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Abstract

Each of m “experts” announces whether or not a particular event, A, will occur. These
opinions are assumed to be drawn from an infinite exchangeable sequence. That assumption
provides an effective way to model all the dependence relations solely in terms of prior distri-
butions, and to deal with the question: “How much does dependence among so-called ezperts
hurt when combining their opinions?” in a way which should appeal to both Bayesians and
frequentists.

1 Introduction

A vexing problem in the design of so-called ezxpert systems is how to process uncertain input: expert
opinions rather than facts. A major difficulty is that experts tend to be highly dependent due to
such things as common knowledge and shared environment. Dependency can have drastic effects.
Consider the following standard example reported in Berger (1985, page 307):

Experts 1,...,m report estimates Xj,...,X,, for §. Suppose X = (Xi1,...,Xn) is
Nin(01,%), where 1 = (1,...,1)" and ¥ has diagonal elements 1 and known off-diagonal
elements p > 0. (Thus p reflects the fact that there is a dependence among experts.)
Suppose 4 is given the noninformative prior 7 (f) = 1. Rewriting the posterior variance
as p+ (1 — p)m~! shows that an infinite number of dependent experts, with p = 0.2,
can convey no more accurate information than five independent experts (p = 0).

Modeling dependent uncertainty has seemed so complicated that, in practice, various grossly
over-simplified, and patently illogical devices are used. Their creators are often well aware of these
deficiencies; for example, in the famous expert system, Mycin, Shortliffe (1976) uses what he calls a
“model of inexact reasoning”. They argue that they have no choice because models incorporating
uncertainty appear to be quite arbitrary and to involve numerous hard-to-specify parameters. This
paper is an attempt to explore the possibilities of, to some extent, overcoming those objections. It
also provides further dramatic evidence of the drastic impact of dependence.
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Specifically, we shall consider the case of a single event, say A, which may represent, for example,
the occurrence of rain tomorrow, or a fire or an earthquake. We have also m dichotomous expert
opinions, Xj,..., X, with

1 “A has occurred (or will occur)”
X; = .
0 otherwise.

We shall assume infinite exchangeability of the opinions, given A, and likewise, given its comple-
ment, A the consequences of which will be made precise in Section 2. This may be regarded as an
assumption about the experts, or an assumption about the events (e.g. the fires), or both.

2 The General Model

Of primary interest is the calculation of P(A | Xi,...,Xm). This can be written, using Bayes’
Theorem in odds ratio form, as
P(A| X1,...,Xm) =P(A).P(X1,...,XmIA) (1)
P(A| X1,...,Xm) P(4) P(X1,...,Xm|A)
The interpretation here is that a Bayesmn Decision Maker, as in, e.g., Lindley (1985) multiplies
his or her prior odds by the Likelihood Ratio of A to A provided by the expert oplmons considered
as data, to obtain the posterior odds. So the problem is in modeling P(Xy,...,Xm | A), and
P(X1,...,Xm | 4).
When the expert opinions are IID, with P(X; =1 | A) = w4, we have

P(X1,...,Xm | A) = (ma) 2 Xi(1 - 1) 205, 2)

If we assume infinite exchangeability of Xi,...,Xp,, ..., then, by the well-known de Finetti Theo-
rem, see, e. g., Feller (1971, page 228), there is the representation

P(Xy,...,Xm | A) = E(r)ZXi(1 - 1,)20-%), (8)

and a similar expression for P(Xy,...,Xm | A), where 74 and = ; are now random variables. Their
distributions may be regarded as the decision maker’s prior opinion of how the infinite pool of
experts will respond if A does or does not occur, respectively. In choosing these two priors, the
decision-maker has completely specified the dependence relations among the expert opinions.

For binomial likelihoods, the most appealing choice is the conjugate prior family of beta distri-

butions: P(atf+2)
o
.fT(ZJ a’ﬂ) - r(a+ 1)P(ﬂ+ 1)

with parameters & > —1 and 8 > —1, for which,

INa+B8+2) I(a+14+5)T(B+1+k) @)
T+ )I(B+1) T(a+tB+2+5+k)
Substituting - X; and ) (1 — X;) for 7 and k, and choosing values, a4, B4, 4> and B, evaluates
(3), as well as the corresponding expression for P(Xj,..., X, | A). These choices might be made
either directly or from the first two moments:

a+1 2 .
= —_— — E =
Erx P u, .y

-z%*(1 - z)P 0<z<1,

Exi(1-n)* =

(¢ +2)(a+1) _
(a+B+3)(a+B+2)




Alternatively, the four parameters can be obtained from the means and correlations. Under
exchangeability, it is always the case that specifying the first two moments of the mixing distribution
determines the correlation, as the following simple argument shows:

Let X and Y denote any two such dichotomous opinions, where 7 has mean u and standard
deviation o. Then the correlation, pxy, satisfies:

pxy = EXY - (EX)(EY) (in general)
oX0y
PX=Y=1)-P(X=1)P(Y =1)
VPE=10-PX=DP¥ =1) - PAY = 1]

(for 0 — 1 r.v.’s)

2 _ 2
%’%’% (under exchangeability)
var(n) o?
= = .0 5
&1 -E0) ~ Wi A) 2
For beta priors, this becomes
v — u? 1
po 2B ®

T wl-p)  atp+s
hence
at+l=p(p~'-1), B+1=(1-p)p~!-1). )

2.1 Modeling Prediction

The choice of parameter values will generally be influenced by whether the situation being modeled
is one of detection or of prediction. In the language of Morris (1986), the former is his

Model 3. An event probability is viewed as a single piece of data whose likelihood depends
primarily on the occurrence or nonoccurrence of the event in question.

while the latter is

Model 4. The expert’s probability is viewed as an estimate of the frequency of a sequence of
exchangeable events. ..

Fire alarms and seismic detectors are Model 3 examples, while the meteorologist announcing
whether or not it will rain tomorrow, is a classic Model 4 example. In the latter case, we might
follow Winkler (1986, page 300) by choosing

ag=az+1 Bi=PBa+1,

for which the posterior odds becomes

P(Ale,...,Xm)__ a;+1+3 X;

P(A|X1,..., Xm) Patlto(l-X) 8)

When the proportioﬁ of experts predicting rain, Y X;/m, equals the decision maker’s prior prob-
ability, (az +1)/(az + B4 + 2), the above posterior odds are the same as the prior odds. This is
analogous to Winkler’s result. )



3 Effect of Dependence

To further examine the effect of dependence under exchangeability, let us consider an interesting
special case, motivated by examples like the “fire alarm”. Of particular interest in such cases
is P(A | 0,...,0), the probability of all m “alarms” failing to report a “fire”; and especially its
behavior as m — co. As (1) shows, this depends essentially on (3)—which now becomes

P(All m experts wrong | A) = E(1 — m4)™ (9)

—and the corresponding expression, given A. Thisis a frequentist type of measure, which should
be of considerable interest to non-Bayesians as well as to Bayesians.

3.1 Beta Priors

When 74 and 7 ; have beta distributions (9) is of the form:

E(l-n)" = (B+1)(B+2)---(B+m)
(a+B8+2)(a+B+3)---(a+B+m+1)
= O(m_("+1)) . as m — oo (10)
(Note that 8 does not appear, asymptotically.) Hence, the Likelihood Ratio in (1) is
PO,...,014) 0 (m~(e4=ad) . (11)
P(0,...,0 | A)

Let us look more closely at the implications of (10). Obviously the rate of convergence to zero
is much slower than (1 — p)™, the corresponding rate for independent experts, especially when the
correlation is large. The slowest convergence, slower than m™!, occurs for negative o; i.e. when =
has a mode at zero. The bimodal beta distributions (a and B negative) model situations in which
there is considerable agreement among the experts, who are sometimes right (perhaps for certain
kinds of fires) and sometimes wrong (perhaps for other kinds of fires).

As an illustration of the slow convergence, inspired by the example in the introduction, we may
ask

How many dependent experts, with prescribed correlation, p, can detect an event as
reliably as k independent experts (p = 0)?

The answer here depends on u as well as p; from (10) it is

m—1
m(p, p) = min {m= II (1—1;”-14) < (1—#)'°_1}- (12)

i=1

A lower bound is the smallest m for which

£33 1-» k-1
1- _) < (1—p)* 13
I (1- =2 ) <a-w+, (12
j=1

which shows that, for fixed p < 1, m(p, 1) 1 0o as p 1 1. Thus the effect of dependence is nearly as
dramatic here as in the Berger (1985) example: The necessary number of dependent experts, while
never infinite, is, in a sense, unbounded. Some explicit values for p = 0.2 are as follows: we need
m > 10 for p = 0.25, m > 12 for u = 0.50, m > 18 for p = 0.75, and m > 37 for u = 0.875.



3.2 Partial Prior Knowledge

How much can be said when only the first and second moments of 74 and x ; are specified, but
the exact form of the distributions is unknown? Formally, the problem is to find extremal values.
of E(1 — x)™ among all distributions of 7 with support in [0, 1] and prescribed moments:

Er=p and Ex? =v = p? + pu(l — p).

Because the four functions: 1,7, #%, and (1 — #)™ form a Tchebycheff system, the techniques in
Karlin and Studden (1966) yield, easily, the following solution: The upper bound,

p(1—p) ®
pt+p(l—p) p+o(l-p)

puts all mass on zero and p+ p(1 — p), and has a non-zero limit, as m — oco; while the lower bound,

(L—p—p(l-p)",

1—p

— (1 —pu+pu)™,
1—#+Pﬂ( )

puts all mass at 1 and u — pu, and goes to zero exponentially fast.

Thus there is a very wide range of possible asymptotic behavior when only the two moments are
specified. Might we get more useful bounds if we, say, restricted the class of mixing distributions
to just the unimodal ones? The answer is no; but we can get the following interesting upper bound
on the correlation:

Proposition 1 If v is unimodal, then p < 2/3.
Proof. For any unimodal density, f, on (0,1), with mode ¢, and mean p, let
dH = —(z — ¢)df.

Then dH is a legitimate measure, with

1 1
/dfl:l, /de=2p—¢,
0 0
and L L
/ 2 dH = 3/ z? f(z)dz + 2¢p.
0 0

A very general supporting hyperplane method of obtaining moment inequalities, described in Karlin
and Studden (1966, chapter 12), yields

m}z}x/: z? dH(z) = [A+ B(2p — ¢)].

= min
{A,B: A+Bt>t2 on [0,1]}
The above minimum is 2u — ¢, attained for A=0 and B =1, so

1/5/011:2 f(z)dz < 2—”-:-%—’_—245’{

If we now maximize with respect to ¢, we have



v

< { 2u/3 if p < 1/2
(4p-1)/3 ifp>1/2

so, using (5),

=”‘_“2<{(2—3u)/3(1—ﬂ) if p<1/2
PTRO-W T | Gu-1)/3m if p > 1/2

In both cases, the supremum over p is 2/3.0
(Notice that, for the unimodal beta densities: @ > 0,8 > 0, (6) shows that the correlation is at
most 1/3.)

3.3 General Asymptotic Behavior

The fact that 8 does not appear, asymptotically, in (10), is indicative of the more general fact:
the asymptotic behavior of E(1 — x)™ depends only incidentally on the correlation; what it really
depends on is how the distribution of n looks near zero. In general, if the support of = is bounded
away from zero, then E(1 — 7)™ goes to zero exponentially fast, just as in the independent experts
case. At the other extreme, if there is mass at zero, then there is no convergence to zero, as in the
example from Berger (1985). The only remaining case is where the support includes a neighborhood
of zero, in which case there is convergence to zero, but at a rate much slower than exponential.
This is illustrated by—but by no means restricted to—the beta distributions shown above.

Finally, we remark that the above results generalize immediately to the situation of exchangeable
experts giving dichotomous opinions about an exchangeable sequence of events rather than just a
single event. As modeled here, in that situation we have merely a single sequence of indicator
random variables, with each successive m of them referring to one of the events.
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