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Summary

A random permutation of N items generated by a sequence of K random transposi-
tions is considered. The method of strong uniform times is used to give an upper bound
on the variation distance between the distributions of the random permutation generated
and a uniformly distributed permutation. The strong uniform time is also used to find the
asymptotic distribution of the number of fixed points of the generated permutation. This
is used to give a lower bound on the same variation distance. Together these bounds give a
striking demonstration of the threshold phenomenon in the convergence of rapidly mixing
Markov chains to stationarity.

1. Introduction and Results

Diaconis and Shashahani (1981) studied the following process. Consider a deck of N
cards labelled 1,2,..., N. Two cards, L; and R;, are chosen uniformly and independently
by left and right hands and transposed if they differ. This step is repeated independently
many times. After a large number K of iterations the cards will be well mixed; the
distribution, denoted u¥*, of the resulting permutation, denoted 7, will be close to the
uniform distribution, denoted U, on the symmetric group Sym{N). Interest in Diaconis
and Shashahani (1981) and this paper lies in the non-asymptotics of the convergence to
uniformity.

More formally, for two proba,blhty distributions u and v on a finite set A, the variation
distance between p and v is

d(p,v) = max |u(4) - v(4)].

For this process d(u**,U) — 0 as k — oo0. Diaconis and Shashahani (1981) showed that
most of the action happens near k = 1N log N and that the natural approach to thls
problem is to take K = 1N log N + cN for some constant ¢ and study

(1.1) d. = d(u®*,U),

the dependence on N being suppressed. In what follows K and ¢ will always be related in
this way, and any asymptotics will hold ¢ fixed and let N, and hence K, go to infinity.

Diaconis and Shashahani (1981) considered the process as a random walk on the
symmetric group and, using some hard fourier analysis, showed that there is a constant b
such that for all N > 10,

(1.2) d. < be



They credit to Charles Stein an argument showing
(1.3) de >

Facts (1.2) and (1.3) together imply that d. is large for ¢ much less than 0 and drops
quickly for ¢ > 0. The variation distance drops from essentially 1 to essentially 0 in an
interval of width O(IN) around N log N. This is an example of the threshold phenomenon
discussed in Aldous (1983) and Aldous and Diaconis (1986).

This paper will give more precise bounds via the probabilistic method of strong uni-
form times. For this shuffling process a strong uniform time is a stopping time T', typically
randomized, such that

P(rp =7|T < k)= J—é—' for all k and .

In words, the conditional distribution of 7 given that T has come to pass is exactly
uniform. The main use of strong uniform times is that for any strong uniform time T,

(1.4) | d(u**,U) < P(T > k) for all k.

Diaconis (1986) discusses the use of strong uniform times.

Broder (1985) developed the method of card checking for constructing strong uniform
times. He gave a strong uniform time T for the problem of random transpositions with
mean E(T) = 2N log N(1 + o(1)) and variance o(T) = O(N?). This plus Chebychev’s
inequality shows that d(/.l,k*,U ) must be small once k is much bigger than 2N log N, a
weaker result than (1.2).

Here an improved strong uniform time is given. Its distribution is calculated and (1.4)
gives

2¢c

(1.5) de <1—e" (297 1 p(1).

The strong uniform time is also used to give a lower bound on d.. Let |Fiz.| denote
the number of fixed points (cards in their original positions) of wx. It is shown that

(1.6) | Fiz,] %% Poisson (1+e~2).

The classic probléme des rencontres (Riordan, 1978) has as its answer the fact that
the number of fixed points of a uniformly distributed permutation has asymptotically a
Poisson (1) distribution. By breaking Sym(N) into classes according to number of fixed
points, we see

(1.7) d. > d(Poisson (1 + e~2¢), Poisson (1)) + o(1).
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The following table gives the asymptotic lower and upper bounds on d, for various
values of c.

c d(Poisson (1 + e~2¢), Poisson (1)) 1— e (2e)e™™
—2 1— e—21 1— 6_297
—1.5 9069 =1— ¢ 58 1— e 109
—1 .949 1—e 40

—.5 .64 1—¢15
0 .33 .996

5 .13 , .86

1 .050 = ¢~3 .52

1.5 018 =¢¢ 24

2 0067 =¢~5 .095

2.5 .0025 = ¢~© .036

3 .0009 = e~ 7 .013

4 e ® .0018 = ¢~ 63

5 e~ 11 .00025 = ¢—8-3

The table shows that the variation distance drops drastically, from essentially 1 to essen-
tially 0, in an interval of length about 2N near %N log N. As ¢ — oo the bounds differ
by a factor of 2e2.

The remainder of this article is organized as follows. Section 2 gives the strong uniform
time. Section 3 works with its generating function and gives the upper bound (1.5). Section
4 gives (1.6) and hence the lower bound (1.7). Finally Section 5 gives a proof that the
stopping time used is a strong uniform time.

Acknowledgement. I would like to thank Persi Diaconis for many helpful discussions.

2. The Strong Uniform Time

At each step k of the shuffling process two cards, Ly and Ry, are chosen independently
and uniformly and switched if they differ. Formally, the random transposition (L, Rg)is
performed. The strong uniform time involves “checking” cards as they are moved; the first
time all cards are checked is the strong uniform time. At the start no cards are checked.
Let [z] denote the least integer greater than or equal to z. There will be two different
ways for cards to be checked, according to whether the number of cards previously checked
is < [N/3] or > [N/3].

First suppose n < [N/3] cards are checked after time k£ — 1. Then at the kth move, if
both Ly and Ry are unchecked, check R;. Let T, denote the time taken to check n cards
and Ty = 0. Then for n < [N/3],T, — Ty—1 is the time taken to check the nth card after
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n — 1 are checked. Ty, — T\,_; has a geometric distribution with probability of success

(2.) pn = (W)

Further Ty — T5, T2 — Th,..., Tiny31 — Trny3)—1 are independent,

The intuition for this part of the strong uniform time is as follows. One way to build
a random permutation is to take a list of cards and a list of slots, choose one of each at
random, place the card in the slot, choose another pair, etc. The first part of the card
checking procedure is an attempt to embed this process in the shuffling process. We think
of the right hand as choosing a candidate card and of the left hand as choosing a candidate
slot. If both are available, the pair is accepted. Otherwise it is rejected. Section 5 will
verify that this is essentially how this part of the card checking procedure works.

Once [N/3] cards are checked a more complex procedure is used. This procedure is
essentially Broder’s original algorithm, but modified to check cards twice as fast. Recall
that the cards are labelled 1,2,...,N. If n — 1 > [N/3] cards are checked, assume their
labels are £; < £3 < ... < £,_y. List all possible (L, R) pairs made up of these cards in
dictionary order;

(2.2) (1,41), (L1, 22), ..., (€1,8n-1), (£2,£1),- -, (€n—1,2n—1)-

Also list the unchecked cards in dictionary order; u; < us < ... < u N—n+1. For i =
1,2,...,N —n+1, check card u; if either

(2.3) a) (L,R) = (u,-,u,-)

b) One hand chooses u; and the other hand chooses a checked card
¢) The ith (L, R) pair in (2.2) is chosen.

For N > 4 it is easy to check that (2.2) will contain at least N — [N/3] pairs. For
N < 3 the procedure must be modified slightly. Also note that at most one card can be
checked at each step and that (2.3)c is the only way a card can be checked without being
touched by either hand.

Again let T, be the time taken to check n cards. For n > [N/3] T, — T\,_; has a
geometric distribution with probability of success

2n(N —n+1)
N2 )

Further (Ty — To), (T2 — T1), ..., (Tw — Tv—1) are independent.

(2.4) Pp =

The intuition for this part of the card checking procedure is that it is equivalent to
another method of building a random permutation. If a partial permutation has n — 1
randomly ordered cards, then there are n slots in which a new card could be added. This
card checking procedure tries to add new cards to the partial permutation by putting each
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new card into the available slots with uniform probability. That this is correct and that
the two procedures mesh together properly will be verified in Section 5.

3. Generating Functions and the Upper Bound

Recall T, is the first time n cards are checked. As a special case Ty is the strong
uniform time of interest. The moment generating function of T will give its distribution
and hence an upper bound via (1.4). The generating functions of T}, for n = N — 0(1) are
needed in Section 4 and will also be given here.

A geometric random variable T with probability of success p has moment generating
function .
e
E etT = p
1—(1-p)et

Thus for n > [N/3], by (2.1) and (2.4), T,, has moment generating function

for t < —log (1 — p).

[N/3] (N—m+1)2et
E CtT"' — H N X
me=1 1— (1 — (N—lrvn+1)2) Ct
n 2m!NA72m+1!et
m=[N/3]+1 1= (1 — i N_m+1)) t
for t < —log (1 — 2n(N];2n + 1)> .
This is
1 (N [1 +vV1-— e—tl —m+ 1) (N [1 —41- e—tl —m+ 1) m=[N/3]+1
m(N —m +1)

(52 + 3V )T 2N — e - m) (m— Y+ 3 /(N F 17 —2N7(0— o))

In terms of gamma functions this is

< T'(N +1) )2

I'(N—-[N/3]+1)

T(N[1++v1—e%—[N/3] +1)T(N[1—+1—e % —[N/3]+1)
I(N[1++/1—et+1) [(N[1—-+v1—-e"t+1)

T'(n+1) L& + I /(N +1)2 —2NZ(1 — ¢7%) — n)
T(IN/31 +1) T(¥F + /(N +1)2 —2N2(1 - e7F) — [N/3])
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T(N+1-[N/3))T([N/3] +1— &FL 4+ L /[N +1)2 —2N2(1 — e 7))
I(N+1-n) Tnr+1-Y2 41 /[NT1)2-2N%(1-e?)

Let s = % and J = N — n. Then straightforward use of Stirling’s formula and Ta,ylof
expansions shows that for J fixed, s < J +1,as N — oo

2s _ _NlogN N(l1+log?2) F(J+ 1_ s)
3.1 E 3 (T2 os2)
(5.1) ‘ T(J +1)

For the upper bound (1.5) specialize to J = 0. T'(1 — s) is the generating function of
the extreme value distribution. So T, properly normalized, converges in distribution and

N N
dc<P(TN>-lo—g

+¢N) =P(%(TN— %(log N +1+4 log2))>2c—1— log2)
(3.2) =1-¢e" 297 (1 4 0(1)),

which verifies (1.5).

4. The Lower Bound

In this section the lower bound (1.7) is shown to hold. As a first step we show that
(1.6) gives the correct expected number of fixed points. The probability that card 1 is in
slot 1 after K steps is

1 (N-1 2\ %
4.1 — - - - = .
(@ v (%) (- %)
This result is attributed to Bob Bell in Diaconis and Shashahani (1981). Let Fiz, denote

the random set of fixed points of 7x. Let |A| denote the cardinality of the set A. Then
(4.1) implies

(4.2) E|Fiz,| =1+ e % +o(1).

Suppress the dependence of Fiz, on ¢ and further let Touch be the set of cards that
have been touched by either hand by time K and Check the set of cards checked at time
K. Let * denote set complement. The lower bound will follow from the following sequence
of results.

(4.3) |Fiz N Touch®| = |Touch*| %% Poisson (e7%9)
(4.4) |Check™| 2% Poisson (2e e72¢)

(4.5) |Fiz N Check| % Poisson (1)

(4.6) |Check N Touch*| LU

(4.7) |Fiz N (Touch* U Check)| £ Poisson (1 + e~2°)
(4.8) |Fiz N (Check™ N Touch)| LU
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where 8 is a point mass at O.

The first fact (4.3) is a standard result in the coupon collector’s problem. At each step
two cards are chosen independently and touched. Thus the number of untouched cards at
time K is equivalent to the number of empty urns among N when 2K balls are placed in
independently. Therefore (4.3) is exactly Theorem 2 of Chapter 1 of Kolchin, Sevast’yanov
and Chistyakov (1978).

The second fact (4.4) requires use of the moment generating function (3.1). Let Xx
be the number of unchecked cards after step K. Then

(4.9) P(Xx =0) = P(Ty < K) and
(4.10) P(XK =J) =P(TN_J+]_ >K)—P(TN_J >K).

P(Ty < K) has already been evaluated in (3.2) and is asymptotically the correct Poisson
probability. To evaluate (4.10),

2 NlgN N
P(Ty—s > K) = P(N(TN_J———;L - (14 log2))>2c— log2—1)
1 [otie 1 T(J+1-2)
_— — —_— % dz
271 d—ico # F(J + 1)

where A = (2e)e™2* and 0 < d < J + 1.
Taking differences, by (4.10)

1[40 X\2D(J —2)

P(Xx=J 1 AT — 2)
Ke=9)— oz | . T +1)

dz

for d < J. Let y =1 — J + 2. The integral becomes

1 AJ-—I d+1ic0 y
1 ~ .
omi  J! /d_ioo MI(1-y)dy ford<1

Since I'(1 — y) is the moment generating function of the extreme value distribution, the
integral is the extreme value density at —log A, which is A e=*. So P(Xg =J) —
Ade=2/J! for all J, and (4.4) is verified.

The proof of (4.5) follows from a classical result and will only be sketched. At time K,
there are N —0,(1) checked cards by (4.4). Among the slots occupied currently by checked
cards, there can only be O,(1) slots that were originally occupied by cards not checked. Set,
up a pairing between checked cards and slots occupied by checked cards by pairing cards
with their original slots if possible and arbitrarily otherwise. The probléme des recontres
(Riordan, 1978) says that as N — oo, the number of fixed points in a random permutation
of N cards converges in distribution to Poisson (1). By (5.2) the marginal distribution of
the checked cards at time K is invariant under permutations, so uniform. Thus the number
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of matched pairs in the above set-up is asymptotically Poisson (1). Each card has prob-
ability le— + Op(ﬁlg) of being matched and there are only O,(1) arbitrarily paired cards,
hence the number of matches among the arbitrarily paired cards converges to 0 in proba-
bility. Thus the number of matches among the checked cards converges in distribution to
Poisson (1).

Result (4.6) is needed because in (2.3)c a card can be checked without being touched.
Note E|Check N Touch*| = N P(card 1 € Check N Touch*) = N P(card 1 € Touch*) X
P(card 1 € Check| card 1 € Touch*).

This is

K
(4.11) <v(1-2+5) a-0- M

since given that a card is never touched, there are (N — 1)? possible choices at each

step, and at most one of them can cause (2.3)c to be invoked. (4.11) is approximately
e~2°(1 — 1/N'/N) which goes to 0 as N — oo. Thus E|Check N Touch*| — 0, hence

|Check N Touch*| LL¥N

Result (4.7) follows simply from what precedes it.

(4.12) |Fiz N (Touch* U Check)| = |Fiz N Check| + |Fiz N Check* N Touck*|.
The last term in (4.12) is
|Fiz N Touch*| — |Fiz N Check N Touch*|.

So, combining (4.3) and (4.6), this last term is asymptotically Poisson (e~2¢). The first
term on the right of (4.12) is (4.5), which is asymptotically Poisson (1). It remains only
to verify that the sum is asymptotically Poisson (1 + e~2¢).

Set up a pairing between the checked cards and the slots they occupy at time K as
before. Precisely, first pair cards with their original slots if possible. List the remaining
checked cards and slots in dictionary order, pair the lowest two, the next lowest two, etc.
Let X denote the number of matches at time K in this pairing. From the proof of (4.5)
X — |Fiz N Check] diet 6o, so (4.12) can be replaced by X + |Fiz N Check* N Touch*|.

Now condition on Check,Touch* N Check* and which slots are occupied by checked
cards. By (5.3) the marginal conditional distribution of the checked cards in their slots
is invariant under permutations, hence uniform, implying X is essentially conditionally
Poisson (1). It follows that X+|FizNCheck*NTouch*| is asymptotically Poisson (14¢~2¢),
which implies (4.7).

The proof of (1.6) and hence the lower bound is almost complete.
|Fiz| = |Fiz N (Touch* U Check)| + |Fiz N (Check™ N Touch)|.
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The first term on the right is (4.7), so all that remains is to prove (4.8), that

|Fiz N (Check* N Touch)| diet 6o. This can be shown directly, but the quickest proof is to
note that since | FizN(Touch*UCheck)| > 0, lim inf E|FizN(Touch*UCheck)| > 1+e~2¢.
This and (4.2) imply E|Fiz N (Check* N Touch)| — 0, implying (4.8) and hence (1.6).

5. Proof of Strong Uniformity

The proof of strong uniformity falls into two parts. First, when the first checking
procedure is in use, the checked cards and the slots they occupy are independent and
each is uniformly distributed. Second, when the second card checking procedure is in use
(or the first, in fact), the marginal distribution of the checked cards is invariant under
permutations. Invariance under all permutations implies uniformity, so the first time all
N cards are checked must be a strong uniform time.

For n < [N/3], for any random variable X taking values in Sym(N), say X has
property P, if X can be represented as the product ¢ o )~1, where ¢ and i take values
in Sym(N) and (¢(1),...,4(n)) and (¥(1),...,¥(n)) are independently uniformly dis-
tributed on the N!/(N — n)! ordered n-tuples of elements of {1,2,...,N}. Informally, if
7k = ¢otp~ !, we think of ¢ as choosing n slots and ¢ as choosing n cards to put in them.
Note P,y implies P,.

Recall that at each step k, a random transposition (Lg, Rx) is performed. The per-
mutation at time k is (Lg, Ri) o (Lx—1, Rk—1) 0 ...0 (L1, Ry).

-Proposition (5.1). For any k, for any n < [N/3], the conditional distribution of my
given T, < k satisfies property P,,.
Proof: Construct ¢ and 9 inductively. First consider k = 1. Let ¢; = (1,L;) and

_ (Rl,l) o (Ll,Rl) if L1 7é 1 and Rl 76 1
$1=
(R1,1) otherwise.

Then ¢, o ’Q,bl—l = (Ly, R;). Only P; needs verification since for n > 2,T, > 1. P; is clear,
since ¢1(1) = R; and 9;(1) = Ly, which are independent and uniform by definition.

Now suppose (5.1) is true at time k—1; mg_3 = @g—1 0 qbk_jl. Also suppose T, < k—1
but Ty 41 > k — 1 for some 1 < n < [N/3]. Two cases must be considered.

Case 1: If another card is checked by the first card checking procedure, then the
conditional distribution of 7}, satisfies P, 1.

Case 2: If the first procedure does not check another card, then P, is still satisfied.

First consider Case 1. Then Lj and Ry are both not in the set {¢x—1(1),...,Pr~1(n)}-
Write

Tk = (Lk, Ri) 0 r—1 0 ¥ 5.
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This is
br—10 (852, (Lr), 511 (RR)) o ¥,

Since Lg, Rx & {¢r—1(1),...,k-1(n)}, #51, (Lx), b5, (Rx) & {1,2,...,n}. By the inde-
pendence and uniformity of Ly and Ry, conditional on Case 1 having occured, ¢,:_11(Lk)

and ¢,:_11 (Rk) are independent and uniformly distributed on {n+1,...,N}. Denote them
by L} and Rj. Write ¥y = ¢x_1 0 (n + 1,L}) and

$r—10(n+1,R;) if Ly or Ry =n+1
br = k k k
$r—10 (n+1,R;) o (L;,R;) otherwise.

Card Ry has been added to the permutation and placed in slot {¢x—_1 0 zp,;‘_ll)(Lk), previ-
ously occupied by L.

To verify Pp41, note

(Br(1),. .., Pk(n), ¢k (n+ 1)) = (dr—1(1),...dk_1(n), Ri)

and

(Pr(1),.- ., ¥x(n), Yr(n+ 1)) = (Yr—1(1),. .., Ye-1(n), Yr—1(L%))-

The conditional independence and uniformity of L} and R} and the induction hypothesis
implies that these two vectors have the proper distributions.

Next consider Case 2. There are two possibilities. First suppose qS,:_ll(Lk) and
¢311(Ry) are both in {1,2,...,n}. This is the case if two checked cards are switched.
Let ¥ = tk—1 and ¢ = (Lk, Ri) 0 ¢r = ¢ o (672,(Lk), b5 1 (Rx)). Independence is
clearly preserved. The distribution of @ is invariant under right multiplication by permu-
tations of {1,2,...,n}, so ¢, and clearly 1, have the proper distributions.

The second possibility is that one of qS,:_ll(Lk) and ¢; !, (Ry) is larger than n and the
other is not. Suppose for definiteness that ¢;',(Lx) < n and ¢;*,(Rx) > n. Conditional
on this L} is uniformly distributed on {1,2,. ,n} and Rj is umform on {n+1,...,N}.
The two are independent. Let ¢ = ¢x—_1 and zﬁk = (L, Rf) o zpk 1 Independence of ok
and ¥y, and the distribution of ¢ are clear. For 1}, note that one slot containing a checked
card has been replaced at random by a slot containing an unchecked card. If any element
of a uniformly distributed n-tuple of members of {1,2,..., N} is replaced by a member
chosen uniformly from the remainder, the resulting n—tuple is umformly distributed. Thus
¥r has the proper distribution.

Next the second procedure is considered.

Proposition (5.2). Given that n cards are checked at time k, the marginal distribution
of the checked cards is invariant under permutations.

Proof: The proof uses induction on k£ again. The result is trivial for £ = 1. If, for general
k, the first checking scheme is still in use, Proposition (5.2) follows from the stronger
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Proposition (5.1). Thus it remains to show that if at time k — 1, n > [N/3] cards are
checked, then at time k Proposition (5.2) is satisfied. Again two cases are considered.

Case 1: A new card is checked at step k.
Case 2: No new card is checked at time k.

For Case 2; if no new card is checked, then either two unchecked cards are switched,
which doesn’t affect the checked cards at all, or two checked cards are touched. If two
checked cards are touched and no new card is checked, then the pair (Lg, Rx) must not
be among the first N — n in the list (2.2). By induction, the marginal distribution of the
checked cards is invariant under permutations, hence the distribution remains the same
after (L, Ry), even given the value of (Lg, Rx). So the induction step is verified given that
no new card is checked at time k.

Case 1 occurs when a new card is checked. In the notation of (2.3), suppose card u;
is checked. Given this, from (2.3) it is clear that u; has probability (n + 1)~! of going
into any of the slots occupied by checked cards or staying in its own slot. Thus u; is
equally likely to be anywhere in the new permutation of checked cards. Also, since the
marginal distribution of the previously checked cards is invariant under premutations by
induction, they are equally likely to have any relative order after the new card is added,
independently of where it is added. It follows that any ordering of the n + 1 cards checked
at time k is equally likely.

This completes the proof of Proposition (5.2), verifying that T is a strong uniform
time. The following refined result was needed in section 4.

Proposition (5.3). At time K given Check, Touch* N Check*, and which slots are
occupied by checked cards, the marginal distribution of the checked cards is invariant under
permutations.

Proof. This is a minor refinement of Proposition (5.2). For any set A of cards, given
A C Touch*NCheck* at time K, Proposition (5.1) holds with {1,2,..., N} replaced by A*.
When cards are added in Proposition (5.2), they are still equally likely to go into any slot.
Thus P(check = B, A C Touch* N Check*,occupied slots = C, arrangement = ) is inde-
pendent of 7. P(Check = B, Touch* N Check* = A, occupied slots = C, arrangement =
7) can be expressed by inclusion and exclusion as a sum of terms like P(Check = B, A C
Touch* N Check, occupied slots = C,arrangement = 7). None of these depends on T,
and the proposition follows.
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