki) a7)
The following result is an immediate consequence.
Theorem 1. The lower bound on the Bayes factor over G¢ is given by
IIEo, T(epd)| T (e + N) ITE., (09)™ ‘
Bo(n) = g L=t DD Do+ M) Ty (o)™ 18)

B T(9) I T + o))
The minimization in (18) can easily be carried out numerically. For selected values
of t, p° and n, Bo(n) is tabulated in Table 2 along with the corresponding P-
values. Table 2 is given at the end of Section 3 until which we defer discussion of

the results.



2.3 Asymptotic Results

As N — oo, the behavior of By(n) is given in the following theorem.

Theorem 2. As N — oo, suppose that the observation vector n satisfies
n;— N p 1
’Zl(c t) _K+O(N),
where K >t — 1 is a fixed constant. (The sum will, of course, converge to some

fixed constant with probability one.) Then,
lim Bo(n) = By(K), (18)

where
By (K) = inf o' exp(—%(l - d’)K).

Proof: See the Appendix. o

B (K) is the bound obtained from the following normal problem. Let X =
(X1, X3, -+, X4-1) ~ N;—1 (4,1), and suppose that it is desired to test Hp : g=46
versus Hy : § # fp. Let G be the class of all multivariate normal densities,
spherically symmetric about the vector §o. Then, the lower bound on the Bayes
factor for this problem, over the class G, is precisely B (K), where K = || X — 8|2,
as is proved in Delampady (1986a). This lower bound, calculated for a number of
different dimensions, is displayed in Table 1 in Section 3; discussion is deferred to

the same section.



3 Bounds for Symmetric Priors: Multinomial
Testing

When p° = (t71,...,¢t7)", it is not difficult to define a notion of symmetry for
conditional prior densities g, leading to a class such as Gy in (13). For general p°,
however, usual notions of symmetry are quite inappropriate. To see this, suppose
that p° is near the edge of A (the parameter space). Then any “symmetric” prior
would be concentrated quite near this edge. Calculations with such priors were
indeed carried out, for the most part resulting in lower bounds on B™(n) that
were much larger than our other bounds (and hence even more of a contrast with
P—values).

A natural way to obtain a notion of symmetry is to consider symmetry in a
suitable transformation of the parameter p. One such transformation is suggested
by the Normal approximation to the Multinomial likelihood function. Thus, if
Hy : p = p° is to be tested, it may be reasonable to specify symmetry in the
variable u(p) of p defined as follows. Let D(p®) be the diagonal matrix with ¢ th
diagonal element equal to p? and ¢(p) = (\/171, Py s ﬁt_l) . Then the covari-
ance matrix of the first £ — 1 free coordinates of y (recall i is Multinomsial (N, p))
is D(p*?) (I,-1 — ¢¢") D(p'/?), where I, is the identity matrix of dimension k X k.
Let

B()B(p) = D) I-¢¢)"' Dz (19)
be a decomposition. Then u(p) is defined as
u(e) = B(p)(e—-2)- (20)

10



The reasons for considering the transformation u(p) are the following:

(i) The range of u(p) is R*1.

(ii) The likelihood function of u(p) is approximately normal with covariance matrix
I;_; in a neighbourhood of p® as is shown in Result 4.1 in the Appendix.

(iii) It is possible, as follows, to explicitly give u(p) in any dimension. By choosing

B(p) = (I + ¢(zz)¢(zz)') D(p™%),

1
VP + e

(see Result 4.1 in the Appendix) u(p) can be represented as

u(p) = (m—p‘l’ pt-l—p?_l)
" VL T /P

" (5;71‘+pt) (VP15 y/Pea) -

For a normal likelihood, the natural class of conditional prior densities in (13)

can be used, yielding (with % denoting the transformed problem)
Gps = {unimodal g*(%) which are symmetric about Q}. (21)

Transforming back to the original parameter yields the class (“TUS” standing for

“Transformed Unimodal Symmetric”)

Gros = {o0) = ¢" (@) | (B)I g is

unimodal and symmetric about 0}. (22)

The term IQ%—(PEl| is merely the Jacobian of the transformation. In all calculations
it will be most convenient to work directly with ¢y and Gy;4, however, so calculation

of the Jacobian will not be needed.

11



3.1 Exact Results

The following theorem gives the lower bound on the Bayes factor over all condi-

tional densities ¢ in Grypg.

Theorem 3.

-BTUS(n..) = inf B”(@)

9€GTys
f(n|p?)
1

PV -/II%IISr Hu) dy

where V (r) is the volume of a sphere of radius r,

; (23)

and p(y) is the inverse function of y(p).

Proof:

sup my(n)
9€GTUS

= sup p;'9(p) d
9€GTyUs AHt 1 7! ;—-]:E (E) 2

- M T ()| 222, 4

mt 1
hEGUS AH—]_ t i=1

= sup / = Hp(u)n.h

heGys i=1 t i=1

= sup —— ly, d’g,,
> V(r) /Illéllsr ()

using the result that the extreme points of the class of all unimodal spherically
symmetric distributions are uniform distributions on spheres symmetric about the

origin. The last equality proves the result. O

12



In Delampady (1986a) it is shown that the maximizing r in (24) is finite. Other
versions of transformed symmetry were also considered therein, and yielded similar
or larger lower bounds.

For selected ¢, n and p] = 1/t, Bryg is tabulated in Table 2 (at the end of
this section), along with the corresponding P—values. We defer general discussion
until then, but it is useful, for calculating the integral in (24), to record that the

inverse function p(y) is given by

2
i + (U2 + 4p0H (py)) ;
ZH(pt) ’

pi(w)

where

H(p)=(1+ P?/\/ﬁt)/(l + ﬁt)

and p; = p¢(p) is the solution to
t—1

(1 —p) =) nilw).

=1
3.2 Asymptotic Results

The calculation in (24) can be very difficult if ¢ is large. Hence an asymp-
totic approximation for large NV is particularly important here, and is given by
the following development. For any multinomial observation, n, let Z(n) =

VNB(p°) (%@ — go), where B(p°) is as in (21).

Theorem 4. Consider testing Hy : p = p° against H; : p # p° in the multinomial

situation. Suppose the observation vector n, satisfies || Z(n)||* = K + O(%), where

13



the fixed constant K >t — 1. Then, we have,

1}1_1& Brys (@) = Eer(K),

where

ae=o7s exp(—3 K)

51r1p f/—trTP (Y < rz) ’

(25)

Y having a non-central chi-squared distribution with t — 1 degrees of freedom and

non-centrality parameter K.

Proof: See the Appendix. mf
Note that By5(K) in (25) is the lower bound on B” over the class Gyg in
(13) of conditional prior densities for § that would be obtained in the multivariate
normal problem discussed at the end of Subsection 2.3. Table 1 presents values of
By s for a range of t and K corresponding to certain common P-values.
A comment concerning the complexity of the proof of Theorem 4 is in order.
Standard asymptotic theory would yield that

Byg(K)= inf lim B"(n).

9€Gys N— o0

The difficulty in the proof of Theorem 4 was caused by first taking the infimum,
and then taking the limit. This more difficult version is needed to ensure that

By 5(K) really is approximating the actual global minimum of B™(n).

14



Table 1: Asymptotic Lower Bounds

o =.001 a=.01 a =.05 o =.10

. . — * * * * *® * * *®
Dimension=t -1 B; Bps Bt vs Be Bps Bg Us

1 0244 .0182 .1538 .1227 .4734 .4092 .7001 .6437
2 0198 .0143 .1247 .0978 .4067 .3481 .6263 .5699
3 0165 .0119 .1142 .0902 .3784 .3259 .5818 .5396
4 0156 .0114 .1064 .0850 .3615 .3141 .5713 .5232
5 .0133 .0099 .1020 .0824 .3503 .3072 .5576 .5131
6 0129 .0097 .0988 .0807 .3419 .3023 .5473 .5058
7 0126 .0096 .0964 .0797 .3356 .2990 .5392 .5004
8 0124 .0095 .0945 .0789 .3305 .2963 .5330 .4966
9 0121 .0094 .0929 .0782 .3261 .2942 .5277 .4932
10 0119 .0094 .0916 .0777 .3228 .2027 .5230 .4908
15 .0113 .0093 .0859 .0752 .3108 .2875 .5078 .4826
20 0109 .0093 .0833 .0743 .3036 .2844 .4988 .4782
30 .0105 .0092 .0803 .0735 .2950 .2809 .4879 .4725

15




4 Comparisons and Conclusions

Tables 2 and 3 tabulate the exact bounds, B, and Bryg, respectively, for ¢t = 3
and ¢t = 4 with p = 1/¢, and various choices of N, n. Here a denotes the P—value,
with “exact” referring to the exact P-value from (5), and “x?” referring to the

approximate P—value obtained from the chi-squared approximation.

Table 2: Lower Bounds for Conjugate and Transformed Symmetric Densities

t=3
o N ny Ny Be Brys
x2 exact

0.00 .001 12 10 1 .0285 0077
0.00 .008 13 10 2 0565 .0236
0.01 .017 14 10 3 0995 0517
0.02 024 9 7 1 .2010 .0999
0.03 033 14 9 4 .2378 .1405
0.04 060 12 8 3 3163 .1895
0.06 062 13 8 4 .3833 .2064
0.07 .056 14 8 5 .4053 2877
0.09 .080 15 7 7 4345 3101
0.10 .166 9 6 2 .6086 .3899
0.12 .100 13 7 5 5733 .4366

16



Table 3: Lower Bounds for Conjugate and Transformed Symmetric Densities

t=4

o N n; ny ng B¢ Brys
0.00 .001 15 11 2 1 0124 .0032
0.00 .003 12 9 1 1 0356 0116
0.00 .005 15 10 3 1 .0454 0171
0.00 007 15 10 2 2 .0660 .0254
0.01 .008 14 9 3 1 .0087 .0351
0.01 .013 15 9 4 1 1101 .0465
0.02 .057 13 8 2 2 2749 1464
0.03 .025 15 8 5 1 1919 .0909
0.03 .053 11 7 2 1 .3098 1644
0.04 044 15 7 6 1 .2506 .1563
0.05 .045 14 7 5 1 .3235 .2038
0.05 066 13 7 4 1 3712 .2269

The first fact to be noted is that By and Brys differ more here than in the
asymptotic normal situation of Table 1. However, most of the cases in Tables 2
and 3 are extreme, with likelihoods concentrated near the boundary of A4, and
hence these differences are probably about as large as one would expect to find.
Whether one uses By or Bryg is somewhat a matter of taste: B, is probably
more representative of typical Bayes factors, while Bryg is more saleable as a true
objective lower bound. Note also that the Table 1 asymptotic bounds seem fairly

reasonable as approximations to B, even for these small N, but can be rather

17



poor as approximations to Byyg for small N.

Finally, we come to the major point, reflected here as well as in Table 1:
the “objective” lower bounds on B™ are substantially larger than the P—value.
For instance, when t = 4, N = 14, and 5 = (7,5,1,1), the exact P-value is
045 (“significant at the .05 level”), yet By = .323 and Brys= .2038. Thus
(using the likelihood interpretation discussed in Section 1) the data supports H; :
0 # (%, i, %, %) at most 3 and 5 times, respectively, as much as it supports Hp :
0 = (%, ;1—, 41, %) This would appear to at most be mild evidence against Hy, yet
standard practice using P-values would consider the data to be significant evidence

against Hj.

5 The Chi-Square Test of Fit

\
5.1 Set Up and Chi-Square Test

Consider a statistical experiment in which N independent and identically dis-
tributed random quantities X;,X,, -, Xy are observed from a distribution F.

The problem is to test the hypothesis
Hy: F = F, against H, : F # F,

where Fj is a specified distribution. The standard test procedure for this problem
is the x? test of fit, given as follows. First, a partition {a;}_, of the real line is
considered. Then the frequencies of the N observations in this partition are found.

Let n = (ny,---,n;)" denote these frequencies; thus n; = the number of X;’s in

18



(@i-1,0;]. Let
pi = F(a;) — F(ai-1) = Pr(ai-1 < X < &),
p; = Fo(a;) — Fo(ai-1) = Pry(aici < X < ai),
and
= (p,"+,m),
= ()

Then the x? test procedure is to calculate the test statistic,

Z: (ni Nj)vp:) , (26)

and compute the P-value assuming a x?_, distribution for O, as

a=P(x;_, > o).

5.2 Likelihood and Bayesian Lower Bounds

Reducing the observations to the vector n of cell frequencies implicitly implies

that one is testing
Hy : p=p° versus H; : p # p°,

where n has a Multinomial(N,p) distribution given p. Thus we can apply the
results of the previous sections to obtain “objective” lower bounds on the Bayes
factor and posterior probability of Hy. The exact lower bounds, for the class of
conjugate and transformed symmetric unimodal densities, respectively, were given
in Theorems 1 and 3 and Tables 2 and 3, while asymptotic approximations to the

lower bounds for large N were given in Theorems 2 and 4 and Table 1.
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Example: 30 observations were made on the arrival times of a certain process.
It is desired to test the hypothesis that the distribution of the arrival time, X, is

exponential with mean 1, i.e. to test
Hy : Fy(z) =1 —exp(—z), z>0.

Suppose that it is decided to use a 3 cell partition, with the cells chosen so as
to have equal probability under Hy. The cells, the observed cell counts, and the

expected cell counts under H, are given in Table 4.

Table 4: Cells and Data

cell boundaries n; Np?
1 [0, 0.40) 16| 10
2 [0.40,1.01) | 9 10
3 [1.01, o0) 5 10

Using (26), the x? test statistic can be seen to be O = 6.20 with 2 degrees of
freedom. The exact P—value (computed by (5) for the multinomial model), the P-
value using the chi-square approximation, the exact lower bounds (B, and Bryg)
on the Bayes factor from Theorems 1 and 3, and the asymptotic lower bounds (B

and Byg) from Theorems 2 and 4, are all given in Table 5.

Table 5: P-values and Lower Bounds

Exact-a  x’-a Bg Bys Be Brys
.058 .05 4489 .3881 3750 .2922

20



The chi-square approximation is quite reasonable here and the lower bounds
over G¢ and Gryg are quite similar. But the difference between the P—value and
the lower bound on the Bayes factor is enormous. The lower bounds on the Bayes
factor indicate that the data support H; by at most a factor of 3 to 1; the common
interpretation of a P—value of .05 is that the evidence against Hy is much stronger

than 3 to 1.

6 Comments and Conclusions

We have seen that lower bounds on Bayes factors are typically 4 or more times
larger than P-values in multinomial testing of a point hypothesis or chi-square
tests of fit. Our recommendation is thus to abandon use of P—values, at the very
least replacing them with the lower bounds on the Bayes factor. The point is that
typical users of P—values can not be expected to understand that a P—value of
.05 really means at most 3 to 1 evidence in favor of H; or that a P—value of .01
really means at most 9 to 1 evidence in favor of H;. This is especially so because
the relationship between P-values and Bayes factors is highly dependent on the
problem, sample size, type of hypothesis, and stopping rule (see Berger and Sellke
(1987) and Berger and Delampady (1986)). Note that there is nothing “wrong”
with a P-value; it is after all just a specific well-defined function of the data.
The problem lies in attempting to interpret the meaning of a P—value. In some
problems a P-value will correspond to Bayes factors against Hp; in others, such
as those discussed here, it will be an order of magnitude smaller than all sensible

Bayes factors.
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Many arguments can be raised concerning the development here. One can
always argue against the Bayesian formulation, but the fact that we are working
with lower bounds on the Bayes factor over all reasonable priors makes such an
argument more difficult. (One can quibble with the classes G¢ and Grys that
we chose, but we do not think that the answers will be qualitatively different for
other “objective” classes.)

One can also argue with the entire enterprise of testing a point null. Two
replies are that: (i) Testing a point null is very often done, so why not do it right?
and (ii) Testing of a point null can be shown to frequently be a good approximation
to testing of a precise hypothesis, such as Hy : |0 — 6| < ¢, in the sense that the
Bayes factor is essentially unchanged if Hy is replaced by H{ : 0 = 6, (see Berger
and Delampady (1986)). Other arguments that have been raised are given and
discussed in Berger and Sellke (1987), Casella and Berger (1987), and Berger and
Delampady (1986).

An important qualification is that, although the lower bounds B, and Bryg
are much more useful than P-values, they are just lower bounds. If B = .5,
then we can be quite assured that there is no strong reason to reject Hp, but
if B = .05 what should be done? After all, this implies only that the Bayes
factor is somewhere between .05 and oo (which can be shown to be the upper
bound), depending on the choice of g. The answer, of course, is that one cannot
avoid at least crude specification of subjective g, if a precise Bayes factor is to be
determined. Reasonable results might often be obtained by fairly crude devices,
such as considering only the conjugate gj, in Subsection 2.1, with £ = ¢p®. Then

only ¢ needs to be specified to determine the Bayes factor, and this could be
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done from a subjective estimate of the variability of p conditional on H, being
false. Furthermore, one could graph the Bayes factor as a function of ¢ (following
the ideas of Dickey (1973)), allowing a wide range of users (with different ¢) to
interpret the data.

Example (continued). From (7) and (17), we can graph B”(n) for the conjugate
priors g,,0, a8 a function of ¢. This is done in Figure 1. Note that the lower bound

D,
over all ¢ (i.e. By(n)) is attained at ¢ = 14.008.
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Appendix

Proof of Theorem 2. From (18),

G T [Tl a)
[Boo] " = 58 Ty TV 4 ) IS G0

First of all, it can be shown that Stirling’s approximation is valid for all the I'
terms. Now let n; = NpQ + b;, 3°t_, b; = 0. Then, using Stirling’s approximation,

a (t-—-l) I (N + a)p? + b; (N+a)pd+bi—1/2
(N + a)p}

l()()

[Boo] ™ = supl=)

=1

ll(\}) (a) ’

t
= sup(5o—) .1_1( T TR

where, N (ll(;) (a) — 1) is bounded. Further,

b; (N+a)p?+b;~1/2
log H (1 + ———)

b ) (N+a)pd+b;i—1/2

i (N + a)p?
Zti bbi—1) 0 B(bi—1/2) b
(N +a)p? 2(N+a)pd 2[(N+a)pf]>  3[(N +a)p? ]2
t b2 b b3

D L 1
- ; 2(N + a)p} ge[(z\w BT o7

N i b}

- i (2)

(a2 g W
- (a-orK) R,
N (lg) (a) — 1) and VN (11(3)(0,) - 1) are bounded func-
tions. The rest of the argument follows by noting that 11(3)153) — 1 uniformly. (See
Theorem 3.2.2 (Delampady(1986a))). i

where ¢ = ( Ni

Proof of Theorem 4. We first need the following lemma which shows that,

for large N, only contiguous alternatives to Hy need be considered. Recall that
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I(y) = H - ]'[f_lp(u) ‘, from Theorem 3. Let

my(n) = /A Ht Hp ‘9(p) dp, for g € G4, and

i=1 c,_

Again from Theorem 3,

sup my(n) = sup H(r).
gEGT r

To proceed further we need the following lemma.
Lemma 4.1. For large N, the r which maximizes H(r) is 0(711‘\7')

Proof: Letting u = ry, we get

H(r =/ I(ry)dy.
) lgl<1 (ru)dy
Thus we see that H(r) — I(0) as r — 0 and H(r) — 0 as r — oco. Since H(r)

is continuously differentiable and

dH(r) 1 d " _(t—l)
dr  V(r)dr /||'u,||<rl d

y l{u)du,
V() Jils (u)dy

we get all the extreme points of H by solving d—IZ—(rﬂ = 0. If 0 is the global maximum,
the lemma is proved. Therefore, let 7y, > 0 be the global maximum of H (r). Then,

ro satisfies the following:
(¢ — 1) fupgr, Hu)du
(& fjunee @) de) l=r,

(dir /llyllgl(y)dy) lr=ro = (t_r‘_o__l_)_/"y"go W)y
=By (i),

To =

| Also

Y
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since

1
—_— Hu)du > 1(0).
V(ro) '/|;%||5r0 (u)du > (..)
Therefore .
o< (¢ — 1) fjuyro H(u)dy
o By
and hence
[H{u)du
< =
Vire) < =g
But
N! i
l(u)du = —_ “id
/ (u)dy /Hf=1 n;!gp' P
1 1
and

2

10 = o(—=)

from Result D given below. Therefore
1
V(o) =0 (5gr) -
Since

V() = C(t—1)r5?,

where C(t — 1) is a constant independent of N,

o = O(V{ﬁ).

Therefore the global maximum is O(VJ—V——) This proves the Lemma.
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. Nop:\3
Result D. If \/l—ﬁlzt-___l (%) \/%l — 0 as N — oo, then
Nt B 1
Py -' = T T X — e
Tyt L7 G (I, 5 ) z‘Nz -3 2 )
(B ¢ — Np; 3 1
X {1+
[ N IE v Np; \/_.I

for bounded functions A and C.

Proof: Exactly as in Feller(1968) for the Binomial

Continuing with the proof of the theorem, let a(p) =

case or Jeffreys (1961).

VNu(p),

O

Z = \/NB(QO)(%@ —p®)and Y = \/NB(Q)(—II\;@ —p°). Then we have the following

result.
Result 4.1. For ||p— p|| = O(7z),

1

i—-l n‘ =1
where F is a bounded function.
Proof: Using Result D,
Nl ot

Hp T (27 N)E-0/2(TTE, p?)1/2 exp(— —|[a,( ) — Z||) [l_l_%

ny o __ 1 -

Mo 7 Wexp( ”~“’( ) PN
A(p) . C(n) — Npiys_1

X[1+ N |Z( \/N_ \/—l]

— _-———-—(27r)(11t_1)/2exp(——”9(17)“Z”)(H_1 :)l1/2N—

AQ) , C(@) — Npiy 1

<[+ 2L f'Z( ) 7

t 0 1/2
1_1( ) exp(; [latr) - 21 ~ ¥ 1)),
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where A and C are some bounded functions. Also,

le@) — 21 = lIXI* = (alp) - 2)'(alp) — 2) - Y'Y

= N(xn—) [B@)BE) - B(B)B(p)]( — 1)

o
~2VNa(o) [B() - B@)] (52— )

= 7 (I-B(")"B@'B@B®)") 2
~24(p)' [1 - B() B(2) '] 2.

Therefore, it is enough to show that

Bp)B()" = (1+0(%)) I, (2)

for ||p — 2°|| = 0(717), since ||Z||* is bounded. We shall prove (27) now.
Let D(p*) be the diagonal matrix with ¢ th diagonal element equal to p¥. Then
we can choose B(p) to be (I + \/p_tl_'_p‘qS(p)qS(p)') D(p~'?)  because

B(p)'B(p) = D (p7*/%) (I + \/th1+ pt¢(2)¢(zz)') D (p7/?)

and
(r+ ﬁ1+pt¢(e)¢(p)')2 - [ (\/;,;lm(“l:/%fﬁ)) 0o )
Therefore

(I+ L 4(p )¢(e)') (I-4(p)4(2)')

VPt + Pt
(= \Fw + 2B s ) (1- s2et))

(r+
= (1 (s S n 1) et
1,
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which shows that

(B()'B(@) ™" = D(z"*) (I - ¢(r)$(p)") D(2'/?).

Furthermore,

B(p)™ —D(pl/2)< ( - \/_) ()¢(p)’)-
Therefore defining p} = (p?/p:),
4t

BB = @+

1

\,/ITt"'pt

x D((°)%) (I— (1+\/§Z) 6(2°)(p, ))
= D(@)"") - Dmﬂmﬁivﬁafmww

Dz

1 ! 1 1/2
e
(\/p_+p)(1_|_\/p— $(2)¢(2)'D(n) (") (")
— 1\1/2 \/;’§ _ 1 1 0y/
= D))+ (\/p—ﬁpt p?+1D(H)) (2)8(2")
Now
Vol = Jp, + (IID’:; )
1
= 4/1+ O(ﬁ)
because |p; — p| = (\/L—) Therefore

D = (1+0(7) 1
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and

)1

( Vet I-— D(a‘)) é(p)6(2")'

-

D) = (1+0(

Therefore

VPt pt P+ 1

( . (1+0(%))I) $(2)$(20)

VPt + Pt pd+1

\/p—? 1 1 0y/
(( T T Ol He)

O ——
(1+ /29) (v/Ps + p2) @)6() + O(—=)4(2)4(2)

- 0(%)¢(e)¢(z)~°)’

Since ||¢(p)|| < 1 and ||¢(2°)| < 1, (27) is proved. m
Using the above lemmas, it is now possible to conclude the proof of the theorem.

Let v = v/Nu. Then

1
" 76T e %

N1 [; n;
T ITi=: p%°

i=1

1 / 1 2 ( F
sup —— exp(—=i{lv— 272 1+
exp(—3K) (1 + 44 %K"’/z)

1 1 2
— ——lv—2Z|H) 1+ dy
B SI’J:p V(r)\/J_V_-/I.I’QIIS\/IVreXP( 2”9 ..” ) ( \/N—) v
exp(—1K) (1+ 2 + ZK*/?)
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1 1 2 F(w))
— —w—-Z|") {1+ —==)d
P ) /”w”Ssexp( 5llw = 2| )( "
exp(—1K) (1 + 4 + Z-K*/?)

The denominator of the last ratio converges to exp(—%K) as N — oo. It is,

therefore, now enough to show that

1 1 2 F(w)
w5 [ (-3l = 21 (14 22 ay

1
xo(~zlw - §1)dw,

—> 8

1
up / €
s V(s) Jiwlss

where § is any vector such that ||S]|* = K. Let

hals) = % frgpes @3l = 219 (14 22 ) a,

WY = 7 [, gl — 217

and

— 1 1 2
M) = 57 fwpe 31 — S,

It can be shown that (see Result 7 of Appendix D in Delampady(1986a)) the global
maximum of k(s) is attained for a value of s which is less than VK. Moreover, in

this range of values of s, hy — h uniformly. This is because

max [hy (s) — h(s)|

< max ha(s) — bk (s)] + max |k (s) — h(s)]
1 1 1 2
= — —— [,  F —=llw — Z||*)d
T 507 fage, F) (=5l = 2I)dul
+max [y (s) = h(s)
e e | F(w) | max

VN

IA

1 / 1 2
Y exp(—5llw — Z|")dw
V(s) Jiwl<e ( 2” |
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+max |hy(s) — h(s)|
- —\/%m@x |F(w)| max by (s) + max |k (s) — h(s)]

— 0O0as N — oo,

the last step following from the fact that k), is bounded and h}; — h uniformly.
(h}(s) is a function of ||Z||* which differs from h(s) by at most O(\/Lﬁ) uniformly.)
Finally, 1}1_{%0 s1:p hn(s) = s1:p h(s). This follows because uniform convergence
is equivalent to convergence in supremum norm and hence, if two functions are
€ apart in supremum norm, their maxima cannot be more than ¢ apart. This

concludes the proof. O
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