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ABSTRACT

For multivariate normal data from a single population, principal
component analysis is a useful dimensionality reduction technique. Pre-
diction of principal components by variable subsets is considered and
the relationship between this problem and principal variables is estab-
lished. An application to multivariate quality control is discussed and

the results are illustrated with an example.
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1. INTRODUCTION

In McCabe (1984) principal variables are introduced as a variable
selection alternative to principal components. In Section 2, principal

variables are briefly described.

The basic notation and results are given in Section 3 with a theorem
explaining the relation between principal variables and the prediction of
principal components. In Section 4 shift models are examined. The
application of these models to multivariate quality control is described

in Section 5.

It is shown that sample cost savings can be achieved by using vari-
able subsets to detect a shift in the principal components in some situ-

ations. The ideas are illustrated with an example in Section 6.

2. PRINCIPAL VARIABLES

Let X be a p-dimensional normally distributed random vector with
known positive definite covariance matrix ¥. Without loss of generality,

we assume that the mean is zero. We denote this by
X ~ N(0,X).

We consider partitioning X into (X7, X})’ where X, is a t-dimensional
vector of retained variables and X3 is an s-dimensional vector of dis-
carded variables. Note that p = ¢ + s and the elements of the vector X

are permuted so that the selected variables are the first ¢ variables.

Let X be partitioned correspondingly, i. e.

(¥ Y2
m‘(ﬂ:zl 2:22)
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where ¥ is the ¢ x ¢ covariance matrix of X7, etc. Selection of a subset
of variables is equivalent to selection of a partition of J. Note that there

are (’t’) choices for given t and 2P — 1 choices for all t = 1,...,p.

McCabe (1984) gives four criteria for selecting principal variables.
In this paper, we focus on the second of these. For given ¢, the principal

variables are the components of X;, where X is such that the trace of

X22.1 is minimum. Here, X221 = Y22 — ¥o1 I} T2

3. ESTIMATION OF PRINCIPAL COMPONENTS

We consider estimation of the first v principal components by Xj.

Let the principal component vector be denoted by Y. Then,
Y =G'X (3.1)

where the columns of G are the eigenvectors of X. Let
A= (A1,A2,...,Ap), where A; > A3 > ... > Xp > 0 are the eigenvalues.

We partition G as follows

G11 G12>
G = 3.2
<G21 G2z (

where G1; is ¢t X 4, G12 is t X v,Ga; is s X u and Gag is s X v. Here,

u+v =1+ s=p. Thus,

Y, G2 X1 + GRX2 )’ '

(A 0O
T = ( 0 Az) , (3.4)
where Ay = diag(A1,...,Ay) and Ay = diag(Aut1,.. ., Ap)-

Let

To study the estimation of Y; from X;, we need the conditional

distribution of Y; given X;. In Appendix A it is demonstrated that
Y1|X1 ~ N(A:1GYy 33 X3 Ay — AGYy X GaAy). (3.5)
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It will be useful in what follows to consider the normalized version of Y; -

which we denote by Z;. We let

Z = ATy, (3.6)
It follows from (3.5) that
L S
Z1|X1 ~ N(A7 Gy 30X T— ARG, T5HGiAy). (3.7)
Let
1 1
R?=AZGY; X1 GuiAZ. (3.8)

Since I — R? is the covariance matrix of the standardized variable Z1
given X, this matrix is a multivariate analog of the squared multiple
correlation coefficient. The diagonal elements of R? are the squared
multiple correlation coefficients of the elements of ¥; with X;. Note

that R? is singular if ¢ < u.

The following theorem establishes the relationship between princi-
pal variables and the prediction of principal components by subsets of
variables. In this theorem, u = p,A; = A,G = (G},G%)’, and R? is a

p x p matrix. The expression tr(M) denotes the trace of the matrix M.
Theorem. Let
R? = A3G 37! G1A3,
where
G1 = (G11,G12)-

Then,
tr(AT R2A%) = tr¥ — tr¥s0.1. (3.9)
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The proof is given in Appendix B.

Recall that the principal variable criterion mentioned in the pre-
vious section is the trace of ¥351. Since tr(¥) is fixed, optimization

corresponds to maximizing tr (A% R2A %) .

If we normize the quantity tr¥ — ¢r¥22.1 by ¢tr¥, we obtain the

proportion of variation in X explained by X;. Let
AT = X /2,

and let R? denote the squared multiple correlation coefficient between

the i-th element of Y and X;. We then have the following corollary.

COROLLARY. The proportion of variation in Y explained by X}
is

XP_AIRZ.

Thus, the principal variables maximize the weighted average of the R2’s
for predicting the principal components with weights proportional to the

eigenvalues.

4. SHIFT MODELS

We consider models in which the covariance structure of the prob-
lem remains as above but there is a shift in the mean. Given that the
shift occurs in Y;, we investigate the suitability of X; for detecting the

shift.

Specifically, we assume EZ has changed from zero to A where A =

(A1,0) and A is (u x 1). It follows that

EY; = A A,
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and

EY; =0.

Since X = GY, we have

1
G1i1AZA
EX=< 1111 1)
G21AfA1.

Let Z; denote the conditional expectation of Z , given X;. From (3.7)

it follows that
5 31 -1
Zy = A7 Gy X5 Xa.
Under the shift model,
1
X1 ~ N(GuiAf Ay, %)
and therefore,
n 1 1 L L
Zy ~ N(Af Gy 31 GuAf Ay, AJGY; %3 GuiAf).
From the definition of R? in (3.8) we see that
7, ~ N(R%Ay, R?).

To compare the efficiency of using X; (through Z;) versus Z; (equiva-
lently, Y1) to detect the shift A, we consider the noncentrality param-
eters for the distributions of Z|Z; and Z}(R?)~Z;. Note that if R? is
nonsingular we use any generalized inverse in the quadratic form for 21.
Let EFF denote the ratio of the noncentrality parameters corresponding
to 7, and Z1, respectively. Then, it is easy to show that

AlR2A,

EFF = ATA,
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Some special cases are worthy of note. If A; = k(1,1,...,1)!, cor-
responding to a shift of k standard deviations in each of the first u

principal components, then

EFF = Y XYy i
u

where R? = (r;;). f u = 1 and A; = (k), then
EFF = R?,

the squared multiple correlation of the first principal component with
X1. In this case, regression subset algorithms can be used to find the
vector X; which maximizes R? and thereby maximizes the efficiency as

long as p is not too large.

5. APPLICATION TO MULTIVARIATE QUALITY CONTROL

Suppose X is measured for a process and it is believed that if the
process goes out of control that there will be a shift in the first principal
component. If a subset X; ilas been chosen for monitoring purposes,
then some sample size comparisons can be made using the value of R2.
Specifically, N observations on X give the same information as N/R?

observations on Xj.

If all observations were equally costly then N measurements on X
would require Np units while N/R? observations on X; would require
Nt/R? units. In many applications, there is overhead in obtaining the
sample to measure so that not all costs would be equal. If some of the
components of X are expensive, however, it may be possible to find a

relatively inexpensive X; with an adequate but suboptimal (given t) R2.

The full analysis of a given problem would require the complete

cost structure. However, as long as data is not free, the above analysis
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suggests that savings can be made by considering subsets of variables as

predictors of principal components.

6. EXAMPLE

To illustrate the results described in the previous sections the Fisher
Iris data are analyzed. As in McCabe (1984), we use the 50 samples on
Iris versicolor. There are four size measurements on each sample. The

covariance matrix rather than the correlation matrix is analyzed.

Table 1 gives R? values for predicting the principal components for
all possible subsets. The last column gives the value of the principal
variables criterion. Observe that this value is obtained for each row by

summing the products of the correlations and the normed eigenvalues
(A7)-

For each subset size the principal variables are optimal for predict-
ing the first principal component. This observation is a consequence of

the dominance of the first principal component (A} = .781).

The efficiency of the first variable relative to Y7 for detecting a shift
in Y7 is .864. Suppose the cost of measuring this variable is ¢. Then,
since Y7 requires measurement of X = (X3, X3, X3, X4); X1 would be
preferred whenever the cost of measuring X is greater than ¢/.864 =

1.157¢.



Table 1.

Values for R? for Predicting Principal Components
from Variable Subsets

Principal Components

Proportion of

Subsets Y1 Y, Ys Yy Variation Explained

1 .864 122 .014 .000 .690

2 462 237 .296 .005 414

3 .859 .039 .098 .004 .685

4 .576 208 .006 210 478

12 914 742 334 .010 .829

1 3 982 611 391 .016 .873

1 4 954 718 .043 .285 .836

23 .897 .245 .852 .006 .803

2 4 632 .269 637 463 587

34 .862 277 174 687 731

123 999 982 .999 .020 982

12 4 .960 918 637 485 919

1 34 .990 774 507 .728 919

234 .898 .349 865 .888 .832

1 234 1.0000 1.0000 1.0000 1.0000 1.000
AS .781 116 087 .016




APPENDIX A

Proof that
Y1|X; ~ N(A1GYy 237 X5 Ay — A1GYy 35 GuAy).
Let A and B denote p X t and p X u matrices. From the assumption
X ~N(0, ¥),
it follows that
B'X|A'X ~ N(B' TA(A' $A)7'A'X; B' B - B' $A(4' XA)~14' 1B).

We let

_'cmd

4= (o)
0
where G;; is given by (3.2) and I is the ¢ x ¢t identity matrix. Thus,

A'X == X1 and B’X = Y1.

We first note that
B' $A = (G; ¥11+ G%; ¥21)

where the second equality follows from the relation
G' ¥ = AG.

Also note that
G'IG=A
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implies

B' B = A;.

Combining the above with the facts that

A TA=13y,
and
A'X =X,
gives the desired result.
APPENDIX B

Proof of the theorem in Section 3.

From the definition of R? it follows that
ATR?AT = AG! %71G;A
where
G1 = (G11,G12)-

Since

tr = trA,

it is sufficient to show that

tT(A e AGIH XJI_IIGHA.) = trng_l

First, we note that
A=G'XG
= G} $11G1 + G5 ¥21G1 + G} L12G% + G5 X22G.

11



Second, since
G' ¥ = AG,
it follows that
AG) = G} $11 + G Xa1.
Therefore,
AGY LTGIA = (G T11 + GS $21) 27 (P11G1 + $21G2)
=G L11G1 + G $21G1 + Gy X2:1G2 + G T21 X7 T12Go,

and
A — AGY; X7 G11A = Gy (Pa2 — $21 71 X12)Go

= G4 ¥22.1Go.

The result follows from

trGhy X22.1G2 = tr¥a2.1G2GY

= tr¥e2.1
since

G2Gy =1.
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