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1. Introduction

The problem of selecting a subset containing all populations better than a control
or standard has been considered by many authors under different formulations (for refer-
ences, see Gupta and Panchapakesan(1979)). However, most of them assume that there
is no knowledge about the correct ordering among unknown parameters. But in practice,
there are cases where the experimenter may know the correct ordering even though the
true values of the parameters are unknown. For example, in the pharmacological stud-
ies, a higher amount of acetaminophen in the pain reliever will result in a quicker effect
on relieving fever. In this situation, when the experimenter considers the time taken to
reduce the temperature to a certain degree as a measurement of the effect, the experi-
menter knows the correct ordering among several pain relievers with different amounts of
acetaminophen even though the true values of the effects are unknown. For this case, it
is reasonable to assume an ordering prior. Selection procedures under the assumption of
ordering priors are, in general, concerned with isotonic inference. Gupta and Yang(1984)
have considered isotonic selection procedures for the case of normal populations. They have
also considered some isotonic procedures under the assumption of partial ordering. Gupta
and Huang(1984) have studied isotonic procedures for the case of binomial populations
and Huang(1984) has considered a nonparametric isotonic selection procedure. Gupta and
Leu(1986) have proposed and studied isotonic selection procedures for unknown guarantee
lifetimes in the case of two-parameter exponential populations. Recently, Liang(1988) has
studied isotonic rules for selecting good truncated exponential populations. Also, Liang

and Panchapakesan (1988) have studied a Bayesian approach to isotonic selection.
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In this paper, we investigate isotonic procedures for the family of Tukey’s generalized
symmetric lambda distributions (hereafter called symmetric lambda distributions). It is
well known that the family of lambda distributions can be used to approximate many
univariate continuous distributions. For further discussions, reference should be made to

Ramberg et al. (1979) or Sohn(1985).

In Section 2, we formulate the problem of selecting populations better than a control

or standard and propose some isotonic selection procedures.

In Section 3, we discuss the approximate evaluation of constants used in the proposed
procedures. The approximations are useful because of difficulties involved in obtaining the

exact distribution of the sum of sample medians.

In Section 4, comparisons are made between proposed procedures and some other

procedures in terms of expected number of bad populations included in the selected subset.

2. Preliminaries

Let 7o, m1,...,mx be k+1 independent lambda populations, where 7 can be regarded
as a control or standard population. Let the random variable X; be the observable char-
acteristic of m;, which follows a symmetric lambda distribution F; = F(-|6;, 8, ), which is

defined by its inverse function as follows:
1
z = F(p) =0,~+E{p7—(1—p)'f}, reR) O0<p<l.

Here 6; is an unknown location parameter that we are interested in, # and ~y are common

known scale and shape parameters. The variance of X; is given by

_2, 1 O+
T B2'2y+1  T(27+2)

var(X;) }, 1=0,1,...,k.
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Without loss of generality, we assume that var(X;) =1, 1=0,1,....k. Let Xij, J=1,..,n be
n independent random samples from 7;, 1=1,2,...,k, respectively. The value of 8, associated
with mo may or may not be known. A population 7; is said to be “good” (“bad”) if
0; > (<)8o. Assume that we have a simple ordering prior of 8y,...,0x. Without loss of
generality, let 0; < 02 < ... < 0. Our goal is to select a subset which includes all good
populations with requirement that the minimum probability of a correct selection (CS) be
at least equal to a preassigned number P*(0 < P* < 1). Note that a correct selection is

the selection of any subset which includes all good populations.

Let 0 = {0 = (00,01,...,01)| —00 < 0, <03 < ...< 0k < 00, —00 < fp < 0} be the
parameter space, where 2 C R*t1. Also let us define
Qo = {_0_6 ﬂlok < 00},

N={0€Q|fr_: <0 <Op_it1},i=1,2,...k -1,

and

Qr = {QE Q]ﬂo < 01}.

Then the sets ;, ¢ =0,1,...,k are mutually disjoint sets and 2 = U?:o Q;.

Now we give some definitions.

Definition 2.1. A selection procedure R is called isotonic if and only if whenever it

selects m; with parameter 8;, it also selects 7; when 6; < 0;.

Definition 2.2. A real-valued function f defined on a poset (S,<), where < denotes
a binary partial order on S, is called isotonic if f preserves the partial order on S.
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Definition 2.3. Let g be a given function on (5, <) and let W be a given positive
function on (S, <). An isotonic function g* on (S, <) is called an isotonic regression of ¢
with weights W if it minimizes the sum ) [g(z) — g*(z)]?W (z) over a class of all isotonic

zES
functions on S.

From Barlow et al. (1972), it is known that there exists one and only one isotonic
regression of a given g with weights W on S when S is simply ordered. Also the isotonic
estimator of #; can be found by using the max-min formulas given by Ayer et al. (1955)

as follows.

The generalized lambda distribution is used to approximate a large class of distribu-
tions including those with heavy tails. As such, the sample median is a robust estimator
of 6 unlike the sample mean. This is the primary motivation for our procedure based on
sample medians. Furthermore, the computation of procedures based on sample means are

mathematically hard for the generalized lambda distributions.

Let X; be the sample median of 7; based on n independent random samples
Xi1y. ., Xin,t = 1,2,...,k, respectively. For convenience, let n = 2m + 1,m being a
nonnegative integer. Alsolet C2? denote the common known variance of X;. Let us define
a finite set § = {01,...,0k01 < ... < Ok} and let W(0;) = w; = n,i = 1,2,...,k,
respectively. Then by the max-min formulas, the isotonic regression of g with the weights

W(0;) = w; is g*, where

Xe+...+ X
*(6;) = i . 2.1
9" (6:) 1?3%131§1£k{ t—s+1 } (2.1)
Hence the isotonic estimator X’i;k of 8; is
Xk = ma,x')?s:k, (2.2)



(2.3)
for: =1,2,...,k, respectively.

Here we confine ourselves to the class of isotonic procedures which also satisfy the

P*-condition, ¢. e., for an isotonic rule R,

i > P*. 2.
nggzPQ(CSIR) >P (2.4)

2.1. Proposed Rules R; and R,

(A) 6o known
In this case, no samples need to be taken from the control population 7. The proposed

rule R; is as follows:

Procedure R;: The procedure consists of k steps where steps ¢ = 1,2,...,k are defined

as follows: For¢=1,2,...,k—1,
Step i. Select the subset {m;,..., 7} and stop if
Xik>00—C d,(lxz,
otherwise reject m; and go to Step 7+ 1, and

Step k. Select 7y if

Xy > 00— C d;(cfl)c,

otherwise reject 7; and decide that none of k populations are good.

5



Here dfl k) ,t =1,2,...,k are chosen to be the smallest non-negative constants so that

the procedure R, is isotonic and meets the P*-condition. Now for any § € 0;,1 < ¢ < k,

A . ~ 2+Z 1 Z'+-..+2}c
Zi:k = min {Zi, 1'—21'+—,. N ﬁ_—l— ’ (2.5)
where
. X: — 0.
Z; = zC’ *,1=1,2,...,k, respectively.

Then the following theorem holds.

Theorem 2.1. For given P*(0 < P* < 1) and 4 € Q;,
Jnf Py(CS|Ry) = Prifui > —d®, L hi=1,2,... k. (2.6)
From Theorem 2.1, we have the following corollary.
Corollary 2.1. For given P*(0 < P* < 1), d,(cl_zi +1:% is the solution of the equation
Pr(Z:In- > —z) = P* (2.7)

and satisfies the P*-condition for the rule R;.

The evaluation of the constants d,(cl_)i L1k will be discussed in the next section.

Remarks: Since Zk—i+1:k has the same distribution as Zlii’dl(clli-i-l:k = dglz,z =

1,2,...,k, respectively. Also it can be seen that d(?? is nondecreasing in 7.
1:2

(B) 6o unknown
Since 8 is unknown, n independent observations Xo1,. .., X0, from the control population
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To are taken. Let Xo denote the median of the above samples. Then the selection procedure

R, is defined as follows:
Procedure Ry: Steps:=1,2,...,k are defined as follows: For:=1,2,...,k—1,
Step i. Select the subset {m;,..., 7} and stop if
ik > Xo — Cd,(,zk),
otherwise reject m; and go to Step 4+ 1, and
Step k. Select 7 only and stop if
Xy > Xo — Cd{Z),

otherwise reject 75 and decide that none of them are good populations.

Now similar to Theorem 2.1 and Corollary 2.1, the following theorem and its corollary

hold.
Theorem 2.2. For given P*(0 < P* < 1) and § € (;,
Jof Py(C5|Rs) = PriZ1i> Zo—d®,  hi=1,2,...,k, (2.8)
where Zy = ()20 — o) /C.

Corollary 2.2. For given P*(0 < P* < 1),d,(c?i +1:x» Which is the solution of the
equation

Pr{Z1.x > Zo — 2} = P*, (2.9)

satisfies the P*-condition for the rule Rs.



(2)

The evaluation of the constants d;; +1:% Will be discussed in the following section.

Remark: It can be seen that for ¢ = 1,2,...,k, dl(c2)1,+1 g = dgzz) and d( 2-) is nonde-

creasing in 7.

3. The Evaluation of Constants d,(cl_),- L1k and d,(cz_zz 1k

Since the evaluation of the constants d,(ﬂi 1k 18 similar to that of d,(cl_)Z +1:5> We will

discuss here only the evaluation of the constants d}cl_)i +1:x- Now to solve the equation (2.8)
the following lemmas are needed. The first lemma, due to Gupta and Yang (1984), is cited

without proof.

Lemma 3.1. Suppose U, Us,..., are iid random variables whose distribution is not
concentrated on a half-axis. Let To = 0,T; = Uy + ...+ U;,7 = 1,2,..., respectively and

let U; = Q; — z, where E(Q;) = 0, fori = 1,2,..., respectively. Let V; = 1r<1111<1 —T Then
r<j

Pr{Ve > v} = Z Pr{V; > v}Pr{Ts_j11 >0},£=0,1,. (3.1)

£+1
where Pr{V, > v} =1 for all .

To use Lemma 3.1, it is necessary to evaluate the quantity Pr{T,_ j+1 > 0}, where
T; denotes the sum of j iid sample medians from symmetric lambda populations. To
find the exact and closed forms of distribution of T} is very difficult. Since the lambda
family of distributions can be used to approximate many theoretical distributions very
well, the distribution of T} can also be approximated by a lambda distribution. Ramberg
et al. (1979) and Sohn (1985) have studied the approximation of a distribution by using a
lambda distribution based on the second and fourth central moments. Thus it is necessary
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to compute the standardized second and fourth central moments of the sum of 7 sample
medians from j iid symmetric lambda distributions with mean 0 and variance 1. To this

end, we have the following lemma.

Lemma 3.2. Let u, be the rth central moment of the sum of 5 sample medians from
J iid lambda distributions based on a common sample size n = 2m + 1,m > 0, where

and v are common scale and shape parameters, respectively. Then

_ 2jT(2m + 2){T(m + )T (m + 2y + 1) — [[(m + 1 + 7)]2}
2= BIT(m + 1)°T (2m + 27 + 2) ’

(3.2)

and

12— 1) { I(2m +2) }2{r(m+1)r(m+zw+1) - [r(m+2,,+1)]2}2+
B4 [T'(m + 1)]2 T'(2m +2v+2)

25T (2m + 2) |
BAC(m +1)]2T(2m + 2 + 49) {T(m+1)T(m+ 14 44)—

~4T(m + 1+ )T (m + 1 + 37) + 3[T(m + 1 + 29)?},

(3.3)

where I'(-) is the gamma function.

Now based on Lemma 3.1 and Lemma 3.2, values of d,(cl_)i +1:; are computed by us-
ing recursion formula (3.1). They are given in Table 1 for m = 0(1)3(2)9,10,P* =
0.75,0.90,0.95,0.99 when the lambda populations have common scale and shape param-
eters (8,7) = (—0.0466, —0.0246), (—0.1686, —0.0802) and (—0.2307, —0.1045). It should
be pointed out that each lambda distribution with scale and shape parameters (8,7) =
(—0.0466, —0.0246), (—0.1686, —0.0802) and (—0.2307, —0.1045) has kurtosis 4.6, 6.0 and
7.0, respectively. These lambda distributions thus have heavier tail than a standard lo-
gistic distribution. Results of Lorenzen and McDonald (1981) for a selection procedure
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for logistic distributions indicate that their median procedure is fairly as efficient as their
mean procedure. Hence, in our case, the median selection rule can be expected to be
fairly as efficient as the mean selection rule. Finally, values of d,(cz__)i +1;% can be computed

similarly.
4. Expected Number of Bad Populations in the Selected Subset.

Suppose fp is known and thus, without loss of generality let §; = 0. Let B be the
(random) number of bad populations in the subset selected. Then the expected number
of bad populations, denoted by E4(B|R), can be used as a measure of the efficiency of the

rule R. Now, for the rule R;, for any 5,0< j <k,

sup Eo Bi{R;) = sup Py gk > C’d(l)
(S5 Eo(BIE) Z_: {U i D}

_ 2_:1 L_J (Zij > —dD)}. (4.1)

Now let us consider an alternative rule Rz which uses a fixed constant ds and selects a
subset and satisfies the P*-condition. This rule R3 is
R3: Select 7; if and only if Xi:k > —Cdsfors=1,...,k, where d3(> 0) is chosen so as to

satisfy the P*-condition. Then one can see that dg = d( ,1 and also

J Jj .
i Eg(B|Rs) =Y _ Pr{|J(Zs; > —da)}. (4.2)
e k—3 —_

The following theorem is straightforward.
Theorem 4.1. For any 7,0 < 57 <k,
sup Ep(B|R1) < sup Ey(B|Rs). (4.3)

€0k €5

10



From the above theorem, the rule R; is uniformly better than the rule Rs in terms of the

expected number of bad populations in the selected subset.
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Table 1. Values of dgll)c for the case of symmetric lambda
populations with common scale and shape parameters

(B8,7) = (—0.0466,—0.0246), Kurtosis = 4.6

m k P* 0.75 0.90 0.95 0.99
c 1 0.5920 1.1949 1.6141 2.5688
2 0.7382 1.2879 1.6796 2.5929
3 0.7836 1.3087 1.6899 2.5938
4 0.8029 1.3148 1.6918 2.5939
5 0.8123 1.3167 1.6922 2.5939
6 0.8174 1.3174 1.6922 2.5939
1 1 0.3860 0.7614 1.0081 1.5278
2 0.4745 0.8109 1.0393 1.5358
3 0.5005 0.8209 1.0433 1.5360
4 0.5111 0.8236 1.0439 1.5360
5 0.5161 0.8242 1.0440 1.5360
.6 0.5187 0.8244 1.0440 1.5360
2 1 0.3077 0.6008 0.7885 1.1670
2 0.3758 0.6368 0.8100 1.1747
3 0.3954 0.6437 0.8126 1.1748
4 0.4032 0.6454 0.8130 1.1748
5 0.4069 0.6459 0.8130 1.1748
6 0.4088 0.6460 0.8130 1.1748
3 1 0.2634 0.5115 0.6682 0.9804
2 0.3259 0.5408 0.6853 0.9839
3 0.3369 0.5463 0.6873 0.9839
4 0.3433 0.5477 0.6875 0.9839
5 0.3463 0.5480 0.6875 0.9839
6 0.3478 0.5481 0.6875 0.9839
5 1 0.2127 0.4107 0.5339 0.7743
2 0.2579 0.4331 0.5466 0.7767
3 0.2706 0.4372 0.5480 0.7767
4 0.2756 0.4382 0.5482 0.7767
5 0.2780 0.4384 0.5482 0.7767
6 0.2791 0.4385 0.5482 0.7767
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Table 1. {continued)

m k P* 0.75 0.90 0.95 0.99

7 1 0.1832 0.3527 0.4573 0.6795
2 0.2217 0.3715 0.4679 0.6614
3 0.2325 0.3749 0.4690 0.6614
4 0.2367 0.3757 0.4691 0.6614
5 0.2387 0.3759 0.4691 0.6614
6 0.2397 0.3759 0.4691 0.6614

9 1 0.1633 0.3138 0.4064 0.5840
2 0.1974 0.3303 0.4155 0.5856
3 0.2069 0.3333 0.4165 0.5856
4 0.2107 0.3340 0.4166 0.5856
5 0.2124 0.3342 0.4166 0.5856
6 0.2132 0.3342 0.4166 0.5856

10 1 0.1555 0.2987 0.3866 0.5548
2 0.1879 0.3143 0.3952 0.5563
3 0.1970 0.3171 0.3961 0.5563
4 0.2005 0.3178 0.3962 0.5563
5 0.2021 0.3179 0.3962 0.5563
6 0.2029 0.3180 0.3962 0.5563

(B8,7) = (—.1686,—.0802), Kurtosis = 6.0

0 1 0.5591 1.1526 1.5863 2.6451
2 0.7055 1.2573 1.6683 2.6867
3 0.7537 1.2834 1.6837 2.6897
4 0.7751 1.2920 1.6874 2.6897
5 0.7860 1.2951 1.6883 2.6897
6 0.7920 1.2963 1.6885 2.6897

1 1 0.3619 0.7218 0.9650 1.4973
2 0.4480 0.7731 0.9991 1.5078
3 0.4740 0.7839 1.0040 1.5080
4 0.4847 0.7869 1.0048 1.5080
5 0.4899 0.7878 1.0049 1.5080
6 0.4927 0.7881 1.0049 1.5080
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Table 1. (continued)

m k P* 0.75 0.90 0.95 0.99
2 1 0.2883 0.5671 0.7490 1.1286
2 0.3537 0.6032 0.7714 1.1340
3 0.3729 0.6103 0.7742 1.1341
4 0.3806 0.6121 0.7747 1.1341
5 0.3843 0.6127 0.7747 1.1341
6 0.3862 0.6128 0.7747 1.1341
3 1 0.2468 0.4819 0.6324 0.9384
2 0.3014 0.5107 0.6497 0.9422
3 0.3171 0.5162 0.6518 0.9422
4 0.3234 0.5176 0.6520 0.9422
5 0.3264 0.5180 0.6521 0.9422
6 0.3279 0.5181 0.6521 0.9422
5 1 0.1992 0.3861 0.5035 0.7356
2 0.2421 0.4078 0.5160 0.7380
3 0.2543 0.4118 0.5174 0.7380
4 0.2591 0.4128 0.5176 0.7380
5 0.2614 0.4131 0.5176 0.7380
6 0.2625 0.4132 0.5176 0.7380
7 1 0.1716 0.3312 0.4305 0.6242
2 0.2080 0.3493 0.4407 0.6261
3 0.2183 0.3526 0.4419 0.6261
4 0.2223 0.3534 0.4420 0.6261
5 0.2242 0.3536 0.4420 0.6261
6 0.2251 0.3536 0.4420 0.6261
9 1 0.1530 0.2946 0.3822 0.5515
2 0.1852 0.3103 0.3910 0.5531
3 0.1942 0.3132 0.3919 0.5531
4 0.1977 0.3139 0.3920 0.5531
5 0.1994 0.3141 0.3921 0.5531
6 0.2002 0.3131 0.3921 0.5531
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Table 1. (continued)
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m k P* 0.75 0.90 0.95 0.99

10 1 0.1457 0.2803 0.3634 0.5235
2 0.1762 0.2952 0.3717 0.5250
3 0.1848 0.2979 0.3726 0.5250
4 0.1882 0.2985 0.3727 0.5250
5 0.1897 0.2987 0.3727 0.5250
6 0.1905 0.2987 0.3727 0.5250

(8,v) = (—.2307,—.1045), Kurtosis = 7.0

0 1 0.5437 1.1317 1.5708 2.6758
2 0.6894 1.2413 1.6607 2.7282
3 0.7387 1.2702 1.6792 2.7331
4 0.7610 1.2802 1.6840 2.7331
5 0.7727 1.2840 1.6854 2.7331
6 0.7793 1.2856 1.6857 2.7331

1 1 0.3507 0.7031 0.9441 1.4808
2 0.4355 0.7750 0.9795 1.4925
3 0.4614 0.7663 0.9848 1.4929
4 0.4723 0.7694 0.9857 1.4929
5 0.4776 0.7704 0.9859 1.4929
6 0.4803 0.7708 0.9859 1.4929

2 1 0.2794 0.5513 0.7303 1.1081
2 0.3435 0.5874 0.7530 1.1139
3 0.3624 0.5946 0.7560 1.1140
4 0.3701 0.5965 0.7564 1.1140
5 0.3738 0.5970 0.7565 1.1140
6 0.3756 0.5972 0.7565 1.1140

3 1 0.2391 0.4681 0.6156 0.9181
2 0.2925 0.4967 0.6329 0.9221
3 0.3079 0.5022 0.6351 0.9221
4 0.3141 0.5036 0.6354 0.9221
5 0.3171 0.5040 0.6354 0.9221
6 0.3186 0.5041 0.6354 0.9221



Table 1. (continued)

m k P* 0.75 0.90 0.95 0.99
5 1 0.1930 0.3747 0.4893 0.7172
2 0.2349 0.3961 0.5017 0.7197
3 0.2468 0.4001 0.5031 0.7197
4 0.2515 0.4010 0.5033 0.7197
5 -0.2537 0.4013 0.5033 0.7197
6 0.2548 0.4014 0.5033 0.7197
7 1 0.1662 0.3213 0.4181 0.6076
2 0.2017 0.3390 0.4281 0.6095
3 0.2117 0.3423 0.4293 0.6095
4 0.2157 0.3431 0.4294 0.6095
5 0.2175 0.3433 0.4294 0.6095
6 0.2184 0.3433 0.4294 0.6095
9 1 0.1482 0.2857 0.3709 0.5363
2 0.1795 0.3011 0.3796 0.5379
3 0.1883 0.3039 0.3806 0.5379
4 0.1918 0.3046 0.3807 0.5379
5 0.1934 0.3048 0.3807 0.5379
6 0.1942 0.3048 0.3807 0.5379
10 1 0.1411 0.2718 0.3526 0.5090
2 0.1786 0.2864 0.3508 0.5104
3 0.1792 0.2890 0.3617 0.5104
4 0.1825 0.2896 0.3618 0.5104
5 0.1840 0.2898 0.3618 0.5104
6 0.1847 0.2898 0.3618 0.5104
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