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ABSTRACT

A distribution-free inadmissibility theorem is proved for estimating under quadratic
loss non-negative functionals that are allowed to depend on the unknown c.d.f. as well
as the data. It follows from the theorem that, subject to finiteness of the risk, some
natural estimators of the eigenvalues of many commonly occurring matrices in multivariate
problems are inadmissible, typically from dimension 2, when samples are drawn from any
multivariate elliptically symmetric distribution. As an example, if X,..., Xk are i.i.d.
observations from such a distribution with dispersion matrix X, then the eigenvalues of
% are inadmissible for the eigenvalues of ¥ if a certain condition holds where S is the
sample sum of squares and products matrix. It also follows from the theorem that in the
general scale-parameter family, the best equivariant estimator of the scale-parameters is
inadmissible for p > 2, and some natural estimators of the losses of the best equivariant
estimators are inadmissible, usually for p > 2. The theorem also has certain applications
to the Ferguson family of distributions, the multivariate F' distribution, and for unbiased

estimators in some families of distributions.

1. Introduction.

Stein (1955) showed that the usual estimator of the mean of a p-variate normal
distribution with identity covariance matrix is inadmissible under squared-error loss if
p > 3. Since this monumental work, researchers in this general area have proved that the
same inadmissibility phenomenon holds in an incredibly large number of problems. Brown
(1966) proved the existence of the “Stein-effect” in general location problems under very
general losses; Berger (1980) gave a general theory for the continuous exponential fam-
ily, with applications in the gamma case, and Hwang (1982a) treated the same problem
in the Discrete exponential family. The problem of simultaneously estimating multiple
gamma scale-parameters was readdressed in DasGupta (1986a) and the following result
was proved: for ordinary squared-error loss, the best equivariant estimate, say 0(X),
of the scale-parameters is inadmissible for every p > 2, and a dominating estimator is

6o(X) + ¢ - (HX_,)% -1, where 1/ = (1,1,...,1) and ¢ > 0 is a suitable constant. Only

later it was diJscovered that this same result holds for every p > 2 in the arbitrary scale-
parameter family; see DasGupta (1984b). Interestingly, in all of these cases in which the
idea of shifting by the geometric mean works very well for proving inadmissibility results,
the parametric functions being estimated are always non-negative. The purpose of this
paper is to prove a very simple theorem, motivated by Brown’s (1979) heuristics, in the
context of simultaneously estimating p non-negative functionals (which can depend on
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the unknown parameters as well as the random variables) under quadratic losses; roughly
speaking, the theorem says that if X = (X,...,X,) has a distribution Fe¥, where ¥ is
some family of distributions on RP, and if one wants to estimate non-negative functionals
pi(X, F), p2 (X, F)y. .., up(X, F), then under a suitable technical condition (see Theorem 1
in the next section) an estimate 6(z) = (61 62(z),. .., 6,,(3:)) is inadmissible and a bet-
ter estimator is §(z) +c- A(z) - 1, where cisa sultable real number, and A(z) is a suitable
size statistic, not necessarily the geometric mean of the 6 ’s. The examples in the next sec-

tion show that a variety of size statistics, like (H 6;(z )) Z 6;(z), min (6,(z),...,6,(z))

etc., work in different problems. The critical dlmensmn of inadmissibility is almost al-
ways 2, but sometimes is 3 (see examples in the next section). Besides the theoretically
interesting facts that the theorem is nonparametric in nature and that it can handle es-
timation of functionals which depend on parameters as well as the data, the wide variety
of problems to which the result applies is surprising. Some important problems in which
the inadmissibility of natural estimators can be proved by directly using this theorem in-
clude the following: (i) estimation of the means in arbitrary scale-parameters families, (ii)
estimation of the eigenvalues of the dispersion matrix £ and the precision matrix £~ in
a general elliptically symmetric distribution, (iii) estimation of the eigenvalues of L%,
where X, ¢+ = 1,2, are the dispersion matrices of two elliptically symmetric distributions,
and independent random samples are available from the two populations, (iv) estimation
of the eigenvalues of the matrix By, ; = Zyy — Ty, X711 L;4, Which arises in multivariate
regression, (v) estimation of loss-functions of the best equivariant estimate in the general
scale-parameter family, (vi) estimation of the means in some members of the Ferguson
family of distributions (see Ferguson (1962)), and (vii) estimation of the means in the
multivariate F' distribution. The theorem also gives some interesting inadmissibility re-
sults for unbiased estimates in certain cases. Note that problem (ii) arises in principal
components analysis, and problem (iii) in MANOVA. Problem (ii) has received the at-
tention of several authors, including Stein (1975). Problems (i), (v), (vi), and (vii) are
interesting from the viewpoint of general decision theory. We believe that this theorem
probably has potential applications in other problems involving estimation of nonnegative
functionals not considered by us in this article.

In section 2, we give the main theorem and its applications and relate the main result
to Brown’s (1979) technique. In section 3 some concluding remarks about the amount of
risk-improvement and the scope for choice of a dominating estimator are made. Before
closing this section, we would like to point out that the results in this paper are valid
subject to finiteness of risk.

2. The Main Result and Applications.

Theorem 1. Let X = (X1, Xa2,...,X,) have a joint distribution F, where F' belongs to
some class ¥ of distributions on RP. Let p; (X, F), 1 <1 < p, be nonnegative functionals
and let 0 < 6;(X), 1 <7 < p, be any estimators of u; (X, F). Let A(Xy,...X,) be any

2



E{/\zp: 5;(:)}

E{)\-i ;L.'(Z,F)}

=1

non-negative statistic. Define A(F) =
If either

(a) }‘Ef;’A(F) =r>1,

or

(b) sup A(F) = R < 1 holds,
Fe¥

and

) E(Az(:g)) < Ap- E{A(z) - X6;} V F and some Ag > 0,

then 6(X) is inadmissible for estimating w(X,F) under sum of squared-error losses
P
2. (6i — pa)®.
=1
Moreover, a dominating estimator is given as 6;(X) = 6(X) + ¢A - 1, where ¢ is a

suitable negative number in case (a), and a suitable positive number in case (b) (see (2.4)
below).

Remark 1: In a large number of examples to be considered in this section, there is enough
homogeneity that A(F) is actually a constant for all F. In such cases verification of the
sufficient condition(s) of Theorem 1 will be somewhat simplified.

It is interesting that problems (i) through (vii) listed in the introduction all have
a “pseudo scale structure” in them. (We will not attempt to formally define a pseudo-

> B(5:(2)) > E(s2@)
scale structure, but roughly speaking we mean that T and = be-
#i(T,F) S B(u2(z,F))

have like constants uniformly over F € ¥). Suppose now we consider the problem of
estimating, under sum of squared error losses, p positive parameters 1,02,...,0, by es-
timates aX1,aXp,...,aX, respectively, where a is a real constant. Let u;(6;) = E(X;),

Vi(0:) = E(X; —0:)%, r(z) = (a—1)z. Let’s assume that >_ u;(8;) = Y_ 6;. Brown’s (1979)
heuristic analysis then suggests that we should expect z + r(z) to be inadmissible if we
can find a function A : R? — R! satisfying the non-linear differential inequality

2@ —1)A(0) ) _0:;—2> _ Vi(8:) —pA2(g) >0V e

& pA2(8) +2(a— DA@) Y0 + zzw(oi)ix(g) <ova. (2.1)



(this is just inequality (6) on page 964 in Brown (1979).) Suppose now u; < ﬂ-‘og_-'l < ug <
Yo Vi(6:) '

oo (in some problems it is easier to check that u; < _EOT < p2 < o©); if one now lets

i

s =

, then (2.1) reduces to

H P4 a—1)(Ho,-)‘sZo,-+2£(H0,-)‘;ZV"gi) <0 (2.2)

X(8) = ¢(I16;)

1

Using the facts that Eg_f—‘l < pg and H(O,)% < Z:paj , it easily follows that (2.2) will hold if

J
there exists a ¢ > 0 such that ¢+2(a—1) —{—2% < 0;ifa < 1, then clearly such a ¢ > 0 exists

for large p because £2 — 0 as p — oco. Brown’s (1979) analysis then strongly indicates

that in problems with a pseudo-scale structure, ¢X should be uniformly dominated by
1

aX + ¢([] X;)* for large enough p, where ¢ > 0 is a suitable real number. Note that in

J
order to formally carry out Brown’s (1979) analysis, one would have to first make a variance

stabilizing transformation. Theorem 1, however, uses arguments different from Brown’s,
although it is motivated by Brown (1979). Brown’s (1979) heuristic analysis can be used
to generate similar provable inadmissibility results in many estimation problems; following
this theorem, we have given a large number of examples in which the function X is different
from the geometric mean and in all of these examples, Brown’s (1979) heuristics do suggest
that such other A’s can be used to obtain uniform domination. In choosing an appropriate
function A for constructing dominating estimators, the following heuristic prescription also
seems to work very well: find a function A(X) such that /\y‘()—;% is independent of either A(X)

or XX; when all 0;’s are equal. Then §(X) + cA(X) is a plausible estimator dominating
6(X). For example, let X7,..., Xk be iid Np(y,X), where y,% are unknown, and let
£ > ... > €y > 0 be the ordered eigenvalues of S = L(X; — X)(X; — X); consider the
problem of estimating (A1,...,A,), the ordered eigenvalues of ¥. It is well known that

E & trs

T is independent of tr S when all A;’s are equal to some A (i.e., £ = AI);
(I ) |s|?

this follows from Basu’s (1955) theorem because trS is complete sufficient for A and tr

S/|S |% is an ancillary statistic. Thus, in the eigenvalue problem described above, | S |%
is a plausible choice for A(f).

Proof of Theorem 1: We will prove the theorem when case (a) holds. The other case is
exactly similar. By deﬁnition,

A(F) EZ{&(X)—I—cA pi(X, F)} —EZ{&(X) ui( X, F)}?

=1 1=1

E{pcz)‘2+2c/\2 — pni(X, F))}

=1



<E {(pcon +2¢)A- Zp: 6:(X) — 2¢A zp: i (X, F)} (2.3)

i=1 =1

. {(chAo +2¢) - A(F) — 2c}

—E l,\-f_:u,-(X,F)
2(1—r)

<0, if0>c¢c>
s 1 C per

(2.4)

Hence proved.

The permissible values of ¢ in case (b) are 0 < ¢ < %%l. With slight modifications,
the assertion of the above theorem holds when the loss is Lo = (6 — 1)’ Q(6 — 1) where @
is a p.d. matrix of known constants and when the unit vector 1 is replaced by an a > 0
(i.e., each component is positive) in the dominating estimator. Note that while it follows
from Shinozaki (1975) that if §(z) is inadmissible under squared error loss, then it is also
inadmissible under Lq, it does not follow from Shinozaki (1975) that essentially the same
type of estimator dominates §(z) under both losses.

Remark 2: In some problems, it is easier to show that C(F) = —E{X - (6(z) —
2
ui(z, F))} > 0 and that ﬂé\%%iﬁ is uniformly bounded over F € ¥. The line preceding

(2.3) shows that in such a case one can find a small enough ¢ > 0 such that A(F) < 0
VF € ¥. See example 3 for an illustration in the Pareto distribution.

Remark 3: If a family of statistics {Aq, @€T} satisfy conditions (a) and (c) (or (b) and (c))
of Theorem 1, then very often a convex mixture A = fT AadP(a) also satisfies conditions
(a) and (c) ((b) and (c)) of Theorem 1. This fact is useful in generating new improved
estimators by taking convex combinations of different estimators. Of course, that such
convex combinations are also uniformly dominating estimators follows from the convexity
of squared-error loss. What is interesting is that such convex combinations also satisfy the
hypothesis of Theorem 1. See DasGupta (1986b) for details.

We now give applications of this theorem to various estimation problems. At this
point, we like to remind the reader that in almost all the examples given below, the
functional A(F) defined in the theorem is, in fact, a constant independent of F. For a
related result in this direction, see Gleser (1986).

Example 1: Estimation of arbitrary scale-parameters.

Let X; =% 01—_fi (%—) , Xi, 0; >0, 1<1<p. Thestandard estimate of 8; is the
best equivariant estimate 6;(X;) = a;X;, where a; = g—:ifjl(%;)y Take A(X) = (][ X J)% in
Tt t j

Theorem 1.



In this case,

Eq [Zp: aiXi(IpI X,-)%J
A(B) = —

=1 1

i=1 7

Zé’i'Ee(lin)%

e [EX (] Xf]

J#L

B 1 (2.5)
(3oi=10:- Eo(I15-, X5)7
Now observe,
a; E, (Xi1+%) - %((_i((;—)) ) Eo.-:l(XiH'%) . 0i1+%
< By (XF)0s
= Eo,(XF) b (2.6)

(the inequality follows form Liapunov’s inequality which implies that E (X 1+%) E(X) <
E(X?) E(X %) for any positive random variable X; see DasGupta (1984b)).

The mutual independence of the X;’s, (2.5), and (2.6) now imply that sup A(f) <
9

1 and hence the best equivariant estimate is inadmissible for every p > 2 (Note that
A(6) is actually a constant free of §). This example thus establishes inadmissibility of
the standard estimates of the means (and in fact, all moments) in the Gamma, Pareto,
lognormal, Rectangular, F, Weibull, and the Half-normal distributions with unknown scale
parameters. The class of improved estimators in DasGupta (1986a) are thus proved to be
robust in the sense that in the entire scale parameter family, they dominate the best scale
equivariant estimator of the scale parameter §. Recently, Shinozaki (1984) has proved that
the James-Stein estimators are also fairly robust and give uniform domination for many
location parameter distributions.

Example 2. Inadmissibility of unbiased estimates.

The result of Theorem 1 can also be used to prove inadmissibility of unbiased estimates
in certain families of distributions. Let 0 < X;, 1 < 7 < p, be independently distributed
as Fy,Fz..., Fy, respectively. Suppose we want to estimate u;(F;) = Er,(X;), 1 < < p.
Identifying 6;(X) as X; in Theorem 1, we will show that infr A(F) > 1 if v/X; has
a coefficient of variation uniformly bounded away from zero (over F;), and hence X is
inadmissible for its expectation. We take A(z) = (][] a:j)%.

J
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Towards this end, note that

( because of independence and Holder’s inequality)

S =

=5 { wi(F) - (EX;) -E(HXJ?) : (2.7)

J#e
Now by assumption
EX?
sup <1
F; (EX;)E
= su EX{ <1l ifo<r<1 (2.8)
Fip (EX,')" - '

(as long as 0 < r < 1, the value of r does not matter). Taking r = % in (2.8), it now follows
from (2.7) that

CE{EX (T X5 -7
111411f T

}>1.
)

Distributions for which 4/X; has a uniformly bounded (below) coefficient of variation
have, in some sense, pseudo-scale structures in them. It can be quite easily proved that
scale mixtures of distributions uniformly satisfying (2.8) also satisfy (2.8). See DasGupta
(1986b) for details.

One very simple example of this sort is h(z) = e5-f1 (7)+(1—¢) blgfz(%), wherel > e >0
is known. Note that this is not a scale-parameter density.

Example 3. Ferguson family of distributions.

The heuristic prescription given in the paragraph preceding the proof of Theorem
1 for finding an appropriate function A(z) in order to construct the improved estimator

7



seems to work well for some well known members of the Ferguson family of distributions
(for the definition of the Ferguson family of distributions, see Ferguson (1962)). An im-
portant feature of the Ferguson family of distributions is that if X; "~ L(6;,0?,~;) have
distributions belonging to the Ferguson family, then one can find appropriate size func-
tions G(z) (a statistic G is called a size function if G(az) = aG(z) for all a > 0) such that

e EX) and G(X) are independently distributed. Note that G(z) can actually depend on the

parameters also: for example, if X; =X Pareto (6;) where 6;’s are the scale-parameters,

then G(X) = min(%(ll-,. . )T:f) For the purpose of the following discussion, it will be

understood that G(X) is such that EEX')T) and G(X) are independent under § = 1.

It turns out that in two important members of the Ferguson family of distributions,
namely, the Pareto, and the lognormal, the natural estimators of the means (which are
usually constant multiples of the X;’s) can be uniformly dominated in risk by expanding
them by a suitable positive multiple of G(z).

For the lognormal case, the size G(X) is (] XJ-):_’ and thus, rather coincidentally,

j
the result of example 1 can be invoked to prove that uniform domination obtains. In the
Pareto case, we will present the actual proof only for p = 2; the calculations get somewhat
complicated for larger p. Before we proceed further, we would like to point out that the
appropriate size function G(z) such that 5%:—57 and G(z) are independent is usually found

by equating G(z) to a sufficient statistic when all 6;’s are equal to some 6 (see Lemma

4.1 in James (1979)). Let now X; “~" Pareto (a,0;), where a > 2 is the common shape-

parameter; i.e.,
f(z:/0:) = g%(%)_a_l, z;>0;, a>2. (2.9)

a

The best equivariant estimate of 0; is ﬁxi. Recall that G(z) = min(zy,...,z,) in
this case. Now

> Bl e teGle) ~ 0" = 3 Boli—fwi— o))
¢ i

a—2
= Eg[pc* G*(g) + 2¢- — Glz) Z Xy — 2¢ Z 8; - G(z)],(2-10)

where X(1) < ... < X(p) are the sample order statistics. Direct calculation (in the case
p = 2) yields that for 8; < 85, the risk-difference is equal to

a 2¢ca

fi(r) -

[pc2 . fa (r)] 02, (2.11)

a—2 a—1

where



01
=—x1
r g, =1
ra
fl(r) =r?— a—1'°
a at+1
and fa(r) = o . 4 (2.12)

— + .
(e—1)(2¢—1) 2a—1 (a—1)2
A similar identity holds for 6, < 6;.

It’s clear that fa(r) > 0V re(0,1]; furthermore, %(% —0asr —0,and %(% has no
singularities on (0,1]. Consequently, % is uniformly bounded on (0,1]. Hence one can
choose a small enough ¢ > 0 such that the risk-difference in (2.11) is uniformly negative.
This proves that for two independent Pareto random variables, the best equivariant esti-
mate can be uniformly dominated in risk by expanding it by a multiple of min(X, X2). We
believe that these calculations can be carried out for a general p; the algebra, of necessity,
gets more involved.

Example 4. Estimation of the means in the multivariate F' distribution.

Let Xo, X3,...,X, be independently distributed as I'(a;, 6;), o; > 0, 8; > 0. The joint

distribution of 7, Z3,...,Z,, where Z; = %, is called the multivariate F' distribution.

In multifactor ANOVA problems, X, plays the role of the error sum of squares, and
X1,Xa2,...,X, are the sums of squares due to the treatment effect, the block effect, etc.
The joint distribution of the ratios Z; = %;— is important for simultaneously testing that
there is no treatment effect, no block effect, etc.

It’s easy to verify that E(Z;) = 'offi' . %’-, also, the best scale equivariant estimate

of 2 Z Note that {Z;} are not independent. We will prove that for p > 2,
the best scale—equlvarla.nt estimate is inadmissible and dominated uniformly in risk by

T ;f Z;i + c(H Z;)/?, for a suitable ¢ > 0. In view of Theorem 1, we merely need to show
J

that

Ep g;‘;’ (HZ)I/*’

sup (2.13)

0o - z: ;" - Eo(H Z;)1/p

Using the facts that Xo,X1,...,X, are mdependent, a direct calculation shows that
it+L I(a;+1 .
(> xity (H (a’f")) and the denominator equals
J

oag— —~ a;+1 Tajy
1

the numerator in (2.13) equals

L
aop—l (H F(CII":J__")) (the ratio is independent of 8o,01,...,8,, and thus can as well be cal-

nty
culated under § = 1). Thus (2.13) equals iT’ which clearly is less than 1 for every
p > 2. This proves the inadmissibility result.
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Example 5. Estimation of the eigenvalues of the dispersion matrix in multivariate normal
distributions.

Let X1, X3,..., Xk+1 bei. i d. observations from Np(g,X), 4, X (p.d.) both unknown.
k+1 _ —
Let $ = ) (X; — X) (X; — X)"; it is well-known that S ~ W,(k,X) and that S can be
j=1

k

written as S = El U; U], where U; ~ Ny(0,X). Moreover, the unbiased estimate of X is
J:

% and the mle is k_i—f Consequently, if £; > £2 > ... £, > 0 are the eigenvalues of S, then

%— as well as k_&T are in some sense “natural” estimates of the eigenvalues of X. It is known

that F{'—T are the mles of the ordered eigenvalues of X, but %— are not unbiased for them
except in the case p = 1. Note that in this problem there is no best choice of the multlple

of the {{;’s} and motivated by the case p = 1, one may even consider the estimators F'ﬁ

In general, if one sets §;(X) = af;, then,
a-Ex { tr S-| S |%}

A(X) = wn En |5 (we take A(£) = |S| ) (2.14)

A(X) is easily seen to be constant in ¥. Thus, if a = %, then inadmissibility will follow if
we can prove that
Er{tr S-|5|1/7}
EI(tI‘ S) EI(|S|1/p)
<= Covy(tr §,|5|/?) > 0. (2.16)

A(I) = > 1, (2.15)

Direct calculation yields that COV; (tr S, |S|V/?) = —4,;”— so that {%} are inadmissible
for p > 2.

The mle’s of the eigenvalues in this problem correspond to a = -1—. The ratio A(X)

2
in this case is % . + < 1 for p > 3 and hence it follows from Theorem 1 that the

mle is inadmissible for p > 3. The Associate Editor has pointed out, using a different
argument, that the mle is inadmissible even for p = 2 and in fact for p = 2 is dominated by

Wz’%(ll, £;). Note that for ¢ = 1 the constant ¢ of the theorem is negative so that the

improved estimators are shrinkage estimators, while for @ = ﬁ the constant ¢ is positive
so that the improved estimators are now expanders. Theorem 1 indeed shows that for each
a# (k+ 2) , {a¢;} are inadmissible, and a = (k + 2) ! is not a natural choice except
when p = 1 or 2. We do not know if this choice of a 1mplles admissibility of afy,...,al,
or not.

Example 6. Estimation of the eigenvalues of ¥ in elliptically symmetric distributions.

Let X,X2,...,Xg41 beii.d. observations from a distribution with density | X |~2
f((z — p)'="Yz - 1)), where p, Z(> 0) are unknown. Once this sample is obtained,

10



we define the matrix S in the usual fashion. It’s easy to show that E(%) = Y. Consider
the problem of simultaneously estimating the eigenvalues of ¥ by constant multiples of
the eigenvalues of S. It turns out that {%—} are inadmissible if f is of the form f((z —

— 1
1)'S~Y(z—p)) = constant x [ &2 (x_’:llz—l(z—”) dF(r) where F is a probability measure
on (0,00). This can be seen by reasoning conditionally on 72 and then integrating over
72. See DasGupta (1986b) for details. Important densities which are such scale mixtures
of normals are the spherically symmetric Cauchy, ¢, and the Double exponential densities.

The estimation of the eigenvalues of ¥ when X;’s are non-normal is of importance
in principal components analysis. As a dimension reduction technique, principal compo-
nents analysis does not make any distributional assumptions whatsoever, and the ordered
eigenvalues of X are the variances of the principal components whether or not the X;’s are
normal.

Example 7. A larger class of improved eigenvalue estimators when S ~ W, (k,X).

Broader classes of improved estimators for the eigenvalues of X when S ~ W, (k, X)
are obtainable using Theorem 1.

The identities of Haff (1980) in conjunction with Theorem 1 imply that % + er(¢)
dominates %'- for suitable ¢ < 0, whenever

(1) 0<@§1

and (ii) t~°r(¢) is nondecreasing in ¢ for some € > 0, (2.17)

where t = |S|¥.
Note that condition (i) is needed for hypothesis (c) of Theorem 1 to go through.

The identities of Haff(1980) can be used to generate improved estimators for the
eigenvalues of £ by shifting by suitable functions of trS as well. We have been able to
show that & + er(tr S) dominates 4 for suitable ¢ < 0, whenever

(i) there exists an &€ > 0 such that ¢ < ﬂv%V_l <1lVuw
. w) . . .
(ii) ﬂvVl is non-increasing. (2.18)
A nice thing about these fairly wide classes of uniformly improved estimators is that
one can now formally seek to select an improved estimator by using criteria like gamma-
minimaxity or the restricted risk Bayes principle. For some recent works on such selection

problems, see Marazzi (1985), DasGupta and Berger (1986¢), DasGupta and Rubin (1987a)
and DasGupta and Bose (1987b). Also see L. Brown’s discussion on Berger (1983).

Remark 4: Results similar in spirit to those in Example 5 have been obtained for estima-
tion of the eigenvalues of the precision matrix !, of 2;122 where S; "~ Wy(k,Xs),t =

11



1,2, and of the residual matrix Y391 = Xog — 22121_11212 when ¥ is partitioned as

Y = <§11 gl2> . These problems arise naturally in the context of testing problems
21 22

in multivariate statistics and in multivariate regression. See DasGupta (1986b).

Example 8. Estimation of losses in the scale-parameter family.

We now give an application of Theorem 1 to a completely different type of prob-
lem. Let X; ‘“iip'oli f,-(%‘_i). As mentioned in example 1, the natural estimate of ; under

squared-error loss is the best equivariant estimate a;X;, where a; = ggf:ll( ;{(‘) . The loss

in estimating 0; by a;X; is (a;X; — 0,-)2. An important decision-theoretic problem is that
of estimating the actual loss incurred in estimating an unknown parameter; the idea here
is that a statistician should report not only an estimate of the unknown parameter, but
also a measure of accuracy of this estimate. An estimated loss serves this purpose. The
related problem of estimating the risk function is also of some importance. Note that the
loss incurred is a function of both the parameter and the data; we will use squared-error
as a criterion for choosing among different estimators of the loss. In the context of our
scale-parameter problem, then, the problem under consideration is simultaneous estima-
tion of the componentwise losses (a;X; — 0i)2, 1 < ¢ < p, under a second stage sum
of squared error loss. The problem of estimating the overall loss 2P (a:X; — 01-)2 could
also be attempted; see Johnstone (1987). For ease in presentation, we will work out this
example in the gamma case, but every step in the following analysis goes through in the
arbitrary scale- parameter family.

Let Xiinffp'I‘(a,ﬂi), with EX; = 2, 1 < ¢ < p. In this case, the best equivariant

estimate of 0 !is a; X;, where a; = alﬁ For estimating the loss (a; X;—0; 1)2 , natural one-

dimensional estimates are ¢, X7?; one reason for this is that the expected loss is proportional

2
to 6; %, and another reason is that unbiased estimators of the overall loss Y (a;X; —
=1

P P P
t9i_1)2 are of the form ) ¢;X? (i.e., for suitable constants ¢;’s, Eo{ > e;X?2— Y (a; X;
=1 =1 1=1
—-0;1)2} = 0).
Because of the scale-structure in the problem, there exists a ¢; minimizing F [e; X2 —

(a—}_('_‘f — 0:1)%)?; the optimum ¢; satisfies

1 4 2 3 2
(C,, (e + 1)2> EX; a+1 i~ EX (2.19)

where E(-) denotes expectation under 8; = 1.

By direct calculations now, ¢; = m Identifying 6;(X) as ¢, X? and p;(X,0)
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as (ﬁT 6; )2 in Theorem 1, it suffices to show that
P, P 2
Ep |22 X7 (11 X;)7
i=1 =1

Zp: (a+1 B _1)2]

By straightforward calculations, the numerator of (2.20) equals

1
(@t D2(a+2) "o

<1 (2.20)

-uln

Eq [( ljl X;)

Fla+2+2) (T(a+t? 2 s
fat D ( ) Ha -zi:oi (2.21)

Also, the denominator of (2.20) equals

{(a+1+%)(a+%)_2(a+%)+1}_<r(a+%))p. ITe; ¥;02

(o +1)2 a+1

4 2 2 P
Z—%24+a+1 [T(a+ 2) -2
_>r P . P . II P (.72 .22
(a+1)2 ( I'\a ) 0_7 ( 171 ) (2 )

Hence, in the notation of Theorem 1,

1 (@+ 1+ 2)(a+ 2)(a+1)?

(@a+1)2(a+2) L -240+1

A9) = (2.23)

Interestingly enough, this ratio is exactly 1 for both p = 1 and 2 and thus the inadmissibility
result of Theorem 1 does not apply. However, for p > 3, this ratio is < 1 and hence

uniform domination can be achieved by using improved loss estimators m +c-

(H X; )P where ¢ > 0 is a suitable number. Thus, although the best equivariant estimate
J

of 6; 1 is itself inadmissible for P > 2, a natural estimator of its loss can be shown to
be inadmissible only for p > 3, and is probably admissible for p = 1,2. This somewhat
surprising phenomenon in the gamma case thus completely agrees with the recent results
of Johnstone (1987) in the normal case.

In the general scale-parameter family, the expression analogous to (2.19) is given as
(¢; —a?)EX} + 24, E(X3) - E(X?) =0

EX?+ a?EX}—-2a;EX?
EX? ’

&= (2.24)
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where E() again denotes expectation under §; = 1. If the coordinate distributions under
0; = 1 are assumed to be identical, then ¢; = ¢ (say) and a; = a (say) for every 7. The
constant ratio analogous to (2.23) now is given as

c-m(2+ %)/m(%)

m(1+%) ?
m(Z) +1

(2.25)

where m(r) = EXT.

Because of the result we just proved for the gamma case, there is no hope of showing
that this ratio is # 1 for every p > 2. Interestingly, however, in virtually every other
standard scale-parameter family, this ratio is different from 1 for p = 2. Our theorem
would then imply that the best scale-equivariant estimator of the loss is inadmissible in
all of these distributions for p = 2, and hence for every p > 2.

We will now give a simple sufficient condition for the ratio in (2.25) to be different
from 1 when p = 2 (in view of Theorem 1, that’s all one needs for inadmissibility).

Simple algebra shows that the ratio in (2.25) is different from 1 for p = 2 iff

m(3)
m(2)

1m(4) 1m(2)
2 m(3) i 2 m(1)

# (2.26)

Let now ¢(r) = ﬂm%l, where r > 0. It’s clear that if ¢(r) is strictly convex or strictly
concave in the interval 1 < r < 3, then (2.26) holds. For many standard scale-parameter
distributions, showing that (r) is strictly convex (concave) is actually easier than verifying
(2.26) directly. For the sake of completeness, we have given below a list of the appropriate

¥’s in a few standard examples:

Distribution Density under § =1 P(r)
Gamma o = a+r
Pareto az™® L z>1,a>4 P
lognormal \/zl_wxe_%(log 28 et
Rectangular 1(0<z<1) :i;
F Az(VRB(3, )11+ 2) 0 20
(n > 8)
Weibull BzP=le==" Pr(?_at?

In all of these cases, except the Weibull, it is very easy to check that (r) is indeed
either strictly convex or strictly concave by simply looking at 1" (r). In the Weibull case

14



I‘! s+t!
L'(s)

follows from the facts that HI,S‘(T'*-)Q = EX" where X ~ Gamma(s,1), that the Gamma(s, 1)
densities are strict Polya Type co and for any ¢ # 1, ¢ crosses any line at most twice and
hence Karlin’s sign change theorem (see Karlin (1957)) implies that 1(s) crosses any line
at most twice. This argument was sketched by an anonymous referee to whom we are very
grateful.

with 8 # 1, denoting a;' as s and % as t, the convexity (concavity) of ¥(s) =

3. Final Remarks, Bayesian Motivations, Risk-Improvements, and Scope for
Choice

As stated in section 2, in the Wishart eigenvalue problem, example 7 gives a wide class
of improved estimators. This gives us a good scope for choice and past evidence suggests
that the function A(S) can be chosen to incorporate prior information; for example, one
can choose that A which gives the smallest Bayes risk with respect to a given prior.

There are some important problems in which our theorem does not apply without
non-trivial modifications. These include estimation of characteristic roots of the correla-
tion matrix, estimation of the “proportions of variance explained” in Principal components

analysis, i.e., T’\‘—, where A;’s are the eigenvalues of ¥, and estimation of canonical cor-

>

=1
relations. However, we hope that the techniques of this paper will provide mathematical
insight into those problems.

One nice feature of the dominating estimators provided by our Theorem is that in
almost all applications, the risk improvement is exactly analytically calculable. This not
only makes subsequent Bayesian calculations analytically feasible, it also makes simulation
unnecessary for the study of risk-improvement. Using these analytical expressions in the
Wishart case, we found that by using A(S) = tr S, and ¢ as the mid-point of the admissible
range, about 22.2% risk-improvement can be attained over the eigenvalues of % when p = 2
and k is small. The improvement, however, starts decreasing as k increases.
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