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Abstract

Expressions are derived for lower bounds on Bayes factors for interval
null hypotheses. These are then studied as the interval length varies and are
related to two interesting results, one for point null hypotheses and another
for one-sided hypotheses. Examples and numerical results are also presented.

1 Introduction

Lower bounds on Bayes factors and posterior probabilities of point null hypotheses
have been studied extensively by Edwards, Lindman and Savage(1963), Dickey
(1977), Good(1950, 1958, 1976), Berger and Sellke(1987), Casella and Berger
(1987), Berger and Delampady (1986), Delampady(1986a), Delampady (1986c),
and Delampady and Berger (1986) among others. One of the major justifications
for testing a point null hypothesis is that it can be considered as an approxima-
tion to an appropriate interval hypothesis in a large number of situations. Berger
and Sellke (1987) study the case of point null hypotheses in depth and show that
the lower bounds on Bayes factors over many reasonable classes of densities are
at least an order of magnitude larger than the corresponding P—values. On the
other hand Casella and Berger (1987) study one-sided testing situations where
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they show that the lower bounds are usually exactly equal to the P-values. It is
clear that as a solution to testing interval null hypotheses these are two extremes.
It is possible to directly investigate the case of interval nulls and we feel that such
lower bounds are often more reasonable than either extremes.

1.1 Set Up

A random quantity X has the density f(z]6), § € © C R!. For each a > 0 consider
the testing problem

Hos 110 — 0o < a against  Hy,: |0 — 0| > a, (1)

where 0, is a specified quantity. Consider the following examples.
Example 1. In a statistical quality control situation § may be assumed to be the
size of a unit and acceptable units are with 8 € (6, — a,0, + a). Then one would
like to test

Hy:|0—- 6 < a.

In this problem the length of the interval, 2a, can be explicitly specified. On the
other hand, this is not the case in the following.
Example 2. Suppose we want to test the hypothesis,

Hy : Vitamin C has no effect on the common cold, .

Clearly this is not meant to be thought of as an exact point null; surely Vitamin
C has some effect, though perhaps a very miniscule effect. Thus, in reality, this
is the case of an interval null hypothesis which would be better represented as a
point null hypothesis. We shall discuss the question of approximating pont null
hypotheses in the later sections.

Assume that a classical significance test is based on some test statistic T'(X),
large values of which provide evidence against the null hypothesis. For the test in
(1) the P—value, or the observed significance level, of data x is defined to be

a = sup P (T(X)>T(z)). (2)
|0—6g|<a

Approaching the above testing problem from the Bayesian and likelihood view-
point assume that 7 is a prior distribution on © with density g and prior proba-
bilities o = P7(Hp,) and 1 — my = P"(Hy,). Then g may be written as

g(v) = go() I {|0 — bo| < a} + g1(u)I{|0 — bo| > a},



where g, and g; are the densities of = conditional on the hypotheses Hy, and H,,
respectively. The posterior distribution of  given z is given by

w(ole) = L0200,

assuming that the marginal density of X at z,
m(z) = /9 f(<|8)g(8) d8 > 0.

The quantities of interest are
(i) the Bayes factor of Hy, to Hy,:

Jio—soj<a £ (]0)g0(0) dO 9
Jio-s0)5a f(]0)g1(6) d6’

(ii) the posterior probability of Hy, given z:

B™(z)

P (|0 — 8] < =/ 0|z) do
(-0l <als) = [ xGle)

(1—7!'0). 1
[LF o B(@)

-1

Thus B™(z) is the factor by which the data changes prior odds of H, to H; to
posterior odds. By considering B™(z), one thus considers the impact of the data;
the prior probabilities of the hypotheses can be ignored. ' A likelihoodist is also
interested in B™(z), since it is the ratio of the likelihood of Hj to the average
or weighted likelihood of H;, the averaging being with respect to the “weight
function” g.

Specification of g is natural and important to a Bayesian, but is resisted by
others. Of interest is that lower bounds on B™(z) (and hence P*(Hy|z)) can be
found for important classes of densities g, and that these lower bounds tend to
be surprisingly large. If G is a class of densities g under consideration, we will
consider the lower bounds

Bolz) = inf B"(a), ()
and



Po(Hola) = inf P"(Hola)

_ [H(i—_%).i]‘l, )

To Bg

For the most part, we will only present results in terms of By, since P (Hylx)
requires the additional specification of .

1.2 Choice of G

A lower bound, such as Bg(z), is particularly useful when G is large enough to
include all densities which are plausible, but is not so large as to include unreason-
able densities. If reasonable densities are omitted from G, one could argue that
By is not actually a valid lower bound. If G contains unreasonable distributions,
on the other hand, then the lower bounds may be driven too low to be useful.
Note, in particular, that minimizing B7™(z) over g has the effect of finding that
g € G which is most favorable to Hj.

All these lower bounds thus contain a potential substantial bias towards Hj,
and it is obviously desirable to minimize this bias; this can best be done by re-
stricting G in as many ways as are considered reasonable.

A Bayesian might restrict G to a single distribution, go. A robust Bayesian
might restrict g to a small class of densities, say, those in a neighborhood of
some go (cf. Berger and Berliner (1986) and Sivaganesan and Berger (1986)). But
any such restrictions require specific subjective input. Of interest to Bayesians and
non-Bayesians alike are choices of G which require only general shape specifications
concerning G. One such possibility is

Gys = {unimodal g, symmetric about 6,}. (6)

The appeal of this class of densities is that it seems to be an “objective” class.
It acknowledges the central role of o, and seeks to spread mass about 6, in a way
that is not biased towards particular alternatives. Lower bounds derived from
such G could be termed “objective lower bounds,” and are thus of interest when
subjective input is unavoidable or being avoided.

Berger and Sellke (1987) consider the class G of all symmetric densities about
0p. We feel that this class has densities which give undesirable concentration of
mass to particular parameter points. This can be felt by noting that the mini-
mizing density is a discrete mass function, assigning mass to two points on either
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sides of 6. Further, as the length of the interval (specified by H,) increases to oo
the lower bounds tend to 0.

We shall show that the class Gy has no such undesirable feature and that, as
the interval length increases, it shows a behaviour relating our results with those
of Casella and Berger (1987).

Section 2 will discuss an example and related results of Casella and Berger
(1985). In Section 3 the expression for the lower bound on Bayes factor will be
derived citing the necessary conditions. Finally in Section 4 conclusions will be
given.

2 Methodology—Normal Example

Suppose X ~ N(8,0%/n), 6* known, and it is desired to test
Hy: |0 — 6o| < a against H; : |0 — 6| > a.
Let T' = /n(X — 0y) /0, and t, be the critical value such that
& = Payea(IT(X)] > ta).

Note that ¢, depends on a. Were we to observe T = t,, we would report « as
the P-value. To compare this with the posterior probability when ¢, is observed,
consider priors 7 for 8 which (i) are symmetric about f; (ii) are nonincreasing in
|0 — 8o|; and (iii) give prior probability .5 to Ho. Denote this class by Gys. Then

P(Holz) = inf P™(Hylz) (7)

T€Gus
B(r —t,) — ®(—r — t,) — B(a* —t,) + B(—a* — ta)) - )
2(r— 20900 + 3@ —t) —o(-a =) ) &
where b = Q(“*—t"z);(fa()— “*—t"‘), at = aJa@, and ¢ and ® are the standard normal
density and c.d.f., respectively. Figure 1 presents P(Hy|z) as a function of a*,
when the P—value is fixed at « = .01, .05 and .10. Here “LENGTH?” stands for
the standardized length a* of the half interval, and “BOUND” denotes P(Hy|z).
The expression in (7) is computationally quite attractive. In addition, the
following iterative formula is available for the maximizing r of (7) (starting with
o = ta):

= (1 4 sup

ri—2a*+b
O(r; —ta) — 2b0(t,)

W=

ri1 = to + (2log( ) —1.838)".



Convergence is quickly achieved for small values of a* together with ¢ > 1.645.
For a* = 0 this iterative formula reduces to that given in Berger and Sellke(1984).
Figure 1 presents P(Hy|z) as a function of a*, when the P—value is fixed at « = .01,
.05 and .10. Here “LENGTH” stands for the standardized length a* of the half
interval, and “BOUND” denotes P(Hp|z).

An interesting observation from Figure 1. is that, for a fixed value of the P-
value, as a* increases the lower bound on the posterior probability approaches
the P—value. This can be rigorously established as follows: If T has a Normal
distribution with unit variance, then, for each a, the P—value of the data ¢ under
HOa, is

a = sup Py(|T| > 1)
6|<a
P,(|T]| >¢)
= 1-PFP(-t<T<1i)
= 1-®(t—a)+ ®(—t—a).

Let z, be such that ®(—z,) = a. Then data of the magnitude of 2z, has the
P-value of 2« under Hy. For each a > 0 let ¢,() satisfy

P, (IT) 2 to(e)) = a (9)

Then it is clear that a + 2, < t,(@) < @ + 24/2. Further it is seen from Berger and
Sellke (1987) that the interesting cases have a that satisfy z, /2 > 1, which means
that ¢ = t,(a) > a + 242 > a + 1. For large a, z, + a is a good approximation for
ta(a) (the value of ¢ which obtains the P-value of o under Hy,).

Theorem 2.
lim inf P"(Hg,|z) = c.

a—00 r€Gyg
Proof: Let
O(r—t)—@(—r—t)—B(a—1t) + B(—a—1)

Kot = o S+ s@-9 80

for r > 2a.
It can be seen that, for large a, ML;T“@D is positive at r = 2a but negative for

r > 3a. Further, for 2¢ < r < 3a, L(r,t,(e)) is close to (1;:5)- Since,

-1
inf P7(Hy|z) = [1 + sup L(r,t)] ,
1€Gys r
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from (7), this explains the phenomenon. O
We have, thus, shown that

}i{{-}oﬂcus (Hoslta(@)) = o,

which is very related to the result obtained by Casella and Berger(1987). There it
was shown for one-—sided testing that the lower bound on the posterior probability
of Hy is exactly equal to the P—value. Indeed, if a is large and ¢,(c) = 2o + @
then the test of Hy, versus Hy, is similar to the one-sided test, Hy : 8 < a against
H]_ :0 > a.

3 Lower Bounds on Bayes Factors

3.1 General Theory

We shall assume the following conditions. These are fairly general and are satisfied

in many interesting situations. A specific illustration will be given in the next
. J2, f(=l0)as
subsection. Define b = =5TEn

1.
H(r) =5 [ f(zl6) do

has a minimum at » = 0 and a unique maximum at ry, the solution of d_I;r(ﬂ =0,
r> 0.
2. For each a > 0,

Ha(r) = 2(r — 2a Jlr 5)7(z]0) (/_rr f(alu) du — 2bf MO))

has its unique maximum at the solution of %@l =0,7r > a.
3. For each fixed a, the observed value of z is such that 7y > a.

In the following discussion let Gys denote all unimodal symmetric densities
that have mass 7o in the interval [—a,a]. Also for the sake of convenience let
00 =0in (].).

Theorem 1. Under the conditions 1-3,

JT, f(z|6) d8 — 2bf(=]0)] ™
2(r — 2a + b) f(=|0) |

e B
285, B7(e) = |sup



Proof: The result will be proved in the following three steps. To start with, for
all g € Gyg, we have

w) = /0 * -2171[_,,,] (w) du(r),

for some measure u, since g is symmetric and unimodal. Since f2.9(u) du = m,
we, further, have the following.

Step 1. p is a mixture of 2-point measures.
Proof:

/_Zg(u)du = /a /mziI[_,,] (u) du(r) du
= / </_a —I_rr(u )dp,(r)
= [T () gm) ant dl”)+f ([ 5 de) dutr)

[0, a] +/;°°;du (r).

Therefore, we have,
® g
©[0,a +/ ;du(r) = . (10)
a
Now if we put u[0,a] = ¢, then the conditions on p are,
o0
/ du(r) = 1-—c¢,
© g -
/ Sdu(r) = m—-e, (11)
a T
subject to 0 < ¢ < . Substituting, du(r) = (1 — ¢) dv(r), we get

/a () =

[ av) = gizi_:_z; (12)

Putting, dm(s) = dv(1), these conditions become
1/a
/0 dm(s)

/ol/asdm(s) = ((1'7(1-: : 3 = -1-1; (13)

[a—y

)




Since any mean 0 distribution is a mixture of 2-point mean 0 distributions, (Freed-
man(1971)), the measure m must be a mixture of 2-point mean 1 measures. O

This step reduces the lower bound on the Bayes factors as follows:

Step 2.

1 1
e 5] -
L @] = e s

x [ g | '; f(=lu) du+ uz‘_“l [ £ () du — 2bf(:c|0)] .

Ug — Uy /- Uy
Proof: Following (3),
f(=|0)g(6) do
T D)) dd— [*, [(=0)a(0) &5

Let A be the set of all measures p satisfying (9) and G be the class of all unimodal
symmetric densities which put my mass between —a and a. Then

B"(z)

(14)

. 2, £(alu)g(w) du
28, P = e e (v du— I7, Fa)e) du’

Using the representation

o) = [7 o Tie) dulr),

we get
[ inf B™ a:] -
T€Gys
uen | 13 (& 17, 7 (elu) du) du(r) + I (£ % £ (alu) du) du(r)

[ ( f(:clu) du) du(r) — /aoo (er/ f(z|u) du) du(r)]

s (3 17 1)~ 201(s10) ) (15)

cuEA [¢ + (m0 — ¢)(b/a)] £(=[0) ’
where the supremum in the last expression is over all y satisfying (10) and 0 < ¢ <
7o. We get the last equality by recalling (10) and observing that, for 0 < r < aq,
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2 J7, f(z|u) du has a minimum at r = 0. Recall that p is a mixture of 2-point
measures satisfying

de) (1-dl) _ 1 (16)

’
Uy U2 u

for some 0 < d(c) < 1, if (u1,u;) is any point where it puts a weight. Here we can
solve for d(c) to obtain

dle) = (ua—w) w1 (17)

(ug —u1) u

Now let F(r) = &~ (f:r f(z|v) du — 2bf(z|0)). Then from (10), (14), (15) and (16),

[ inf B"(-’B)]_l = sup (=) [“(lc)u(f‘;tfl)F(ul) T uzicju(:zzz:)F(uz)]
r€Gys c,u1,uz [¢ + (mo — ¢)(b/a)] f(z|0)
[u:‘uz;t; F(ul) + uiu_—utu) F(U2)]
— sup 2 1 2 1
u,u],u2 2(u — 2a + b)f(le) ’
recalling, v = u(¢) = K%_Ti)ci)’ and thus,
¢+ (mo —¢)(b/a) u
(1—2¢) " (w—2a+b)’
This proves step 2. o
Now define,
g(’ll., Ui, u2)
1 ('u,z - u) (u - u,l)
F +—us F
2(u — 2a + b) [(u2 ey ) + o ywF ()
1 (ug —u) [u

(0 =20 7 5) (g —wa) s ] BV

L) [ #(alv) dv - 2b£(zl0)}

('u,2 - ‘Uq_) -u1

for a < u; < u < uy < 00, u > 2a. Finally we have the following Step which will
prove Theorem 1.
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Step 3.

sup  g(u,u1,us)

afu3<ufuz<oco
sup 1 [/r f(z|v) dv — 2bf(:z:|0)] .
r 2(7’ — 2a + b) —r

Proof: If the maximum of g is at a point (u*,u},u?) which satisfies u} = u}, the

g p y Uy, Uy 1 2
above claim is proved because, then, we have u} = u* = u}. Therefore assume
u; < ug. Then extreme points of g satisfy gﬁ- = 0. However,

dg 1
du ~ 2(us —uy)(u — 2a+ b)? l

u; — 2a + b)ugs F'(usg) — (uz — 20+ b)uy F(u4)] .

Therefore the extreme points, (u*, u}, u}), of g satisfy

(u3 — 2a + b) (ut —2a+0)
They also satisfy :Tgl = 0. Since,
89 (wa—ui) [(us — w){zhwaF(u1)} — uaF(us)]
du; 2(u — 2a + b) (ug — uq)?
(u2 — w)urF(uq) + (v — uq)uaF(us)
+ )
2(u — 2a + b)(ug — uq)?
and u; < u < uy, we get
d
(uz — u1) =—u1 F(ug) + w1 F(uy) — uaF(uz) = O. (19) -

du1
But, from (17),

* *Y % ®Y _ % * u; —‘U,I
uy F(ug) — wiF(uy) = uiF(wy) (—u{ —2a+ b) .
Therefore (18) reduces to

f(zlu?) +2f(:z:l —uj) O _1za ey ( /_ f(z|v) dv — 2bf(zI0))
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= 0, (20)

since

2rF() = [ (alv) dv — 267 (al0)

= f(z|r) + f(z]| — 7).

Now observe that

i =g, 16l0) 40~ 241010 e
f(z]uy) +2f (z] —ui) o -120, s ( /_ ‘f; f(z|v) dv — 2b f(:vIO)) :

Therefore (19) implies that, u} = a or u} = r*, where r* is the unique maximum
of m ( T, f(z|v) dv — 2bf(z|0)). But if uj = r*, then u = r* from (17) and
the fact that r* is unique. This is a contradiction. On the other hand, if u; = a,

then since . .
aF(a) = /; f(z|v) dv — /_ f(z|v) dv =0,
it follows that
1 (u* — a’) * *
2(u* — 2a +b) (u3 — a) uaF(uz)
1 u3
h 2(u3 — 2a + b) (/:-u; fzlv) dv - 2bf(z|0))
(u* — a)(uy — 2a + b)
% (u3 — a)(v* — 2a +b)
1 / s dv — 255 (z|0)
< s —2atp) o FER) Y (=[0) ]
the last step following from the fact that, |
(v* — a)(u — 2a + b) _ (1+ (b—a) )/(1+ (b—a) )

(w; —a)(u* — 22 +b) wi-a) (v —a)

g(u*,a, '"';)

uy F(u3)

< 1.

This proves that (a,u*,u3) can not be a maximum for g. Therefore we conclude
that
uy = u* = uy,

which proves step 3 and hence the Theorem. w
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3.2 Verification for the Normal Example

Now it will be shown that for the normal example discussed earlier all the three
necessary conditions are satisfied and that Theorem 1 is thus applicable.
1. Notice that

Hr) = 5 (2(~ )~ 8(~r —1)],

) L @—0+ér—1) — @ — 1) — 8(~r — )] and
d’H(r) 1 [qS'(r —t)—¢'(~-r—-1t) 2dH(r)] -

dr? r 2 dr

It can be shown that H(r) has its unique maximum at the first non—zero
solution of %ﬂ = 0. ( Result 2 in the Appendix of Delampady (1986a) has a
detailed proof.)

2. Here observe that

Ha(r) = Tr_—;—er_)[@(r—t)—Q(-r—t)—q>(a—t)+<x>(—a—t)],
dIﬁzr(r) _ = zla - b)z{(r —2a+b) (p(r —t) + ¢(~r — 1))
—(®(r — ) — B(—r — t) — B(a— &) + B(—a—1))} (21)
and
PHG) _ 1 [#e-0-#(r—t) _dH0)
R R TR 2 |

Therefore condition 2. follows exactly as condition 1.

3. As explained earlier in the example, in Theorem 2, we are only interested in

situations where ¢t > a + 1. o
Let Gpg be the class of all unimodal symmetric distributions which assign 1/2

mass to 0. Then the following result is immediate.

Note. Under conditions 1-3 of Theorem 1,

lim inf P"(Hp|z) = inf P™(Ho|z).
wEG ¢

a—0reGys
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Table 1: Summary

a P(Ho|0)

a= .01 o= .05 a=.10
0 .1092 .2900 .3890
.01 .1092 .2900 .3890
.02 .1089 .2804 .3886
.30 .0818 .2499 .3559

4 Conclusions

First of all, we have seen in this chapter that, it is possible to derive the lower
bounds on the posterior probabilities over “objective” classes of priors for interval
hypotheses. Further, these lower bounds for small interval hypotheses do approxi-
mate the corresponding lower bounds for point null hypotheses as Result 1 shows.
Summary of the lower bounds graphed in Figure 1 makes the latter point even
clearer. This is where the testing of interval nulls were studied in the normal
case. Recall that a* here stands for the length of the half interval in multiples of
standard error.

In fact, if the standardized half length, a* < .02, these lower bounds remain
approximately the same as those for testing the point null. Even for a 3/5 standard
error long interval there isn’t much of a reduction in these values. This reinforces
our belief that the large values of the lower bounds on the posterior probabilities
of the null hypothesis are not due to assigning mass to the point null hypothesis,
and that P—values are instead the suspect measures.

It was also observed in the Normal example that, as the length of the interval
of the null hypothesis increases, the lower bound on the posterior probability of
the null hypothesis approaches the P-value. This is interesting and is expected in
many situations (cf. Casella and Berger(1987)).

Acknowledgements. The author is grateful to his doctoral thesis advisor, Pro-
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