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Abstract

Lower bounds on Bayes factors are studied in situations where invariance
under suitable groups of transformations exist. Expressions for these lower
bounds are derived under fairly general conditions. The lower bounds are
usually much larger than the corresponding P-values.

1 Introduction

1.1 Set Up

A random quantity X, assuming values in a space X, having density (or mass
function) f(z|0) with respect to a o—finite measure m, is observed. The unknown
parameter of interest is § € © C R".

The problem of interest is to test

H, : 0 € Oy against H, : § € O;.

The following assumptions are made:
(i) There is a group G acting on X which induces a group G on ©.
(ii) G and G are isomorphic and are locally compact Hausdorff topological groups.

*Research supported by the National Science Foundation, Grant DMS-8401996.



(iii) Either G is compact; or X and © are isomorphic and © is o—compact.

(iv) The measure m is relatively invariant under the action of G with multiplier

k; i.e, k is a continuous homomorphism from G to (0, 00) and m(gA) = m(A)k(g)

for all measurable subsets of X . :

(v) f(g=|g0) = f(=|6)k(g).

(vi) 980 = ©o, g6, = ©4, 7O = O.

(vii) fq f(z]g8)dp(g) < oo a.s (m), where, p is the Haar measure on G if G

is compact and, u is any right invariant Haar measure on G if G is non—compact.

Remark: The measure p of (vii) above exists from (ii). Further, if G is compact,

then the only continuous homomorphism from G to (0,00) is k = 1. If G is not

compact then we have assumed in 3. above that both © and X have the same

multiplier under G for the measures with respect to which densities are calculated.
The action of G' and G induce maximal invariants t(X) on X and n(6) on ©.

The following example illustrates these points:

Example 1: X ~ N,(¢,I) and we want to test Hy : § = 0 against H; : 0 # 0.

Then X = R™ = O. The problem is invariant under the group, G, of all orthogonal

transformations; i.e., if O is an orthogonal matrix of order n, goX = OX. Also,

OX ~ N(00,1) so that ggf = Of. Here G is a compact topological group. Note

that
1

f(z|8) = (—2;-)n—/2exp(—%(z - 0)'(z — )

and
flgoz|gad) = (7”1)7/2exp(—%(0z — 08)'(0z — 00))

1 1 ,
= (27r)“/2 exp(— ( —0)'(z—9))
= f(]0),
so that k(g) = 1. Also, o0 = 0 and ggd = 0. O
Assume that a classical significance test is based on a test statistic T(X), a
function of the maximal invariant under the group G of transformations. Large

values of this statistic provide evidence against the null hypothesis. The P-value,
or the observed significance level, of data x is defined to be

a = sup Py (T(X) > T(z)).



Approaching the above testing problem from the Bayesian assume that = is
a prior distribution for § with 7y = P™(0©,) and g,, g; are the densities of 7
conditional on the sets ®; and ©; respectively. From the likelihood viewpoint
go and g; may be viewed as weight functions for the likelihood function on the
respective parameter sets. Then the quantities of interest are
(i) the Bayes factor of Hy to Hy:

Jo, f(|0)g0(6)d0
B™(z) = e ;
S A O
(ii) the posterior probability of Hy, given z:
. 3 (1-m) 1 ]
P™(Holz) = |1+ o 5@

B(z), which is also called the “weighted likelihood ratio” of Hy to H. 1, Mmeasures
the impact of the data. By considering the Bayes factor the prior probabilities can
be ignored. A likelihoodist is also interested in B*(z), since it is the ratio of the
averaged or weighted likelihoods of Hy and Hj, the averaging being with respect
to the “weight functions” go and g; respectively. If indeed both the hypotheses
are simple (i.e, Hy: p=py, Hy: p= p1) then

B(z) — f($|po)

f(zlpy)’

which is the likelihood ratio, used widely as a standard test statistic.

1.2 Lower Bounds on Bayes Factors

Specification of m or go and g; is natural and important to a Bayesian or likeli-
hoodist, but is resisted by others. Of interest is that lower bounds on B*(z) (and
hence P”(Hy|z) can be found for important classes of distributions =, and that
these lower bounds tend to be surprisingly large. If I is a class of priors 7 under
consideration, we will consider the lower bounds

Bile) = inf B"(2), o)
Pi(Hp|lz) = iléfI'P’r(Hokv), (2)
= [inifﬁ.é]—_ (3)



It has been shown by a number of authors that there is a vast discrepancy between
the P—value and the lower bounds on Bayes factors or posterior probabilities over
“objective” classes in the situations of testing a point null hypotheses. Since testing
general hypotheses when the problems are invariant forms a very important part
of multivariate statistics the comparison of P-values with the above mentioned
conditional measures of evidence seems to be of great interest in this general set
up. This study is important from a Bayesian (and likelihood) viewpoint because
there is no “objective” Bayesian (or likelihood) analysis for these problems as it is
not possible to objectively specify the prior = (or the weight functions g, and g¢;).
This is also important from a classical viewpoint because it shows the need for a
careful interpretation of P-values.

This need is especially serious as some practitioners tend to interpret P—values
quantitatively in terms of the probability of Hy being true. The danger of this
interpretation is indicated in the sections that follow, where an attempt is made
to show that P-values tend to be an order of magnitude smaller than, say, pos-
terior probabilities that Hy is true. However, posterior probabilities of H, are,
typically, very dependent on the prior chosen, making comparisons of this kind
unclear. Therefore as an alternative to the “objective Bayesian” analysis with a
specific prior, a robust Bayesian approach is suggested here. In this approach a
reasonable solution seems to be using lower bounds on posterior probabilities of H,
(or likelihood ratios) over an “objective” class of priors (or weight functions). It is
very striking to note that in all situations considered here these lower bounds are
substantially larger than the corresponding P—values, making it clear that careful
interpretation of P—values is necessary.

A lower bound, such as By, is particularly useful when I is large enough to
include all densities which are plausible, but is not so large as to include unreason-
able densities. If reasonable densities are omitted from I, one could argue that B;
is not actually a valid lower bound. If I contains unreasonable distributions, on
the other hand, then the lower bounds may be driven too low to be useful. Note,
in particular, that minimizing B™(z) over 7 has the effect of finding that # € T
which is most favorable to Hj;.

All these lower bounds thus contain a potential substantial bias towards Hj,
and it is obviously desirable to minimize this bias; this can best be done by re-
stricting I in as many ways as are considered reasonable. (Surprising results can
be obtained even if I is allowed to contain all distributions; indeed, Edwards, Lind-
man and Savage (1963) show that B;(z) is often still much bigger than P-values.)
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At this point it is very important to note that the P-value is computed after
reducing the problem using the invariance under I. This suggests a Bayesian
assumption of invariance on priors, for any reasonable comparison of P—values and
lower bounds on the posterior probabilities. Further, leaving out the assumption
of invariance on priors would make the comparisons very unclear. Therefore, our
discussion in this paper will mainly concentrate on the class I of priors that satisfy
the following condition (viii).

(viii) 7(gA) = n(A) = n(Ag) if G is compact, and
7(Ag) = n(A) if G is non—compact.

The class I consists of all spherically symmetric densities in the example dis-
cussed earlier.

1.3 History

Lower bounds on Bayes factors and posterior probabilities of point null hypotheses
have been studied extensively by Edwards, Lindman and Savage(1963), Dickey
(1977), Good (1950, 1958, 1976), Berger (1985), Casella and Berger (1985), Berger
and Sellke (1986), Berger and Delampady (1986a) and Delampady and Berger
(1986) among others. The discussion in the case of an interval null hypothesis
is found in Delampady (1986b). See Berger and Delampady (1986) for further
references to works dealing with P—values. Jeffreys (1961) ha.s works related to
Bayesian analysis in invariant testing situations.

1.4 Overview

In the next section some results on the densities of maximal invariants will be
reviewed. These results involve representing the integral of any function with re-
spect to a relatively invariant measure on X, as an iterated integral by factoring
X as X /G x G. This is easily done for compact topological groups, G. Results
are found in Eaton(1983). However it is necessary to make a number of assump-
tions to get this representation in the non—compact case. The main references
here are Wijsman (1967, 1985), Koehn(1970), Bondar(1976), Andersson(1982) and
Farrell(1985). These results will be used in the later sections. In the next two sec-
tions results for lower bounds on the weighted likelihood ratios will be obtained.
In section 3, situations where G is a compact topological group will be consid-
ered. Section 5.4 will generalize the results of section 3 to locally compact groups.



When G is compact, as mentioned in (viii) above, the weight functions or priors
are G-invariant; i.e., 7(gA) = 7(A) and n(Ag) = 7(4). In the non—compact case
right invariant measures 7" (i.e., 7"(Ag) = #"(A4) ) are used. These measures are
relatively left invariant with multiplier A~! where A is the right hand modulus
of G; i.e., if " and u! are the right and left invariant Haar measures on G then,
they satisfy, du"(g) = A(¢g7)dy(g) and 7"(gA) = A(g~!)7n"(A). Here justifica-
tions for the use of right invariant (improper) weight functions will also be given.
Conclusions will be given in section 5.

2 Some Results on Maximal Invariants

2.1 Compact Topological Groups

For compact topological groups the following factorization theorem is immediate.
This factorization gives rise to an expression for the density of maximal invariants.

Theorem 2.1.1. Suppose that G is a compact topological group acting measur-
ably on X, p is the invariant probability measure on G, and f (z|0) is the density
of X with respect to a G—invariant, o-finite measure m on X. Further, suppose
that t: X — T is a measurable mapping inducing a measure n on T given by
n(c) = m(t7*C) and [y h (t(z)) dm(z) = f; h(t)dn(t) for all integrable functions h
on T. Then, if q(t|n) is the density of T with respect to n and h is any integrable
function,

2(t(=)n®) = [ f(ezlo)du(o), (4)
[ rdm(e) = [ ([ bat)du(a)) dn(s). @

Proof: Eaton(1983) Propositions 7.15 and 7.16 on pages 271-273 and 280-281. O

2.2 Locally Compact Topological Groups

Here Theorem 2.1.1 will be generalized. However this result needs a number of
assumptions on all the spaces involved.

Theorem 2.2.1 (Bondar 1976). Assume that
(1) G is a separable completely metrizable locally compact topological group.



(2) X is a separable completely metrizable locally compact topological space.

(3) G acts continuously on X (i.e., the map (g,z) — gz is continuous).

(4) There exists a Borel cross-section Z for the orbits of G in X (A Borel cross-
section is a Borel subset of X which intersects each orbit Gz precisely once).
Then

(A) If G acts freely on X (i.e., if g is not the identity then gz # z for all
z € X ) there exists a Borel cross-section Z which is a bimeasurable image of X /G
and for any f, integrable with respect to a relatively invariant measure m with
modulus(multiplier) k, the following is true:

[ f@dm@) = [ ([ re2)k@)dui(a)) dn(z), ©

for some measure n on Z, where p' is the left Haar measure on G.

(B) IfG is a Lie group of non-null dimension with all stability subgroups compact
and conjugate to each other and m as in (A), then there exists an m—null invariant
set N and Borel cross-section Z which is a bimeasurable image of (X — N) /G such
that the conclusion of (A) holds. m|

Another version of the same result is given below under somewhat different
assumptions.

Theorem 2.2.2 (Andersson 1982). Assume that

(1) G is a locally compact, c—compact Hausdorff topological group.

(2) X is a locally compact, c—compact HausdorfF topological space.

(3) G acts properly on X ( i.e., G acts continuously on X and further the map
(9,x) — (gz,z) satisfles the condition that inverse image of a compact set is

compact).
Then, for f and m as in Theorem 2.2.1, the same conclusion as in that theorem
holds. |

Remark: If G is a Hausdorff topological group operating properly on X, if X is
locally compact, so are G and X /G (Bourbaki 1963, Proposition 11).
Remark: If G is a Hausdorff topological group acting continuously on a topolog-
ical space X, then free action of G is proper iff the graph C of the equivalence
relation defined by G is closed in X X X and the canonical map ¢ : C — G is
continuous (Bourbaki 1963, Proposition 6).

The following are some related results from Andersson(1982):
1. Every continuous action of a compact group is proper.



2. Action of the group of non-singular matrices ((4,%) — (4ZA',X) ) on the
set of positive definite matrices is proper.
3. Action of the translation group on an affine space is free and proper.
4. If G acts properly on X, H is a closed subgroup of G, X C Y is closed and
HY =Y, then the restriction of the proper action G x X — X to H X Y —> Yy
is proper.

Farrell(1985) and Wijsman(1967, 1985) have similar factorization results under
similar conditions on the spaces G, © and X.

2.3 Likelihood Ratios for Maximal Invariants

The factorization theorems of the previous sections yield the following results on
ratios of densities of maximal invariants.

Theorem 2.3.1. Under the assumptions of Theorem 2.1.1,

¢ ((2)n(91)) _ Jfo floz|61)du(q) (7)
¢ (t(z)[n(62)) — Jo flgz|02)dule)’

Proof: Immediate from (1), the first part of Theorem 2.1.1. o

Theorem 2.3.2. Under the assumptions which obtain the conclusions of Theorem
2.2.1,

q(t(z)|n(61)) _ Jfo flgz|01)k(g)dut(g)

= . 8

E@(@) ~ Jo Heslt)H(a) ) ©)

Proof: Follows immediately from Theorem 2.2.1, Bondar(1976), and Theorem
2.2.2, Andersson(1982). O

3 Lower Bounds on Bayes Factors when G is
Compact
With the basic results on factorization of integrals and likelihood ratios of maximal

invariants it is now possible to obtain results related to the lower bounds on
weighted likelihood ratios over the class of invariant weight functions.



Theorem 3.1. Under the set up described in Theorem 2.3.1,

inf B"(z) = = e ? )
mel sup, q (t(z)|n2)

N2€0;

Proof:
¢ Joo £(2]0)dn(6)
xelfe f(z|6)dr(6)
Jooja e f(z|g0)du(g)) dn (n(9

P =

= ¥ Toue U 7 (ela0)dul9)) dn (1(0

))

)

— e Jousa Us £(9218)du(g)) dn ((6))

i fel/G (fo f(g=l6)du(g)) dn (n(6))
> Joojc 4 (¢(2)[m) dn(m)
" Jo,iq 1(t(z)|n2) drn(n2)

.o /GQ(t( z)|m)

sup ¢ (t(z)|n2)’
7260,/

using Theorem 2.3.1. O

Corollary. If ©,/G = {0}, then under the same conditions as in Theorem 3.1,

epry _ _ 4(¢(=)]0)
B (=) = SUP,ce/c 4 (t(z)|n)’

]
Example 1 continued: For the Normal example described in the introductory
section we get
mel ~ q (@A)’
where ¢(t|n) is the density of a non—central x? random variable with n degrees
of freedom and non-centrality parameter , and # is the maximum likelihood

estimate of 7 from data #(z). For selected values of ¢(z) and n the lower bounds
are tabulated against their P-values in Table 1.1.



Table 1: Invariant Test for Normal Means

o n 1) PHEE)
.01 2 9.2205 .0685
3 11.3246 .0697
4 13.2797 .0693
8 20.0820 .0696
11 24.7545 .0687
15 30.6054 0686
20 37.5914 0684
.05 2 5.9948 .2259
3 7.8167 2256
4 0.4016 .2250
9 16.9252 2229
13 22.3667 .2218
15 24.9997 2213
21 32.6776 .2200

Notice that the lower bounds on the posterior probabilities of the null hy-
pothesis are anywhere from 4 to 7 times as large as the corresponding P-values,
indicating that there is a vast discrepancy between P—values and posterior prob-
abilities.

4 Lower Bounds on Bayes Factors when G is Lo-
cally Compact

4.1 Convergence of Posterior Distributions

In an invariant testing situation, the assumption that the weight functions are
invariant is reasonable. However, if the group G is not compact (but only locally
compact) these invariant priors or weight functions are not probability measures.
The use of these improper priors is justified if they can be approximated appro-
priately by finite measures, in the sense that the posterior distributions obtained
by these approximating measures converge to that of the invariant prior under
consideration. In what follows this convergence is discussed.
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Definition : A sequence 7, of finite measures on © is said to be asymptotically
invariant with limit  if there exists a G-invariant measure = on © (i.e., 7(g4) =
m(A) for all measurable subset A of © and g € G ) and

lim m,(A) = 7(4)

dor all measurable subset A of ©.

Theorem 4.1.1. If f(z|6) is a density function on X for each 0 such that

(i) f(=|0) is integrable with respect to a regular G-invariant measure 7 on ©,
(i) m, is asymptotically invariant with limit =,

(iii) m,, is absolutely continuous with respect to m, and

(iv) %= is a bounded function,

then
lim, [ 7(al0)dma(0) = [ F(zlo)dn(e)  as (m)

for all measurable subsets A of ©. (This says that the posterior probability of any
event under 7, converges to that under 7.)

Proof: Clearly p
[ @0yara(0) = [ 1(al0) S @)an(o),

iﬂ—"ﬁ —rlasn— oo a.s(w),
dw

and
dm,

=01 <

for some M > 0. Therefore

f(=l6)—

drn ) — @0l as(r),

dm,,

|f(=16)——

and f is integrable with respect to . Therefore, by the Lebesgue dominated
convergence theorem,

lim [ F(@l0)dna(0) = [ f(sl8)an() 2 (m).

——(0)| < Mf(=]9),

11



Remark 1: Since © is assumed to be o-compact, there is a sequence {0,}
of compact subsets increasing to ®. Then a convenient sequence, 7,, of finite
measures, which approximates =, is

dm

—(8) = I, .

"T(0) = To, (0)
Remark 2: The condition that -‘%ﬂ- is bounded may be weakened by assuming
only that

li 0)dr,.(0) =0
S [, 0 S0 0)

as n — oo for some M > 0.

Remark 3: In fact, the condition that the sequence of functions %ﬁ- is uniformly
integrable with respect to the measure m defined by dm(u) = f(z|u)dr(u) is
necessary and sufficient in view of Vitali’s theorem (Rudin(1974), page 143-144).

4.2 Lower Bounds on Bayes Factors

As in section 4.1 we would like to look at the lower bounds on Bayes factors and
posterior probabilities, over the class of G—invariant weight functions or priors.
Note, however, that in hypothesis testing the prior distributions need to be of total
mass one. For compact G this poses no difficulty, but when G is non—compact, G-
invariant priors are not finite. However, Theorem 4.1.1 allows us to approximate
all G-invariant priors by finite, asymptotically invariant distributions, resolving
the dilemma. Therefore, with this approximation in mind, the following discussion
will only consider weight functions or priors which are G—invariant.

Theorem 4.2.1. Assume the conditions of Theorem 2.3.2. In addition assume
that the density f is with respect to Lebesgue measure on X, and that the class
I contains priors m which are right invariant with respect to G and satisfy

dr(8) = h(6)ds
= hi(z)dn(2)du"(g)
= hl(z)dn(z)AG(go)dMl(ga),

where § = (z,gy) (from the factorization © = ©/G x G). Assume also that h,
defines a probability measure, on the space Z of maximal invariants, such that

LWMMMM=AWM@M@,
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Then

inf B™(z) =
rel (=) sup ¢ (¢(z)|n2)
r)zE@l/G'

Proof: First note that, for i = 0, 1,
L, f0in@) = [ saioneyds
= [ m() ([ £al92) Ac(g™)du(s) ) dn(z)
= [ m@) ([, f(zlox)du(6)) dn(a),
using (3) and h(g2) = h () ;. Also

Gl e) = [ szl prsaua)

= [, flosl) g™

= [ #lgale)k(g)dn' (9),

since k(g™') = HIZT’ f(z|gz) = f(g"lz|z)k—(195 and du(¢g71) = dp'(g). Also let
dm(z) = hy(z)dn(z). Then
- Jou (&l0)dn(0)

M) = )

_ o I (fe Flol2)k(g)dii ) dm(z)

— [y, (s f(oz]2)k(9) it (g)) dm(z)

_ it sup JefleElm)k(0)di (o)
21€% ez, [g f97|22)k(g)dr (g)

inf gt
manf o9 (Ez)|m)

sup g (t(z)|nz)’
n2€0,/G

using (5). O
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Corollary. If ©9/G = {0} then, under the same conditions as in Theorem 3.2.1,

it (e — 420
T E )

Ex 2: Assume that X3, X5, -+, X,, is a random sample from the N (4, 0?) distribu-

tion; both # and o are unknown. The problem is to test the hypothesis Hy: 8 =0
against Hj : 6 # 0. A sufficient statistic for (0,0) is z = (X,5), X =137 X; and

§=[torXi- 7)2]1/2. Then
f(z|8,0) = Ko™"s"? exp(——n- [(7 —0) + sz])
’ 202
where K is a constant. Also
X ={(z,s) : T € R',s > 0},and® = {(4,0) : 8 € R*,0 > 0}.
The problem is invariant under the group
G = {g. = ¢ : ¢ > O}andg.(z) = ¢(Z, s) = (cZ,cs).

We have X and © isomorphic, k(g.) = ¢%, du'(g.) = £, f(z|9,0) = % f(=]9,0),
t(z) = Z and n(0,0) = £. Then, defining

I = {nr:dn(0,0) = hl(n)dn(%a, h, is any density for n}, (9)

ot B (a) 0]
mel q (¢(z)|4)
where g(t|n) is the density of a non—central ¢ random variable with n — 1 degrees
of freedom and non-centrality parameter 5, and 7 is the maximum likelihood
estimate of 7. The fact that all the necessary conditions are satisfied is shown in
Andersson(1982) and Wijsman(1967). For selected values of ¢(z) and n the lower
bounds are tabulated along with the P—values in Table 2.

For small values of n the lower bounds in Table 2 are comparable to the corre-
sponding P-values and as n gets large the difference between these lower bounds
and the P—values get larger.

~
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Table 2: Test for Normal Means, Variance unknown

n 2 8 12 16 32

=01 0116 0135 .0208  .0282  .0317

P(Holt(z)) o=.05 .0482 0860 .1107 .1151  .1213
=10  .0858  .1745 1876  .1919  .1986

It can be seen from Table 2 that, for large n, the lower bounds are very close
to the Normal “all prior” bounds. In our notation, an explanation for this phe-
nomenon is that

_ 1 1,
i) ~ Cd z(n—l)/zr("ﬂ)e"p("”)

X/oov ex (—l'v + v———=)dv
0 P m

converges to, exp(%tz), the Normal “all prior” lower bound on the Bayes factor.

5 Conclusions

We have succeeded in emphasizing that there is a clear need for a careful inter-
pretation of P—values. We have also suggested a robust Bayesian interpretation of
P-values which looks at the lower bounds on posterior probabilities and weighted
likelihood ratios. We recommend looking at such lower bounds as better “objec-
tive” measures of evidence than P—values.

In all invariant testing situations where the group is compact, the lower bounds
over the class of invariant weights on the weighted likelihood ratios of the orig-
inal problem reduces to a lower bound on the likelihood ratios of the maximal
invariants. This same phenomenon is observed for locally compact non—-compact
groups, under some regularity conditions, when the class of weight functions is
chosen appropriately. This simplifies the problem considerably both in terms of
numerical work and ease of understanding the problem. Usually the class of in-
variant weight functions are quite reasonable and the lower bounds over this class
are substantial.

Another look at Example 1 explains some of these points. Observe that the
invariant priors here are spherically symmetric. It is clear that the lower bounds
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here must be smaller than those for the unimodal spherically symmetric weight
functions (see Berger and Delampady (1986)). However, even though they are
somewhat smaller for small dimensions, for large dimensions they are very much
comparable. This possibly indicates that the use of invariant weight functions is
not inappropriate for problems in high dimensions. This is significant especially
because in high dimensions the tool of invariance is very useful.

However, the class I of weight functions may be too large in some situations,
leading to excessively small lower bounds as in example 2. Notice that this class
allows arbitrary functional forms for the induced priors on the maximal invariant
parameter which probably leads to an excessive bias in favour of the alternative
hypothesis. Quite often it may be more appropriate to restrict the class I so that
the induced priors satisfy other criteria, such as symmetry.

It must be again emphasized here that the lower bounds on the posterior prob-
abilities in Example 1 are anywhere from 4 to 7 times as large as the corresponding
P-values. Our recommendation is thus replacing P—values with the lower bounds
on the Bayes factor over “objective” classes of priors. The point is that typical
users of P-values can not be expected to interpret P—values quantitatively since
this depends on the particular situation. This is especially so because the rela-
tionship between P—values and Bayes factors is highly dependent on the problem,
sample size, type of hypothesis, and stopping rule (see Berger and Sellke (1987)
and Berger and Delampady (1986)). Note that there is nothing “wrong” with a
P-value; it is after all just a specific well-defined function of the data. The prob-
lem lies in attempting to interpret the meaning of a P—value. In some problems
a P—value will correspond to Bayes factors against Hy; in others, such as those
discussed here, it will be an order of magnitude smaller than all sensible Bayes
factors.

Many arguments can be raised concerning the development here. One can
always argue against the Bayesian formulation, but the fact that we are working
with lower bounds on the Bayes factor over all reasonable priors makes such an
argument more difficult. Other arguments that have been raised are given and
discussed in Berger and Sellke (1987), Casella and Berger (1987), and Berger and
Delampady (1986).

Acknowledgements. The author is grateful to his doctoral thesis advisor, Pro-
fessor James Berger, for all his valuable suggestions, attention and help in this
work.
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