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Abstract

A selection approach is made for making inference about the point in a sequence of
random variables at which the underlying distribution changes. Three selection rules are
derived: a Bayes rule, a gamma-minimax rule, and a locally optimal rule. While the first
two rules select one point as the change-point, the third selects a subset (possibly empty)
of points.

1. Introduction

Let Xj,...,X) be a sequence of independent random variables where X; has the
probability density function p(z|6;),s = 1,...,k. The §; are unknown. It is assumed
that 8; < ... < 0 with ezactly one shift; in other words, there is an unknown integer
m(l < m < k — 1) such that 6, = ... = 0,, < Omt+1 = ... = 0. Then m is called
the change-point. Problems of inference about a change-point have been investigated by
several authors using different approaches. Page (1955, 1957) and Bhattacharyya and
Johnson (1968) have considered testing for a shift using nonparametric methods. Hinkley
(1970) used asymptotic arguments based on maximum likelihood estimates and likelihood
ratio tests. The problem has also been considered within a Bayesian framework by Cher-
noff and Zacks (1964), Kander and Zacks (1966), Mustafi (1968), Broemeling (1972, 1974),
Sen and Srivastava (1973), Smith (1975), and Raftery and Akman (1986). Broemeling and
Magalit (1975) have discussed parametric tests for a shift. Worsley (1986) has investigated
confidence regions and tests for a change-point using maximum likelihood methods. Infer-
ence about change-points has been studied by econometrists under the general context of
structural changes in a model. Some recent papers using a Bayesian approach are Booth
and Smith (1982), Diaz (1982), Holbert (1982), and Salazar (1982), which appeared in a
special issue of the Journal of Econometrics (Volume 19, 1982) edited by Lyle Broemeling.
The emphasis and the objectives of the present paper are along the lines of the selection
approach of multiple decision problems.

For selecting the true change-point we derive three different selection rules. Section
2 deals with a Bayes rule under a fairly general loss function assuming that the prior
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distributions of the location of the change-point and the amount of change are independent.
A gamma-minimax rule is derived in Section 3. These two rules select one point as the
change-point, while the locally optimal rule derived in Section 4 selects a subset (possibly
empty) of the k — 1 points.

2. Bayes Procedure
Letﬂ—{ﬁ_(ﬂl, GO =...=0; < b;y1=...=0},i=1,...,k—1, and

Q= U ;. If § € Oy, then ¢ is the change-point. Let 7;; = 7(0;,0;) be a measure of
i=1
separation of 8; from 0;, defined so that it is increasing in 0; for a fixed 6; and ; = 7*

for all 7. For example, if @ is a location parameter, a na.tura.l choice is 7;; = 0; — 0; with
= 0. Let T;; be a statistic based on X; and Xj, suitably defined as a sample measure
of the separation 7;;.

Let Y; = Tii41,t = 1,...,k — 1. We assume that ¥ = (¥3,...,Y;_;) has a den-
sity f(yl|z) depending on the parameter 7 = (713,...,75—1,k). For convenience, let o; =
Tii+1,0 = 1,...,k — 1. For § € ;, we have correspondingly ¢ = (e1,...,ak—1) such that

a; =1 > 7% = aj for all § # ¢, where 7 is the amount of shift. Thus 2; = = {g|a; > 7 = a4
for all j # ¢}. In this case, we write f(y|a:(r)) for f(y|z).

Now, our action space is A = {1,2,...,k — 1}. Action ¢ corresponds to the decision

that ¢ is the change-point. For given @ € ,, and action a, the associated loss function
is defined by

Z LW (a) ifa<m,

L(g,a) = > LD (o) fa>m, (2.1)
j=m+1
0 ifa=m,
where
(1) and is nonincreasing in ¢ for 7 < m,
i (e) { for : > m, (2:2)
and

JAR) () {> 0 and is nondecreasing in j for 7 > m,

=0 forj<m. (2:3)

4

Let p(m) = Pr{a € Qun},m = 1,...,k — 1, and let g(r) be the prior density of the
amount of shift with support on (7*,00). It is assumed that the two prior distributions
are independent.

A decision rule § = (61,...,0k—1) is a measura.ble mapping from Y, the sample space
of ¥, to [0,1]*~! such that 0 < 6;(y) < 1 and E 6;(y) = 1for each y € Y. The value
of 6;(y) is the probability of taking action 7 glven the observation y.
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Let r(8|g,p) denote the Bayes risk associated with the rule §, where p = (p(1),...,
p(k —1)). Then

k— 1

Elop) = 3 atm) | /Z Len(r),4) 62(3) S (glom(r)) o) dy dr. (24

m=1

Now, let

)= [ alam(r)) o(r) dr
gm(7ly) = F(ylem(r)) 9(r)/ fm (y)

k-1
@)=Y om) fmly)
h(mly) = p(m) fm(y)/f(y)
k—1 oo
Rlaly) = 3 himly) [ Llem(r),) amlrly) dr. (25)

By the usual interchanging of summations and integrals, it can be easily seen that

k—1 -
elon) =Y [ 6a(0) Rlely) £(5) dy. (25)
a=1 'Y

Then § = (61,...,6k—1) is a Bayesrule if >, 6,(y) = 1, where
a€A(Y)

A(y) = {e|R(aly) = R(d|y)}- (2.7)

min
1<a’<k-1

In order to obtain more insight for implementation of this Bayes rule, let

5w = [ LDdem®) amlrly) dr, i<m

520 = [ 12, (en(r)) om(rly) dr, 3> m
D(aly) = R(a+ 1ly) — R(aly). (2.8)

First, note that using (2.1), we can express R(aly) as

R(aly) = Z Z h(mly) S5, (y)+Z Z h(mly) Sh(y).  (2.9)

m=a+1l i=a m=1 j=m+1

Lemma 2.1. For fixed m and y,



a) SM.(y) is nonincreasing in ¢ for ¢ < m, and
m,t ¥

(b) S,(:’)](y) is nondecreasing in j for j > m.
Proof: Omitted as it is obvious.
Lemma 2.2. For given y, D(aly) is nondecreasing in a.

Proof: From (2.9), it is easy to see that

D(aly) = Z h(mly) 8,1 (y) — Z h(mly) SH% ().

m=a-+1

Therefore, D(a +1ly) ~ D(aly) = 3= h(mly) [T 2(0) ~ 55hss(@)] +
k—1 i
Mat LS Paa@) + T kOmly) [S556) ~ ST @)] +hlat 119)5E ().
m=a
Using Lemma 2.1 and the nonnegativity of h(mly) and S (r )1, r = 1,2, it can now be seen

that D(e +1|y) — D(aly) >0. O
Based on Lemma 2.2, the Bayes rule § can be expressed as follows:
Randomize your decision over the set B(y) = {a|D(aly) = 0}. If the set B(y) is

vaccuous, then choose action b where b is the largest a for which D(a|y) < 0. If such a b
does not exist, choose action 1.

Remark 2.1. Because of the monotonicity of D(a|y) in a, the set B(y) is either vaccuous or
it consists of consecutive members of the set {1,2,...,k—1}. We can define a nonrandomizd
rule, by taking the action corresponding to the smallest member of B(y).

3. I'-Minimax Rule

In this section, we assume a uniform prior for the change-point, i.e. p(m) = =5, m =
1,...,k — 1. Further, the loss function is taken to be

L{gm(r),a) = |m —al|L Iizy,00) (1) (3.1)

where L > 0 is a known constant, 7o > 7*, and Ip denotes the indicator function of the
set B.

I-minimax selection rules for selecting the best population has been considered in the
literature; see Gupta and Huang (1977), for example. For 0 < mp < 1, let

I ={q / ” dG(r) < 7o} (3.2)
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A rule §° is a I'-minimax rule if, for any other rule §, sup r(§,G) > sup r(§°,G).
Ger Ger

We now state and prove a theorem which gives a I'-minimax rule under certain con-
dition. :

Theorem 3.1. Suppose that there exists a 7/ > 75 such that, for each m,1 < m <k —1,

k-1
su Am\T), 67 Am\T d
2 [, 3 Llen(.) 500 Selenm(e) d
k-1
= [, X Hem(r),1) 5 fylen() dy )
j=1

where

1 .
87 (y) = { mr L ig) < 1<Izﬂ<l§c1 1 Li(y)

0 otherwise,

k-1

Lily) = Y li—i1Lf(gle(r"), (3.4)

=1

and [M| is the cardinality of the set

M= {j|L;(y) =  min  Li(y)}.

Then §° = (67,...,0¢_,) is a I'-minimax rule.

Proof: Let G be any distribution such that Go(r') = 1,Go(r0—) = Go(r'—) = 1 — mo.
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Then Go € T. Therefore, for any rule §,

Ger
k—1 1 k-1

— —) /y Z |m — a|Lé,(y) mof(ylam (")) dy
m=1 a=1
k—1 |

1
1), 8a(y)La(y) dy

1

& e
|
-

1 o
=1 Jy mob5 (y) La(y) dy

v
x> 8
1
—

Il
]

1 k-1
P— /;/ Z |m —a| L é;(y) mo f(ylem(r")) dy
a=1

IV
> 3
I

1 k—1
k-1 / /y Z Im —a|L 63(y) f(ylem(r")) dy dG(r), for any G €T
T a=1

3
Il

E
—

]

3
I

: // 162_:1 |m — a| L 65(y) f(ylam(r)) dy dG(r), because of (3.3)
1 k—1 rJy —_ a'y y——m y ’ .

=r(§°,G), for any G € T.
Therefore; sup r(§|G) > sup r(6°|G). O
GeT GeT
Now, let
D*(aly) = La+1(y) — La(y), a=1,...,k—1. (3.5)

a k—1
Since D*(aly) =L > f(yle;(7")) —L Y f(yle;(r")), D*(a]y) is nondecreasing in a.
j=1 Jj=a+1
Using this property, we can state the I'-minimax rule in the form:

Randomize your decision over the set B*(y) = {a|D*(aly) = 0}. If the set is vaccuous,

then choose action b, where b is the largest a for which D*(aly) < 0. If such a b does not
exist, choose action 1.

A remark similar to Remark 2.1 holds here.
4. Locally Optimal Rule

In this section, a selection rule § is defined by the individual selection probabilities
6:(y),? = 1,...,k — 1. This results in selection of a subset (possibly empty) of the k-1
points. Further, the selected points need not be consecutive. We restrict ourselves to the
class of rules defined by

D ={8] lim Eg,(»(ém(Y)) = P* form=1,....k—1}. (4.1)
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In other words, considering the configurations of o for any given change-point location,
the limiting value of the probability of choosing the true location is P* as the amount of
shift goes to 7* (corresponding to equi-parameter configuration of ). This is similar to
the class considered by Gupta, Huang and Nagel (1979) but for a different problem.

We seek a rule § € D which is locally optimal in the sense that it maximizes

Q= Z Lim 5 Eg,.(r) (6m(Y)). (4.2)

m=1

The quantity Q reflects the sensitivity of the rule in making the correct decision in a
neighborhood of an equi-parameter configuration of §. Such a measure in a different
context has been used by Huang, Panchapakesan and Tseng (1984).

In deriving a locally optimal rule, we assume usual regularity conditions so that limit
operations and differentiations under the integral signs can be carried out. Then, we can

write
k—1
Q= om f(m .,* d
3 [, om0 fom i)
where f(m) (ylam(r)) = & f(ylam(r)) and 7* = (r*,...,7*).

Theorem 4.1. Under regularity conditions, a rule belonging to D which maximizes Q is

given by
1 £ 2(?”") z

0 <

where A,, and ¢,, are determined such that

L6MQNWW@=Pﬂm=hHJ—L (4.4

Proof: The proof is straightforward, by noting that for any rule § € D, [, y Sm(y) f (y[z*)

dy=P*form=1,...,k— 1, and that E fy (65 (y) — m(y))(f(m) (ylz*) — emf(ylz*))
dy > 0. |

Example. Suppose we have a sequence of sample means (based on n independent ob-
| servations) from normal distributions N(;,02%),4 = 1,...,k, where o2 is known. We take
Yi=Xi11—Xi,1=1,...,k— 1. Then, for § € ﬂm,lf has a (k — 1)-variate normal
distribution having mean Vector with 7 = 0,,4+1 — 0,, as the m-th component and zero
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. . ' 2 2
everywhere else, and covariance matrix V = (oy;), where o;; = 2% and 0;; = —<—or 0
according as |¢ — j| is = or > 1. It is easy to see that

f(m) (ylz*) &=
BiCRE Z e

where V~! = (0%™). By noting that 0! = gkk—_:i)ﬂ for 1 <{<k—1, and o¥ = jo'! for
1<7<1, weget

kz—:l y; o™ = (k—m)mn [Xmy1+...+ X Xi+...4+Xm
' k0-2 k—m m

This gives the intuitively appealing rule:

kE—m m
0 otherwise;

where ¢, = 04/ W(ki—*mj o 1(1 - P*).
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